Subgroups

Definition: Let \((G, \cdot)\) be a group. A subset \(H\) of \(G\) is called a **subgroup** of \(G\), if it has the following three properties:

(i) \(1 \in H\), the identity element of \(G\) is in \(H\).

(ii) \(a, b \in H\), \(ab \in H\), \(H\) is closed under the binary operation in \(G\).

(iii) \(a \in H\), \(a^{-1} \in H\), \(H\) is closed under inversion.

If \(H\) is a subgroup of \(G\), we indicate this by the notation

\[H \leq G \quad \text{or} \quad H \subseteq G \text{ subgroup}. \]

If \(H\) is a subgroup of \(G\) and \(H \neq G\), then we call \(H\) a **proper subgroup** of \(G\).

The subgroup \(H = \{ e \}\) is called the **trivial subgroup** of \(G\).

Remark: A subgroup \(H\) of \(G\) is a group in its own right with the binary operation of \(G\) restricted to \(H\).

Examples:

1. \(\mathbb{Z} \) is a subgroup of \((\mathbb{Q}, +)\).

2. \(H = \{0 + 4\mathbb{Z}, 2 + 4\mathbb{Z}\} \subseteq \mathbb{Z}/4\mathbb{Z}\) is a subgroup of \(0 + 4\mathbb{Z} \subseteq \mathbb{Z}/4\mathbb{Z}\) if, and only if, the identity is there:

 \[
 \begin{align*}
 0 + 4\mathbb{Z} + 2 + 4\mathbb{Z} &\in 0 + 4\mathbb{Z} \subseteq \mathbb{Z}/4\mathbb{Z} \\
 2 + 4\mathbb{Z} + 2 + 4\mathbb{Z} &\in 4 + 4\mathbb{Z} \subseteq 0 + 4\mathbb{Z} \subseteq \mathbb{Z}/4\mathbb{Z} \\
 0 + 4\mathbb{Z} + 0 + 4\mathbb{Z} &\in 0 + 4\mathbb{Z} \subseteq \mathbb{Z}/4\mathbb{Z}
 \end{align*}
 \]

 \(-2 + 4\mathbb{Z} = 2 + 4\mathbb{Z} \in \mathbb{Z}/4\mathbb{Z}\) is closed under inversion.

 \[S = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}\} \subseteq \mathbb{Z}/4\mathbb{Z}\] is not a subgroup because \(S\) is not closed under the binary operation: \(1 + 4\mathbb{Z} + 2 + 4\mathbb{Z} = 3 + 4\mathbb{Z} \notin S\).

3. If \(M \subseteq N \), then the subset \(M / 4\mathbb{Z} = \{a + 4\mathbb{Z} : a \in M\} \) is a subgroup of \((\mathbb{Z}/4\mathbb{Z}, +)\).

4. If \(V \) is a vector space, then \((V, +)\) is a group, and if \(W \subseteq V\) is a subgroup, then \(W\) is a subgroup of \((V, +)\).
Prop. Let \(H, K \leq G \) be subgps of \(G \). Then \(HNK \leq G \) is a subgp of \(G \).

Proof:
1. \(I_G \in H \) and \(I_G \in K \) because \(H, K \) are subgps of \(G \). Therefore \(I_G \in HNK \).
2. Let \(x, y \in HNK \). Then \(xy \in H \) because \(H \) is a subgp of \(G \) and \(xy \in K \) because \(K \) is a subgp of \(G \). Therefore \(xy \in HNK \).
3. Let \(x \in HNK \). Then \(x^{-1} \in H \) because \(H \) is a subgp of \(G \) and \(x^{-1} \in K \) because \(K \) is a subgp of \(G \). Hence \(x^{-1} \in HNK \). \(\square \)

Remark: The proposition generalizes to any collection of subgps of \(G \).

Prop: Let \(G \) be a gp and let \(a \) be an element of \(G \). Then the subset \(H = \{ \alpha \in \mathbb{Z}^+ \mid \alpha a^n \in G \} \) is a subgp \(\leq G \) which contains \(a \). Moreover, \(H \) is the intersection of all subgps containing \(a \).

Proof:
1. \(a^0 = I_G \in H \)
2. Let \(x, y \in H \). Then \(x = a^m \) and \(y = a^n \) for some \(m, n \in \mathbb{Z} \), so \(xy = a^{m+n} \in H \).
3. Let \(x = a^n \in H \). Then \(x^{-1} = a^{-n} \in H \).

Therefore \(H \) is a subgp of \(G \).
Now we show that

\[H = \bigcap_{K \in \mathcal{K}} K \]

\[\text{if } a \in H, \text{ so } \bigcap_{K \in \mathcal{K}} K \subseteq H \quad \text{(by one of the } K's) \]

Conversely, if \(a \in \cap_{K \in \mathcal{K}} K \), then

1. \(a = 1a \in K \) because \(K \) is a subgroup, so has 1.
2. \(a^n \in \cap_{K \in \mathcal{K}} K \) because \(K \) is closed under group operation.
3. \(a^n = (a^n) \) for \(n \geq 0 \) because \(K \) is closed under inversion.

Therefore \(H = \bigcap_{K \in \mathcal{K}} K \), so \(H = \bigcap_{K \in \mathcal{K}} K \).

Hence \(H \) is the intersection of all the subgroups containing \(a \). \(\square \)

Def: Let \(G \) be a group.

1. For every element \(a \in G \), the subgroup \(\langle a \rangle = \{ a^n : n \in \mathbb{Z} \} \) is called the **subgroup generated by** \(a \) and is denoted by \(\langle a \rangle \). \(\langle a \rangle \) is the smallest subgroup of \(G \) containing \(a \).
2. A group \(G \) is called **cyclic** if \(\exists a \in G \) such that \(G = \langle a \rangle \). In this case, \(a \) is called a **generator** of \(G \).

Note: If \(G \) is a cyclic group there may be more than one generator of \(G \).
Prop: Every cyclic group is abelian.

Proof: Let G be a cyclic group, so $G = \langle a \rangle$ for some $a \in G$. Let $xy \in G$.
Then $x = a^n$ and $y = a^m$ for some $n, m \in \mathbb{Z}$ and so
$$xy = a^n a^m = a^{n+m} = a^m a^n = yx$$

Example 1: $\mathbb{Z} = \langle 17 \rangle$. This is because for $n \in \mathbb{Z}$, $n = n \cdot 1$. Also, $\langle -1 \rangle = \langle 17 \rangle$.

2. $\mathbb{Z}/\mathbb{Z} = \langle 1 + \mathbb{Z} \rangle$. This is because for $m + n \in \mathbb{Z}/\mathbb{Z}$,
$$m + n \mathbb{Z} = m(1 + n \mathbb{Z})$$

Def: Let G be a group.
(a) For any non-empty subset X of G, we define $\langle X \rangle$ as the set of all elements of G of the form
$$x_1 x_2 \cdots x_n$$
where $n \in \mathbb{N}$, $x_1, \ldots, x_n \in X$, and $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$. We extend this definition to the empty subset of G by setting $\langle \phi \rangle = \{1_G\}$. We will prove that $\langle X \rangle$ is a subgroup of G, it is called the subgroup generated by X.
(b) If X is a subset of G such that $\langle X \rangle = G$, then we call X a generating set of G.
Prop: Let X be a subset of a gp G. Then:
(a) $\langle X \rangle$ is a subgp of G containing X.
(b) If K is a subgp of G and $X \subseteq K$, then $\langle X \rangle \subseteq K$.
(c) $\langle X \rangle = \bigcap_{K \leq G} X \subseteq K$

Proof: If $X = \emptyset$, then $\langle X \rangle = \{1_G\}$ and (a) - (c) are easy to verify.

Assume $X \neq \emptyset$.

(a) First $x \in \langle X \rangle$. Let $x \in X$. Then $x = x_1^n$ so $x \in \langle X \rangle$ by def of $\langle X \rangle$.

Now that $\langle X \rangle$ is a subgp of G.

1. Identity: $X \neq \emptyset$ implies $\exists x \in X$. Then $1_G = x \cdot x^{-1} \in \langle X \rangle$.

2. Closure: Let $y, z \in \langle X \rangle$. Then

$$y = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n}$$
$$z = z_{s_1}^{s_1} \cdots z_{s_m}^{s_m}$$

for some $e_i, s_j \in \{1, \pm 1\}$, $y_i, z_j \in X$. Then

$$yz = y_{e_1}^{e_1} \cdots y_{e_n}^{e_n} z_{s_1}^{s_1} \cdots z_{s_m}^{s_m} \in \langle X \rangle$$

by def of $\langle X \rangle$.

3. Inverses: Let $x = x_{e_1}^{e_1} \cdots x_{e_n}^{e_n} \in \langle X \rangle$. Then

$$x^{-1} = x_{e_1}^{-e_1} \cdots x_{e_n}^{-e_n} \in \langle X \rangle$$
(b) Let \(K \) be a subgp of \(G \) st. \(X \subseteq K \). Then \(K \) contains

1. All elements of \(X \) by assumption.
2. All inverses of elements of \(X \) since \(K \) is closed under inversion.
3. All products of elements of \(X \) and inverses of elements of \(X \) because \(K \) is closed under mult.

Therefore \(\langle X \rangle \subseteq K \).

(c) \(X \subseteq \langle X \rangle \), so \(\bigcap_{K \subseteq G} \langle X \rangle \)

Conversely, by (b), if \(X \subseteq K \), then \(\langle X \rangle \subseteq K \), so

\(\langle X \rangle \subseteq \bigcap_{K \subseteq G} \langle X \rangle \). Hence \(\langle X \rangle = \bigcap_{K \subseteq G} \langle X \rangle \). \(\square \)

Note: By prop, the subgp generated by a set \(X \) is the intersection of all gps containing \(X \).

Def: Let \(f : G \to H \) be a gp hom. Define the kernel of \(f \) to be the set

\[\ker(f) = \{ g \in G : f(g) = e_H \} \]

Prop: \(\ker(f) \) is a subgp of \(G \) and \(\text{im}(f) \) is a subgp of \(H \).

Proof: 1. Identity: \(f(e_G) = e_H \), so \(e_G \in \ker(f) \).
2. Closed under mult: Let \(xy \in \ker(f) \), then

\[f(xy) = f(x)f(y) = e_H e_H = e_H \]

so \(xy \in \ker(f) \).
3. Closed under inversion: Let \(x \in \ker(f) \), then \(f(x^{-1}) = f(x)^{-1} = e_H \), so \(x^{-1} \in \ker(f) \).
Example: Define

$$\pi : \mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$$

$$a \mapsto a + n\mathbb{Z}$$

$$\pi$$ is a group homomorphism:

$$\pi(a + b) = \pi(a) + \pi(b)$$

$$= a + n\mathbb{Z} + b + n\mathbb{Z}$$

$$= \pi(a) + \pi(b)$$

$$\ker(\pi) = \{ a \in \mathbb{Z} : \pi(a) = 0 + n\mathbb{Z} \}$$

$$\pi(a) = a + n\mathbb{Z}, \quad a + n\mathbb{Z} = 0 + n\mathbb{Z}$$

if and only if $$a \equiv 0 \mod n$$

if and only if $$n$$ divides $$a$$.

$$\ker(\pi) = n\mathbb{Z} = \{ kn : k \in \mathbb{Z} \}$$

Example: Vector space.

Let $$V$$ be a vector space. Then

$$\{ v_i \} \subset V$$

is a basis for $$V$$ if and only if

$$\forall x \in V : x = \sum_{i=1}^{n} a_i v_i, \quad a_i \in \mathbb{R}$$

$$\{ v_i \} \subset V$$

is a basis for $$V$$ if and only if

$$\text{Span} \{ v_1, \ldots, v_n \} = V$$.
Example: Symmetric Group

Let $X = \{1, 2, \ldots, n\}$. Then $\text{Sym}(X)$ is denoted $\text{Sym}(n)$ or S_n, and called the symmetric group.

Elements of $\text{Sym}(n)$ are bijections

$$\sigma : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$$

Composition of functions makes $\text{Sym}(n)$ a group.

Representing elements of $\text{Sym}(5)$: Let $\sigma \in \text{Sym}(5)$

$$\sigma : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}$$

1. $\sigma(1) = \text{can be anything}$
2. $\sigma(2) = \text{anything but } \sigma(1)$
3. $\sigma(3) = \text{anything but } \sigma(1), \sigma(2)$
4. $\sigma(4) = \text{anything but } \sigma(1), \sigma(2), \sigma(3)$
5. $\sigma(5) = \text{element that is left}$

There are $5!$ elements of $\text{Sym}(5)$.

Let $\sigma, \tau \in \text{Sym}(5)$ be two elements, $\tau \in \text{Sym}(5)$

$$\sigma : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}, \quad \tau : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}, \quad \tau \circ \sigma : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}$$

\[
\begin{align*}
\sigma(1) &= 3 \\
\sigma(2) &= 4 \\
\sigma(3) &= 1 \\
\sigma(4) &= 2 \\
\sigma(5) &= 5
\end{align*}
\]

\[
\begin{align*}
\tau(1) &= 1 \\
\tau(2) &= 3 \\
\tau(3) &= 2 \\
\tau(4) &= 9 \\
\tau(5) &= 5
\end{align*}
\]

Represent σ as

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix} \quad \tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$