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We consider inference for possibly misspecified GMM models based on possibly nons-
mooth moment conditions. While it is well known that misspecified GMM estimators
with smooth moments remain

√
n consistent and asymptotically normal, globally mis-

specified nonsmooth GMM estimators are n1/3 consistent when either the weighting
matrix is fixed or when the weighting matrix is estimated at the n1/3 rate or faster. Be-
cause the estimator’s nonstandard asymptotic distribution cannot be consistently esti-
mated using the standard bootstrap, we propose an alternative rate-adaptive bootstrap
procedure that consistently estimates the asymptotic distribution regardless of whether
the GMM estimator is smooth or nonsmooth, correctly or incorrectly specified. Monte
Carlo simulations for the smooth and nonsmooth cases confirm that our rate-adaptive
bootstrap confidence intervals exhibit empirical coverage close to the nominal level.

Keywords: rate-adaptive bootstrap, misspecified GMM, cube-root asymptotics.

JEL Classification: C10, C15

1 Introduction
Many GMM models are based on nonsmooth moment conditions that involve indicator func-
tions. Examples include quantile instrumental variables (e.g. Chernozhukov and Hansen
(2005) and Honoré and Hu (2004b)) and simulated method of moments that are based on
frequency simulators (McFadden (1989) and Pakes and Pollard (1989)). While the asymp-
totic behavior of nonsmooth GMM estimators has been well established when the model is
assumed to be correctly specified, in practice it can happen that the model is misspecified
in the sense that the population moment conditions evaluated at the parameter value which
minimizes the population GMM objective do not equal zero. For example, Phillips (2015)
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points out that quantile regression is always misspecified for a model with unit root nonsta-
tionary regressors. In this paper, we derive the rate of convergence and the limit distribution
for the GMM estimator based on nonsmooth moment functions in the misspecified case. The
study of misspecification is not only important for estimation and inference of model param-
eters and for model testing and selection, but also important for studying the properties of
computational methods (Creel et al. (2015)).

Misspecified GMM models are studied in, for example, Hall and Inoue (2003), Berkowitz
et al. (2012), Guggenberger (2012), Lee (2014), Hansen and Lee (2021),Bonhomme and Wei-
dner (2022), Giurcanu and Presnell (2018), Armstrong and Kolesár (2021), and Cheng et al.
(2019). All assume that the sample moment conditions are smooth (in the sense of twice
continuously differentiable) or directionally differentiable (in the sense of Gateaux) in the
parameters, which allows the GMM estimator to remain

√
n consistent and asymptotically

normal. In the case of smooth moments, Hall and Inoue (2003) derived the asymptotic
distribution of globally misspecified GMM estimators in the sense that the population mo-
ments are equal to a vector of fixed nonzero constants that do not approach zero as n→∞.
They show that the globally misspecified smooth GMM estimator is still

√
n-consistent and

asymptotically normal, except with a different variance-covariance matrix than the correctly
specified case. In contrast, we show that globally misspecified GMM estimators with nons-
mooth, specifically non-directionally differentiable moments, converge at the cubic-root rate
to a nonstandard asymptotic distribution, similar to ones in Kim and Pollard (1990) and Jun
et al. (2015). This nonstandard distribution cannot be estimated consistently by any of the
current methods for bootstrapping GMM estimators (for example the standard (nonpara-
metric) bootstrap, centered bootstrap of Hall and Horowitz (1996), or empirical likelihood
bootstrap of Brown and Newey (2002)) because convergence to this limiting distribution is
not locally uniform in the underlying DGP (Lehmann and Romano (2006)). However, other
resampling methods such as subsampling (Politis et al. (1999)) or the numerical bootstrap
(Hong and Li (2020)) will work, assuming that we know the rate of convergence. In other
words, we need to know whether the model is correctly or incorrectly specified because if the
nonsmooth GMM estimator is correctly specified, then the asymptotic distribution remains√
n-consistent and asymptotically normal.
An insightful paper by Cattaneo et al. (2020) proposes a rate-adaptive bootstrap for

M-estimators which does not require knowing the estimator’s rate of convergence to consis-
tently estimate the estimator’s limiting distribution and to construct asymptotically valid
confidence intervals. They can overcome the inconsistency of the standard bootstrap because
they are bootstrapping consistent estimates of the components of the non-standard limiting
distribution rather than applying the bootstrap to the objective function of the M-estimator.
Taking inspiration from their paper, we propose a rate-adaptive bootstrap that consistently
estimates the limiting distribution of the GMM estimator regardless of whether the model
is correctly or globally incorrectly specified, smooth or nonsmooth. Our rate-adaptive boot-
strap procedure differs from the one in Cattaneo et al. (2020) because our focus is on GMM,
which is not handled by their procedure for M-estimators. In the case where the model is
correctly specified, our rate-adaptive bootstrap confidence intervals cover the true parameter
with the specified nominal coverage probability asymptotically. In the case where the model
is globally incorrectly specified, the rate-adaptive bootstrap confidence intervals achieve the
nominal coverage asymptotically for the pseudo-true parameter, which is defined as the pa-

2



rameter which minimizes the population GMM objective function. We acknowledge that
our rate adaptive bootstrap is not uniformly valid because it cannot consistently estimate
the asymptotic distribution for locally misspecified models where the population moments
are drifting towards zero at the

√
n rate. The difficulty lies in not being able to consistently

estimate the drift constant which appears in the asymptotic distribution. For procedures
that handle local misspecification for smooth GMM models, we refer readers to the impor-
tant work by Bonhomme and Weidner (2022), Armstrong and Kolesár (2021), and references
therein.

Both Lee (2014) and Giurcanu and Presnell (2018) have proposed bootstrap procedures
that are robust to misspecification, but neither allows for the moment conditions to be non-
smooth. Lee (2014) used Hall and Inoue (2003)’s misspecification-robust estimator of the
asymptotic variance of GMM to develop a misspecification-robust (MR) bootstrap proce-
dure. We investigate their procedure in Section 7.4’s Monte Carlo study and find that our
procedure has similar performance to theirs when the moments are smooth. Giurcanu and
Presnell (2018) recommend first testing for misspecification using a J-test and then applying
either the standard bootstrap, centered bootstrap of Hall and Horowitz (1996), or empirical
likelihood bootstrap of Brown and Newey (2002) depending on the outcome of the test. In
contrast to Giurcanu and Presnell (2018), our procedure does not test for misspecification
but instead adaptively performs inference for the pseudo-true parameter under misspecifica-
tion. However, we are similar to Giurcanu and Presnell (2018) in that we also find that the
choice of the weighting matrix impacts the GMM estimator’s asymptotic distribution.

Several important papers have considered another form of misspecification which arises
in the context of two-step semiparametric GMM estimators, where the lack of precision in
the first stage nonparametric estimator can make traditional normal confidence intervals
suffer from extreme undercoverage. Cattaneo and Jansson (2018) propose novel bootstrap
percentile confidence intervals which provide an automatic method of bias correction and
are therefore "robust" to first stage misspecification. Their intervals are derived from a new
bootstrap distributional approximation based on small bandwidth asymptotics. In a recent
paper, Cattaneo and Jansson (2022) consider the problem of estimating the average density
of a continuously distributed random vector and show that the nonparametric bootstrap
can consistently estimate the distribution of the simple plug-in estimator even though the
estimator is known to be biased. This automatic bias correction property is qualitatively
related to the ability of the rate-adaptive bootstrap to automatically select in or select out
certain components of the asymptotic distribution depending on the level of smoothness and
specification of the moments.

Section 2 explains in greater detail the different impacts that global misspecification
has on the asymptotic distribution of GMM when the moments are smooth versus nons-
mooth. We show that misspecification under the nonsmooth case is of more concern because
the rate of convergence becomes cubic-root and the asymptotic distribution becomes non-
standard, thus invalidating the standard bootstrap or inference using asymptotic critical
values. We explain how our rate-adaptive bootstrap can still provide consistent inference
for this nonsmooth case as well as for the smooth case under either correct specification
or global misspecification. We also provide three examples illustrating the applicability of
our method: GMM formulation of instrumental variables quantile regression (Chernozhukov
and Hansen (2005)), simulated method of moments (McFadden (1989) and Pakes and Pol-
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lard (1989)), and dynamic censored regression (Honore and Hu (2004a)). While Section 2
studies the 1-step GMM estimator under a fixed weighting matrix W , Section 4 studies the
2-step GMM estimator computed using an estimated weighting matrix Wn and proposes a
rate-adaptive bootstrap for consistent inference. Section 5 contains Monte Carlo simulation
results demonstrating that the empirical coverage frequencies of the rate-adaptive bootstrap
confidence intervals are close to the nominal level, while the empirical coverage frequencies
of the standard bootstrap confidence intervals are far from the nominal level for a simple
location model and a quantile regression model with misspecified nonsmooth moments. Sec-
tion 6 concludes. The Appendix contains additional theoretical results and proofs of the
theorems, in addition to another Monte Carlo example with misspecified smooth moments,
where the rate-adaptive bootstrap performs just as well as the standard bootstrap in terms
of empirical coverage and average interval width.

2 GMM Model with Fixed Weighting Matrix
Consider a random sample Xn = (X1, X2, ..., Xn) of independent draws from a probability
measure P on a sample space X . Define the empirical measure Pn ≡ 1

n

∑n
i=1 δXi , where δx

is the measure that assigns mass 1 at x and zero everywhere else. Denote the bootstrap
empirical measure by P ∗n , which can refer to the multinomial, wild, or other exchangeable
bootstraps. Weak convergence is defined in the sense of Kosorok (2007): Xn  X in
the metric space (D, d) if and only if supf∈BL1

|E∗f(Xn) − Ef(X)| → 0 where BL1 is
the space of functions f : D 7→ R with Lipschitz norm bounded by 1. Conditional weak
convergence in probability is also defined in the sense of Kosorok (2007): Xn

P
 
W
X in the

metric space (D, d) if and only if supf∈BL1
|EWf(Xn) − Ef(X)| p−→ 0 and EWf(Xn)∗ −

EWf(Xn)∗
p−→ 0 for all f ∈ BL1. EW denotes expectation with respect to the bootstrap

weights W conditional on the data, and f(Xn)∗ and f(Xn)∗ denote measurable majorants
and minorants with respect to the joint data (including the weights W). Let X∗n = o∗P (1)
if P (|X∗n| > ε|Xn) = oP (1) for all ε > 0. Also define M∗

n = O∗P (1) (hence also OP (1)) if
limm→∞ lim supn→∞ P (P (M∗

n > m|Xn) > ε)→ 0 ∀ε > 0.
Define the moment function π : X ×Θ→ Rm. To simplify exposition we first consider a

fixed weighting matrixW . Later in Section 4, we will consider estimated weighting matrices.
The GMM estimator using a fixed positive definite weighting matrixW and sample moments
π̂n (θ) ≡ Pnπ (·, θ) is given by

θ̂n ≡ arg min
θ∈Θ⊂Rd

Q̂n (θ) , Q̂n (θ) ≡ 1

2
π̂n (θ)′Wπ̂n (θ) .

We assume the population GMM objective has a unique minimizer θ# ≡ arg min
θ∈Θ

Q (θ) where

Q (θ) ≡ 1
2
π (θ)′Wπ (θ) and π (θ) ≡ Pπ (·, θ). It is well known from standard results in Newey

and McFadden (1994) that for correctly specified models where π
(
θ#
)

= 0,
√
n
(
θ̂n − θ#

)
 

(G′WG)−1G′WN
(

0, Pπ
(
·, θ#

)
π
(
·, θ#

)′), where G = ∂
∂θ
π
(
θ#
)
.

Under model misspecification, the asymptotic distribution differs depending on whether
the model is smooth or nonsmooth. For smooth models that are globally misspecified in
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the sense that π (·, θ) is twice continuously differentiable with respect to θ and π
(
θ#
)

= c

for a vector of fixed constants c 6= 0, Hall and Inoue (2003) showed that
√
n
(
θ̂n − θ#

)
 

N
(
0, H̄−1ΩH̄−1′

)
where

Σ11 = P
(
π
(
·, θ#

)
− π

(
θ#
)) (

π
(
·, θ#

)
− π

(
θ#
))′

Σ12 = P
(
π
(
·, θ#

)
− π

(
θ#
))
π
(
θ#
)′
W

(
∂

∂θ
π
(
·, θ#

)
−G

)
Σ21 = Σ′12

Σ22 = P

(
∂

∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′
W

(
∂

∂θ
π
(
·, θ#

)
−G

)
Ω = G′WΣ11WG+ Σ22 +G′WΣ12 + Σ21WG

H̄ = G′WG+
m∑
j=1

m∑
k=1

Wjkπk
(
θ#
)
Hj

(2.1)

where for each j = 1, . . . ,m, define Hj = ∂2

∂θ∂θ′
πj
(
θ#
)
.

Although misspecification changes the asymptotic distribution of smooth estimators, the
estimator remains

√
n-consistent, and the nonparametric bootstrap can be used for inference.

However, misspecification is a much more serious issue in the nonsmooth case because the rate
of convergence becomes cubic-root and the asymptotic distribution becomes non-standard,
which invalidates the standard bootstrap. For GMM estimators that are globally misspecified
and nonsmooth, specifically non-directionally differentiable (in the sense of Gateaux), we will
show that

n1/3
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0 (h) +

1

2
h′H̄h

}
.

Z0 (h) is a mean zero Gaussian process in the space of locally bounded functions Bloc
(
Rd
)

equipped with the topology of uniform convergence on compacta. For g (·, θ) = π (·, θ) −
π
(
·, θ#

)
, the covariance kernel of Z0 (h) is

Σ1/2 (s, t) = lim
α→∞

αPg
(
·, θ# +

s

α

)
g

(
·, θ# +

t

α

)′
.

We next develop a rate-adaptive bootstrap procedure to consistently estimate the limiting
distribution of the GMM estimator regardless of whether the model is correctly or incor-
rectly specified, smooth or nonsmooth. In other words, we do not need to know the rate
of convergence of the GMM estimator when using the rate-adaptive bootstrap to construct
asymptotically valid confidence intervals for θ#. The rate-adaptive bootstrap estimate in
the case of a fixed weighting matrix W is

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
W (P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
(2.2)

+
1

2

(
θ − θ̂n

)′(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
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+
(
θ − θ̂n

)′
Ĝ′W (P ∗n − Pn) π

(
·, θ̂n

)}
.

Here π̂n
(
θ̂n

)
= Pnπ

(
·, θ̂n

)
, Ĝ is a consistent estimate of G, and Ĥj is a consistent estimate

of Hj for j = 1 . . .m.
For γ ∈ {1/3, 1/2}, we will show that the limiting distribution of nγ

(
θ̂∗n − θ̂n

)
coincides

with the limiting distribution of nγ
(
θ̂n − θ#

)
. We do not need to know the value of γ in

order to form asymptotically valid confidence intervals for θ# using the empirical distribution
of θ̂∗n − θ̂n. The intuition for why our rate-adaptive bootstrap procedure is consistent is
similar to the arguments given in Cattaneo et al. (2020). Instead of bootstrapping the GMM
objective function, we are bootstrapping consistent estimates of the different components
that can appear in the asymptotic distribution, depending on whether the model is correctly
or incorrectly specified, smooth or nonsmooth. For the case of nonsmooth moments, the
first term in (2.2) is used to approximate the Gaussian process π

(
θ#
)′
WZ0 (h), while the

second term is used to approximate the quadratic mean 1
2
h′H̄h. The third term will disappear

asymptotically for nonsmooth models but remain for sufficiently smooth models. We can use
the same estimator for both smooth and nonsmooth models because their different rates of
convergence will automatically cause the appropriate terms to disappear from the asymptotic
distribution.

The following steps illustrate how to use the rate-adaptive bootstrap to form asymp-
totically valid intervals for θ# if we use the multinomial bootstrap empirical measure P ∗n ≡
1
n

∑n
i=1WniδXi for the multinomial vectorWn = (Wn1, . . . ,Wnn) with probabilities (1/n, . . . , 1/n)

and number of trials n.

1. Compute θ̂n, π̂n
(
θ̂n

)
= 1

n

∑n
i=1 π

(
Xi, θ̂n

)
, Ĝ, Ĥj for j = 1 . . .m.

2. Repeat for B bootstrap iterations: draw a bootstrap sample X∗1 , . . . , X∗n and compute

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
W

(
1

n

n∑
i=1

(
π (X∗i , θ)− π

(
X∗i , θ̂n

))
− 1

n

n∑
i=1

(
π (Xi, θ)− π

(
Xi, θ̂n

)))

+
1

2

(
θ − θ̂n

)′(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂
)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′W

(
1

n

n∑
i=1

(
π
(
X∗i , θ̂n

)
− π

(
Xi, θ̂n

)))}
.

3. For k = 1, . . . , d, compute the 1−α/2 and α/2 percentiles of the empirical distribution
of θ̂∗nk − θ̂nk. Call them ck,1−α/2 and ck,α/2.

A 1− α two-sided equal-tailed confidence interval for θ#
k can be formed by[

θ̂nk − ck,1−α/2, θ̂nk − ck,α/2
]
.
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We will use the following notation to denote the stacked confidence intervals for the vector
of parameters: [

θ̂n − c1−α/2, θ̂n − cα/2
]
.

We can also compute a confidence interval for ρ
(
θ#
)
, where ρ : Θ 7→ R, by using the

percentiles of the empirical distribution of ρ
(
θ̂∗n

)
− ρ

(
θ̂n

)
:[

ρ
(
θ̂n

)
− cρ,1−α/2, ρ

(
θ̂n

)
− cρ,α/2

]
.

2.1 Asymptotic Distribution for Nonsmooth Misspecified GMM us-
ing a Fixed Weighting Matrix

Throughout the paper, we will impose the following assumptions. The different values of γ
and ρ depend on the rate of convergence of θ̂n.

Assumption 1. For Q̂n (θ) ≡ 1
2
Pnπ (·, θ)′WPnπ (·, θ) and Q (θ) ≡ 1

2
Pπ (·, θ)′WPπ (·, θ),

whereW is positive definite, suppose the following conditions are satisfied for some ρ ∈
{

1
2
, 1
}

and γ = 1
2(2−ρ)

:

(i) Q̂n

(
θ̂n

)
≤ inf

θ∈Θ
Q̂n (θ) + oP (n−2γ).

(ii) inf
θ∈Θ:‖θ−θ#‖>ε

Q (θ) > Q
(
θ#
)
for all ε > 0.

(iii) sup
θ∈Θ
‖Pnπ(·, θ)− Pπ(·, θ)‖ = oP (1).

(iv) sup
θ∈Θ

P |π(·, θ)| <∞.

Assumption 2. Let g (·, θ) ≡ π (·, θ) − π
(
·, θ#

)
satisfy the following conditions for some

ρ ∈
{

1
2
, 1
}
and γ = 1

2(2−ρ)
:

(i) θ# is an interior point of Θ.

(ii) The classes of functions GR = {gj(·, θ) : ‖θ − θ#‖ ≤ R, j = 1, . . . ,m} for R near zero
are uniformly manageable for the envelope functions GR (·) ≡ sup

gj∈GR
|gj(·, θ)|.

(iii) Pg(·, θ) is twice differentiable at θ# with full rank Jacobian matrix G = ∂
∂θ
π
(
θ#
)
and

positive definite Hessian matrices Hj = ∂2

∂θ∂θ′
πj
(
θ#
)
for j = 1 . . .m.

(iv) Σρ(s, t) = lim
α→∞

α2ρPg
(
·, θ# + s

α

)
g
(
·, θ# + t

α

)′ exists for each s, t in Rd.

(v) lim
α→∞

α2ρP‖g
(
·, θ# + t

α

)
‖21{‖g(·, θ# + t

α
)‖ > εα2(1−ρ)} = 0 for each ε > 0 and t ∈ Rd.
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(vi) PG2
R = O(R2ρ) for R→ 0.

(vii) For each η > 0, there exists a K such that PG2
R1{GR > K} < ηR2ρ for R near 0.

(viii) P‖g(·, θ1)− g(·, θ2)‖ = O (‖θ1 − θ2‖2ρ) for ‖θ1 − θ2‖ → 0.

(ix) H̄ = G′WG+
∑m

j=1

∑m
k=1 Wjkπk

(
θ#
)
Hj is positive definite.

Assumption 1 is needed to show consistency of θ̂n for θ# while Assumption 2 is needed to
derive its asymptotic distribution. Manageable classes are defined in Definition 4.1 of Pollard
(1989), and an example is all Euclidean classes. A manageable class for a constant envelope
is a universal Donsker class in the sense of Dudley (1987). Uniform manageable classes are
manageable classes for which a uniform upper bound exists in the maximal inequalities for
the corresponding empirical processes. As discussed after Corollary 3.2 of Kim and Pollard
(1990), we need to assume GR are uniformly manageable in order to demonstrate stochastic
equicontinuity of certain processes that appear in the expansion of the objective function.
We demonstrate stochastic equicontinuity by applying the maximal inequalities in Lemma
3.1 of Kim and Pollard (1990) over the classes GR for all values of R near zero, rather than
a particular value of R.

Similar to Kim and Pollard (1990), the cubic-root rate of convergence is obtained when
Assumptions 1 and 2 are satisfied for γ = 1/3 and ρ = 1/2. In particular, this amounts to a
linear rate of decay of PG2

R. Usually the linear rate of decay arises when π (·, θ) is not direc-
tionally differentiable, such as the ones that appear in the GMM formulation of IV quantile
regression or simulated method of moments. Other types of nonsmooth moments that are
directionally differentiable do not have this linear rate of decay and therefore retain the

√
n

rate of convergence. We now provide some examples that distinguish between different types
of nonsmooth moments.

Example 1. GMM Formulation of Instrumental Variable Quantile Regression (IVQR): This
example studies how to do inference in the case of possible misspecification of moments in
Chernozhukov and Hansen (2005))’s IVQR GMM estimator. The IVQR estimator can be
used to estimate quantile treatment effects under non-compliance, and under correct speci-
fication, the estimator is known to be

√
n-consistent and asymptotically normal. However,

if the moments are (globally) misspecified, which can happen for example if the instruments
are invalid, then the estimator is cubic-root consistent and has a non-standard asymptotic
distribution.

The moment conditions for IVQR are nonsmooth, in particular non-directionally dif-
ferentiable, because π (·, θ) = (τ − 1 (yi ≤ q (di, wi, θ))) zi, where yi is the dependent vari-
able, di is a vector of endogenous regressors, wi is a vector of exogenous regressors, zi is
a vector of instruments, and q (·) is the quantile response function, which has a single in-
dex structure q (di, wi, θ) = q (x′iθ) for x′i = [di, wi]. Additionally, q (·) is assumed to be a
monotonic, twice differentiable function, and Fy|x,z is absolutely continuous. For π (θ) =
E
(
τ − Fy|x,z

(
q
(
x′θ#

)))
z, the Jacobian is G = ∂

∂θ
π
(
θ#
)

= −Efy|x,z
(
q
(
x′θ#

))
zq′
(
x′θ#

)
x′

and the jth element of the Hessian isHj = ∂2

∂θ∂θ′
πj
(
θ#
)

= −Ef ′y|x,z
(
q
(
x′θ#

))
zj
(
q′
(
x′θ#

))2
xx′+
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Efy|x,z
(
q
(
x′θ#

))
zjq
′′ (x′θ#

)
xx′. We will assume that the assumptions in Chernozhukov and

Hansen (2005) needed to ensure that G and Hj are well defined are satisfied.
A crucial condition that generates cubic-root convergence in globally misspecified models

with non-directionally differentiable moments is when the value of ρ that satisfies Assumption
2 is ρ = 1/2. In the Appendix, we show this is true for this example.

Example 2. Simulated Method of Moments: Simulated method of moments has a wide range
of applications especially in discrete choice models where an agent’s choice probabilities are
too complicated to calculate analytically (McFadden (1989) and Pakes and Pollard (1989)).
Instead, we take simulation draws from some assumed distribution for the errors and using
the empirical frequency simulator to estimate the choice probabilities. In this example, we
consider a binary discrete choice model but the results are easily generalizable to multivariate
discrete choice models.

The moment conditions are π (·, θ) =
(
yi − 1

S

∑S
s=1 1 (h (x′iθ) + ηis > 0)

)
zi, where yi ∈

{0, 1} is the choice of individual i, zi is a vector of instruments, xi is a vector of co-
variates, h (·) is a monotonic, twice differentiable function, and {ηis}Ss=1 are individual
i’s simulation draws from an absolutely continuous distribution Fη|x,z with density func-
tion fη|x,z symmetric around zero. For π (θ) = E

(
y − Fη|x,z (h (x′θ))

)
z, the Jacobian is

G = ∂
∂θ
π
(
θ#
)

= −Efη|x,z
(
h
(
x′θ#

))
zh′
(
x′θ#

)
x′ and the jth element of the Hessian is Hj =

∂2

∂θ∂θ′
πj
(
θ#
)

= −Ef ′η|x,z
(
h
(
x′θ#

))
zj
(
h′
(
x′θ#

))2
xx′+Efη|x,z

(
h
(
x′θ#

))
zjh
′′ (x′θ#

)
xx′.We

will assume the assumptions in McFadden (1989) needed to ensure that G and Hj are well
defined are satisfied.

We verify in the Appendix that the value of ρ that satisfies Assumption 2 is ρ = 1/2.

Example 3. Dynamic Censored Regression: Honore and Hu (2004a) consider estimation of a
panel data censored regression model with lagged dependent variables: yit = max {0, yit−1θ + αi + εit}
where {εit}Tt=1 is a sequence of i.i.d. random variables conditional on (yi0, αi). They show that
the GMM estimator of θ using π (·, θ) = max {0, yit − yit−1θ}−yit−1 as the moment conditions
will be

√
n consistent and asymptotically normal and that the true parameter uniquely sat-

isfies the population moments under correct specification. The stacked moments are π (θ) =
[π2 (θ) , . . . , πT (θ)]′, where for each t = 2, ..., T , πt (θ) = E [max {0, yit − yit−1θ} − yit−1] =
E [1 (yit > yit−1θ) (yit − yit−1θ)− yit−1]. The Jacobian is G = [G2, . . . , GT ]′ for
Gt = −E

[
yit−11

(
yit > yit−1θ

#
)]
, and the Hessians for t = 2, . . . , T areHt = E

[
yit−1fyit|yit−1

(
yit−1θ

#
)]
.

Even though π (·, θ) is nonsmooth, the
√
n rate of convergence arises because π (·, θ)

remains directionally differentiable. We check in the Appendix that the value of ρ that
satisfies Assumption 2 is ρ = 1 instead of ρ = 1/2 as in the previous two examples.

Theorem 1. Suppose π
(
θ#
)

= c for a vector of fixed constants c 6= 0 and that Assumptions
1- 2 are satisfied for γ = 1/3 and ρ = 1/2. Then, θ̂n − θ# = oP (1) and

n1/3
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

}
H̄ =G′WG+

m∑
j=1

m∑
k=1

Wjkπk
(
θ#
)
Hj,

9



where Z0,1/2 (h) is a mean zero Gaussian process with covariance kernel

Σ1/2 (s, t) = lim
α→∞

αPg
(
·, θ# +

s

α

)
g

(
·, θ# +

t

α

)′
.

In the Appendix, we show that the globally misspecified GMM estimator is
√
n-consistent

when the moments are nonsmooth but remain directionally differentiable. In the correctly
specified case, a reduction to the standard result of Newey and McFadden (1994) previously
mentioned is achieved.

3 Rate-Adaptive Bootstrap for Fixed Weighting Matrix

We impose the following envelope integrability assumptions in order to show that nγ
(
θ̂n − θ#

)
and nγ

(
θ̂∗n − θ̂n

)
have the same limiting distribution. The assumption is needed to show

bootstrap equicontinuity results so that both the localized empirical process and its bootstrap
analog converge weakly to the same limiting process. There are some differences between
our assumption and the ones in Cattaneo et al. (2020) because Cattaneo et al. (2020) show
bootstrap equicontinuity using the maximal inequalities in Pollard (1989) whereas we make
use of Lemma 4.2 in Wellner and Zhan (1996), which states that stochastic equicontinu-
ity implies bootstrap equicontinuity under a relatively mild envelope (square) integrability
assumption (their Assumption A.5).

Assumption 3. For some ρ ∈
{

1
2
, 1
}
and γ = 1

2(2−ρ)
, definemn (·, θ, h) ≡ nγρ

(
π
(
·; θ + h

nγ

)
− π (·; θ)

)
.

(i) For any εn → 0 and any compact set K ⊂ Rd,

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2 P

{
sup

h∈K,‖θ−θ#‖≤εn

∥∥∥∥mn(·, θ, h)−mn(·, θ#, h)

1 + nγ‖θ − θ#‖

∥∥∥∥ > t

}
= 0.

(ii) Furthermore, if Assumptions 1- 2 are satisfied for γ = 1/2 and ρ = 1, then for any
εn → 0,

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2 P

{
sup

‖θ−θ#‖≤εn

∥∥∥∥π(·, θ)− π(·, θ#)

1 +
√
n‖θ − θ#‖

∥∥∥∥ > t

}
= 0.

Using the notation of Assumption A.5 of Wellner and Zhan (1996), Assumption 3(i) is
using B (θ) (h) = mn (·, θ, h) and H = K. Assumption 3(ii) is using B (θ) (h) = π (·, θ) and
H is a finite set whose cardinality is the dimension of θ.

Strong sufficient conditions for Assumption 3 are that the envelopes are uniformly bounded.
For all sufficiently large n such that εn → 0 and any compact K ⊂ Rd, there exists
some constants C1 > 0 and C2 > 0 such that sup

h∈K,‖θ−θ#‖≤εn

∥∥∥mn(·,θ,h)−mn(·,θ#,h)
1+nγ‖θ−θ#‖

∥∥∥ ≤ C1, and

sup
‖θ−θ#‖≤εn

∥∥∥π(·,θ)−π(·,θ#)
1+
√
n‖θ−θ#‖

∥∥∥ ≤ C2.

10



The next theorem illustrates consistency of the rate-adaptive bootstrap for correctly
specified and globally misspecified models which can be either smooth or nonsmooth. Under
correct specification, the asymptotic distribution is normal for smooth and nonsmooth mo-
ments. Under global misspecification, the asymptotic distribution is normal in the smooth
case but in the nonsmooth case, it is nonstandard.

Theorem 2. Suppose Assumptions 1-3 are satisfied, Ĝ p→ G, and Ĥj
p→ Hj for j = 1 . . .m.

For correctly specified models,

√
n
(
θ̂∗n − θ̂n

)
P
 
W

(G′WG)
−1
G′WN

(
0, Pπ

(
·, θ#

)
π
(
·, θ#

)′)
.

For globally misspecified models with twice continuously differentiable π (·, θ), if Assumptions
1- 2 are satisfied for γ = 1/2, ρ = 1,

√
n
(
θ̂∗n − θ̂n

)
P
 
W
N
(

0, H̄−1ΩH̄−1′
)
.

where Ω and H̄ are defined in equation (2.1). If instead Assumptions 1- 2 are satisfied for
γ = 1/3, ρ = 1/2,

n1/3
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h

{
π
(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

}
.

4 The Case of an Estimated Weighting Matrix
We now consider the case of an estimated weighting matrix. First we show that nonsmooth
misspecified GMM has a different asymptotic distribution depending on the rate at which
the estimated weighting matrix converges to its probability limit. Next we show that the
rate-adaptive bootstrap needs to be modified to include an additional term to capture the
variation between the estimated weighting matrix and its probability limit.

Note that we need to redefine the presumed to be unique pseudo-true parameter to be
θ# = arg min

θ∈Θ
π (θ)′W

(
θ#

1

)
π (θ) where W

(
θ#

1

)
depends on the presumed to be unique 1-

step GMM pseudo-true parameter using some fixed weighting matrixW1: θ#
1 = arg min

θ∈Θ
π (θ)′W1π (θ).

For example, we may choose W
(
θ#

1

)
to be the inverse of the variance-covariance matrix of

the population moments evaluated at θ#
1 : W

(
θ#

1

)
=

(
E

[
π
(
·, θ#

1

)
π
(
·, θ#

1

)′]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

.

Different choices of W1 and W
(
θ#

1

)
typically lead to different values of θ#, but we suppress

the dependence of θ# on the weighting matrices for notational simplicity.
The estimated weighting matrix Wn

(
θ̂1

)
will depend on the 1-step GMM estimator

θ̂1 = arg min
θ∈Θ

π̂ (θ)′W1π̂ (θ). The next theorem demonstrates that the globally misspecified

2-step GMM estimator θ̂n = arg min
θ∈Θ

π̂ (θ)′Wn

(
θ̂1

)
π̂ (θ) with non-directionally differentiable

11



π (·, θ) will have a different asymptotic distribution depending on the rate at which Wn

(
θ̂1

)
converges to W

(
θ#

1

)
. To simplify notation, we will use Wn to refer to Wn

(
θ̂1

)
and W to

refer to W
(
θ#

1

)
.

Theorem 3. Suppose π
(
θ#
)

= c for a vector of fixed constants c 6= 0 and that Assumptions
1- 2 are satisfied for γ = 1/3 and ρ = 1/2.

If Wn −W = oP
(
n−1/3

)
, then θ̂n − θ# = oP (1) and for Z̄0 (h) ≡ π

(
θ#
)′
WZ0,1/2 (h),

n1/3
(
θ̂n − θ#

)
 arg min

h∈Rd

{
Z̄0 (h) +

1

2
h′H̄h

}
.

IfWn−W = OP

(
n−1/3

)
and

(
π
(
θ#
)′
Wn2/3 (Pn − P ) g

(
·, θ# + n−1/3h

)
h′G′n1/3 (Wn −W ) π

(
θ#
) )

 

(
Z̄0 (h)
h′G′W0

)
in the product space of locally bounded functions

{
Bloc

(
Rd
)}2 for some tight random vector

W0, then θ̂n − θ# = oP (1) and

n1/3
(
θ̂n − θ#

)
 arg min

h∈Rd

{
Z̄0 (h) + h′G′W0 +

1

2
h′H̄h

}
.

When Wn converges to W at the cubic-root rate, we assume that n1/3 (Wn −W ) π
(
θ#
)

converges in distribution to some tight random vector W0. Wn’s cubic-root rate of conver-
gence arises when the moments are nonsmooth (non directionally differentiable) and mis-
specified because then the 1-step GMM estimator θ̂1 converges at the cubic-root rate and
determines the asymptotics of Wn. More details are in Section 7.3.

In the case where the moments are smooth, our estimated weighting matrix Wn typically
satisfies the following assumption which states that Wn is

√
n-consistent with an influence

function representation, and that the bootstrapped weighting matrix W ∗
n shares the same

influence function representation.

Assumption 4. The weighting matrixWn satisfies
√
n (Wn −W ) =

√
n (Pn − P )φ

(
·, θ#

1

)
+

oP (1) where θ#
1 is the probability limit of the 1-step GMM estimate using a fixed weighting

matrix, P
∥∥∥vech(φ(·, θ#

1

))∥∥∥2

<∞, and the bootstrapped weighting matrix W ∗
n has the same

representation
√
n (W ∗

n −Wn) =
√
n (P ∗n − Pn)φ

(
·, θ#

1

)
+o∗P (1). Additionally, for each ε > 0

and t ∈ Rd,

lim
n→∞

P

∥∥∥∥∥∥∥∥

√
ng
(
·, θ# + t√

n

)
π
(
·, θ#

)
vech

(
φ
(
·, θ#

1

))

∥∥∥∥∥∥∥∥

2

1


∥∥∥∥∥∥∥∥

√
ng
(
·, θ# + t√

n

)
π
(
·, θ#

)
vech

(
φ
(
·, θ#

1

))

∥∥∥∥∥∥∥∥ > ε

√
n

 = 0.

When we use an estimated weighting matrix, we have to modify the rate-adaptive boot-
strap estimate to include an additional term that accounts for the additional variation in-
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duced by estimating the weighting matrix:

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
Wn (P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
(4.1)

+
1

2

(
θ − θ̂n

)′(
Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂nk

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′Wn (P ∗n − Pn)π

(
·, θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′ (W ∗

n −Wn) π̂n

(
θ̂n

)}
,

where W ∗
n = W ∗

n

(
θ̂∗1

)
could potentially depend on the rate-adaptive bootstrap estimator θ̂∗1

using a fixed weighting matrix W1:

θ̂∗1 = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
W1 (P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
(4.2)

+
1

2

(
θ − θ̂n

)′(
Ĝ′W1Ĝ+

m∑
j=1

m∑
k=1

W1,jkπ̂nk

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′W1 (P ∗n − Pn) π

(
·, θ̂n

)}
.

The following theorem shows that the rate-adaptive bootstrap is consistent for the lim-
iting distribution of the 2-step GMM estimator under correct specification and different
scenarios of global misspecification.

Theorem 4. Suppose Assumptions 1-3 are satisfied, Ĝ p→ G, and Ĥj
p→ Hj for j = 1 . . .m.

(i) For correctly specified models, when Wn −W = oP (1) and W ∗
n −Wn = o∗P (1),

√
n
(
θ̂∗n − θ̂n

)
P
 
W

(G′WG)
−1
G′WN

(
0, Pπ

(
·, θ#

)
π
(
·, θ#

)′)
.

(ii) For globally misspecified models with twice continuously differentiable π (·, θ) where
Assumptions 1 and 2 are satisfied for γ = 1/2 and ρ = 1, and the weighting matrix
Wn satisfies Assumption 4,

√
n
(
θ̂∗n − θ̂n

)
P
 
W
N
(

0, H̄−1ΩW H̄
−1′
)
.

ΩW = G′WΣ11WG+ Σ22 +G′WΣ12 + Σ21WG

+G′Σ33G+G′WΣ13G+G′Σ31WG+ Σ23G+G′Σ32

where H̄, Σ11, Σ12, Σ21, and Σ22 are the same as in equation (2.1) and

Σ13 = P
(
π
(
·, θ#

)
− π

(
θ#
))
π
(
θ#
)′ (

φ
(
·, θ#

1

)
− φ

(
θ#

1

))′
13



Σ31 = Σ′13

Σ23 = P

(
∂

∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′ (

φ
(
·, θ#

1

)
− φ

(
θ#

1

))′
Σ32 = Σ′23

Σ33 = P
(
φ
(
·, θ#

1

)
− φ

(
θ#

1

))
π
(
θ#
)
π
(
θ#
)′ (

φ
(
·, θ#

1

)
− φ

(
θ#

1

))′
.

(iii) For globally misspecified models where Assumptions 1 and 2 are satisfied for γ = 1/3
and ρ = 1/2, if Wn −W = oP

(
n−1/3

)
and W ∗

n −Wn = o∗P
(
n−1/3

)
, then

n1/3
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h

{
π
(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

}
.

If
(
π
(
θ#
)′
Wn2/3 (Pn − P ) g

(
·, θ# + n−1/3h

)
h′G′n1/3 (Wn −W ) π

(
θ#
) )

 

(
π
(
θ#
)′
WZ0,1/2 (h)

h′G′W0

)
in
{
Bloc

(
Rd
)}2

for some tight random vector W0, and(
π
(
θ#
)′
Wn2/3 (P ∗n − Pn) g

(
·, θ# + n−1/3h

)
h′G′n1/3 (W ∗

n −Wn) π
(
θ#
) )

P
 
W

(
π
(
θ#
)′
WZ0,1/2 (h)

h′G′W0

)
in
{
Bloc

(
Rd
)}2,

then

n1/3
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h

{
π
(
θ#
)′
WZ0,1/2 (h) + h′G′W0 +

1

2
h′H̄h

}
.

5 Monte Carlo

5.1 Nonsmooth Location Model

Consider a simple location model with i.i.d data,

yi = θ0 + εi, i = 1, . . . , n

where εi ∼ N(0, 1) and θ0 = 0.
For π (·, θ) = [1 (yi ≤ θ)− τ ; yi − θ]′, let the population moments be

π (θ) = [P (yi ≤ θ)− τ ;Eyi − θ]′ .

The model can not be correctly specified as long as τ 6= 0.5. First consider using a fixed
weighting matrix W = I, and consider the following GMM criterion function and its proba-
bility limit:

Q̂n (θ) = π̂n (θ)′ π̂n (θ) =

(
1

n

n∑
i=1

1 (yi ≤ θ)− τ

)2

+

(
1

n

n∑
i=1

yi − θ

)2

Q (θ) = π (θ)′ π (θ) = (P (yi ≤ θ)− τ)2 + (Eyi − θ)2 .

The pseudo true value θ# = arg min
θ∈Θ

Q (θ) is given by the root of the following equation:

fy
(
θ#
) (
Fy
(
θ#
)
− τ
)

+ θ# = 0.
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We examine the empirical coverage frequencies of nominal 95% equal-tailed rate-adaptive
bootstrap confidence intervals: [

θ̂n − c0.975, θ̂n − c0.025

]
,

where c0.975 and c0.025 are the 97.5th and 2.5th percentiles of θ̂∗n − θ̂n. Recall that

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
W
((
π̂∗n (θ)− π̂∗n

(
θ̂n

))
−
(
π̂ (θ)− π̂

(
θ̂n

)))
+

1

2

(
θ − θ̂n

)′(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′W

(
π̂∗n

(
θ̂n

)
− π̂

(
θ̂n

))}
,

where π̂ (θ) = 1
n

∑n
i=1 π (yi, θ) and π̂∗n (θ) = 1

n

∑n
i=1 π (y∗i , θ).

Ĝ =

[
1
nh

∑n
i=1 Kh

(
yi − θ̂n

)
−1

]
Ĥ =

[
1
nh2

∑n
i=1K

′
h

(
yi − θ̂n

)
0

]

forKh (x) = K (x/h),K ′h (x) = K ′ (x/h),K (x) = (2π)−1/2 e−x
2/2, andK ′ (x) = − (2π)−1/2 xe−x

2/2.
We use the Silverman’s Rule of Thumb bandwidth h = 1.06std(y)n−1/5, but the results are
robust to other choices of the bandwidth such as on the order of n−1/3, n−1/4, n−1/6, or
n−1/10.

The first 3 columns of Table 1 show the rate-adaptive bootstrap empirical coverage fre-
quencies for θ# (along with the average widths of the confidence intervals in parentheses)
for τ ∈ {0.1, 0.3, 0.5}, n ∈ {200, 800, 1600, 3200, 6400}, B = 1000 bootstrap iterations, and
R = 1000 Monte Carlo simulations. Due to the symmetry of the problem, similar results
will hold for τ ∈ {0.7, 0.9} and are available upon request. The remaining columns show the
empirical coverage frequencies of nominal 95% equal-tailed standard bootstrap confidence
intervals

[
θ̂n − d0.975, θ̂n − d0.025

]
, where d0.975 and d0.025 are the 97.5th and 2.5th percentiles

of θ̃1 − θ̂n for θ̃1 = arg minθ∈Θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′ (
π̂∗n (θ)− π̂n

(
θ̂n

))
. We can see that the

standard bootstrap performs well under correct specification (which corresponds to τ = 0.5),
but the performance deteriorates as τ moves away from 0.5, with more severe undercoverage
for the smaller values of τ . In contrast, the empirical coverage frequency of the rate-adaptive
bootstrap is quite close to the nominal level of 95% for all values of τ , even at the smaller
sample sizes.
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Table 1: Rate-adaptive vs Standard Bootstrap, fixed weighting matrix
Rate-adaptive Bootstrap Standard Bootstrap

τ 0.1 0.3 0.5 0.1 0.3 0.5
n = 200 0.949 0.946 0.952 0.900 0.917 0.949

(0.330) (0.298) (0.279) (0.277) (0.277) (0.277)
n = 800 0.950 0.955 0.949 0.864 0.920 0.947

(0.180) (0.156) (0.140) (0.139) (0.139) (0.139)
n = 1600 0.959 0.950 0.948 0.845 0.909 0.954

(0.134) (0.113) (0.099) (0.098) (0.098) (0.098)
n = 3200 0.957 0.960 0.955 0.828 0.889 0.936

(0.101) (0.083) (0.070) (0.070) (0.070) (0.070)
n = 6400 0.952 0.946 0.947 0.797 0.894 0.951

(0.076) (0.061) (0.049) (0.049) (0.049) (0.049)

Now we consider the case of an estimated weighting matrix. The variance-covariance
matrix of the moments is

E (π (·, θ)− π (θ)) (π (·, θ)− π (θ))′ =

[
Fy (θ)− Fy (θ)2 −fy (θ)
−fy (θ) 1

]
.

We consider using an estimate of the inverse of the variance-covariance matrix of the moments
as our weighting matrix:

Wn

(
θ̂1

)
=

 F̂y

(
θ̂1

)
− F̂y

(
θ̂1

)2

−f̂y
(
θ̂1

)
−f̂y

(
θ̂1

)
1

−1

,

where θ̂1 = arg minθ∈Θ π̂n (θ)′ π̂n (θ), f̂y
(
θ̂1

)
= 1

nh

∑n
i=1 Kh

(
yi − θ̂1

)
, F̂y

(
θ̂1

)
= 1

n

∑n
i=1 1

(
yi ≤ θ̂1

)
.

For θ̂n = arg minθ∈Θ π̂n (θ)′Wn

(
θ̂1

)
π̂n (θ), the rate-adaptive bootstrap estimate is

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
Wn

(
θ̂1

)((
π̂∗n (θ)− π̂∗n

(
θ̂n

))
−
(
π̂ (θ)− π̂

(
θ̂n

)))
+

1

2

(
θ − θ̂n

)′(
Ĝ′Wn

(
θ̂1

)
Ĝ+

m∑
j=1

m∑
k=1

Wn,jk

(
θ̂1

)
π̂nk

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′Wn

(
θ̂1

)(
π̂∗n

(
θ̂n

)
− π̂n

(
θ̂n

))
+
(
θ − θ̂n

)′
Ĝ′
(
W ∗
n

(
θ̂∗1

)
−Wn

(
θ̂1

))
π̂n

(
θ̂n

)}
.

The bootstrapped weighting matrix is

W ∗
n

(
θ̂∗1

)
=

 F̂ ∗y

(
θ̂∗1

)
− F̂y

(
θ̂∗1

)2

−f̂ ∗y
(
θ̂∗1

)
−f̂ ∗y

(
θ̂∗1

)
1

−1

,
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where θ̂∗1 is the rate-adaptive bootstrap estimate usingW = I, f̂ ∗y
(
θ̂∗1

)
= 1

nh

∑n
i=1Kh

(
y∗i − θ̂∗1

)
,

and F̂ ∗y
(
θ̂∗1

)
= 1

n

∑n
i=1 1

(
y∗i ≤ θ̂∗1

)
. We use the same Silverman’s Rule of Thumb bandwidth

as before h = 1.06std(y)n−1/5.
We are interested in the rate-adaptive bootstrap empirical coverage frequencies for θ# =

arg min
θ∈Θ

π (θ)′W
(
θ#

1

)
π (θ) where W

(
θ#

1

)
=

 Fy

(
θ#

1

)
− Fy

(
θ#

1

)2

−fy
(
θ#

1

)
−fy

(
θ#

1

)
1

−1

and

θ#
1 = arg min

θ∈Θ
π (θ)′ π (θ). The first 3 columns of Table 2 show the empirical coverage fre-

quencies and average interval lengths of nominal 95% equal-tailed rate-adaptive bootstrap
confidence intervals: [

θ̂n − c0.975, θ̂n − c0.025

]
,

where c0.975 and c0.025 are the 97.5th and 2.5th percentiles of θ̂∗n − θ̂n. We used B = 1000
bootstrap iterations and R = 1000 Monte Carlo simulations. There is some slight under-
coverage for the case of τ = 0.5 and over-coverage for the other values of τ , but the
performance is much better than the standard bootstrap intervals shown in the remain-
ing columns:

[
θ̂n − d0.975, θ̂n − d0.025

]
, where d0.975 and d0.025 are the 97.5th and 2.5th per-

centiles of θ̃2 − θ̂n, for θ̃2 = arg minθ∈Θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′
W ∗
n

(
θ̃1

)(
π̂∗n (θ)− π̂n

(
θ̂n

))
and

θ̃1 = arg minθ∈Θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′ (
π̂∗n (θ)− π̂n

(
θ̂n

))
. The standard bootstrap has under-

coverage across all values of τ , except for the correctly specified case of τ = 0.5. This is
to be expected because the standard bootstrap is inconsistent under misspecification for
nonsmooth models. However, the rate-adaptive bootstrap will be consistent.

Table 2: Rate-adaptive vs Standard Bootstrap, estimated weighting matrix
Rate-adaptive Bootstrap Standard Bootstrap

τ 0.1 0.3 0.5 0.1 0.3 0.5
n = 200 0.967 0.968 0.944 0.691 0.844 0.951

(1.211) (0.686) (0.285) (0.341) (0.329) (0.310)
n = 800 0.984 0.979 0.951 0.633 0.765 0.957

(0.702) (0.369) (0.143) (0.175) (0.172) (0.160)
n = 1600 0.982 0.949 0.941 0.606 0.755 0.965

(0.521) (0.293) (0.101) (0.124) (0.122) (0.114)
n = 3200 0.985 0.960 0.963 0.575 0.708 0.976

(0.398) (0.235) (0.071) (0.089) (0.088) (0.081)
n = 6400 0.977 0.950 0.951 0.562 0.674 0.963

(0.314) (0.189) (0.050) (0.064) (0.063) (0.057)
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5.2 Quantile Regression

Motivated by Chernozhukov and Hong (2003) and Chernozhukov and Hansen (2005), we
consider the following data generating process for α0 = β0 = 1:

yi = α0 + β0di + ui,

 ui
di
wi

 ∼ N

 0
0
0

 ,

 1 0 δ
0 1 0.5
δ 0.5 1

 .

It follows then that

ui| di, wi ∼ N

((
0 δ

)( 1 0.5
0.5 1

)−1(
di
wi

)
, 1−

(
0 δ

)( 1 0.5
0.5 1

)−1(
0
δ

))

= N

((
−2

3
di +

4

3
wi

)
δ, 1− 4

3
δ2

)
yi| di, wi ∼ N

(
α0 + β0di +

(
−2

3
di +

4

3
wi

)
δ, 1− 4

3
δ2

)
.

The population moments are for zi =
(

1 di wi
)′
,

π (θ) = E

[(
1

2
− 1 (yi ≤ α + βdi)

)
zi

]
= E

[(
1

2
− Fy|d,w (α + βdi)

)
zi

]

= E

1

2
− Φ

α− α0 + (β − β0) di +
(

2
3
di − 4

3
wi
)
δ√

1− 4
3
δ2

 zi

 .
At the true parameter values, the population moments are

π (θ0) = E

1

2
− Φ

(2
3
di − 4

3
wi
)
δ√

1− 4
3
δ2

 zi

 .
Note that if δ = 0, then we have a correctly specified model for median regression. For values
of δ 6= 0, the model is misspecified. Because the researcher is not able to observe δ, it is
desirable to have a procedure that will perform valid inference for the true parameters θ0 =
(α0, β0)′ when δ = 0, and also will perform valid inference for the pseudo-true parameters
θ# = (α∗, β∗)′ = arg min

θ
π (θ)′Wπ (θ) when δ 6= 0. We first consider the case of a fixed

weighting matrix W = I. The sample moments are

π̂n (θ) =
1

n

n∑
i=1

(
1

2
− 1 (yi ≤ α + βdi)

)
zi.

The bootstrapped sample moments using the multinomial bootstrap are

π̂∗n (θ) =
1

n

n∑
i=1

(
1

2
− 1 (y∗i ≤ α + βd∗i )

)
z∗i .
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The population Jacobian and Hessians are for d̃i = (1, di)
′,

G (θ) = −E
[
fy|d,w (α + βdi) zid̃

′
i

]
, H1 (θ) = −E

[
f ′y|d,w (α + βdi) d̃id̃

′
i

]
H2 (θ) = −E

[
f ′y|d,w (α + βdi) did̃id̃

′
i

]
, H3 (θ) = −E

[
f ′y|d,w (α + βdi)wid̃id̃

′
i

]
.

Their estimates are

Ĝ = − 1

nh

n∑
i=1

Kh

(
yi − α̂n − β̂ndi

)
zid̃
′
i, Ĥ1 = − 1

nh2

n∑
i=1

K ′h

(
yi − α̂n − β̂ndi

)
d̃id̃
′
i

Ĥ2 = − 1

nh2

n∑
i=1

K ′h

(
yi − α̂n − β̂ndi

)
did̃id̃

′
i, Ĥ3 = − 1

nh2

n∑
i=1

K ′h

(
yi − α̂n − β̂ndi

)
wid̃id̃

′
i,

whereKh (x) = K (x/h),K ′h (x) = K ′ (x/h),K (x) = (2π)−1/2 e−x
2/2,K ′ (x) = − (2π)−1/2 xe−x

2/2.
The rate-adaptive bootstrap estimator in the case of a fixed weighting matrix W is

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
W (P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
+

1

2

(
θ − θ̂n

)′(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂n,k

(
θ̂n

)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′W (P ∗n − Pn) π

(
·, θ̂n

)
.

Table 3 compares the empirical coverage frequencies and average interval lengths of nomi-
nal 95% equal-tailed confidence intervals

[
θ̂n − c0.975, θ̂n − c0.025

]
constructed using the rate-

adaptive bootstrap estimator and the centered standard bootstrap estimator
θ̃1 = arg min

θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′ (
π̂∗n (θ)− π̂n

(
θ̂n

))
. We use B = 2000 bootstrap iterations,

R = 5000 Monte Carlo simulations, and δ = 0.1 and h = 0.3. The standard bootstrap pro-
duces shorter intervals and undercovers for all values of n while the rate-adaptive bootstrap
achieves coverage close to the nominal level for both parameters.

Table 3: Rate-Adaptive vs. Standard Bootstrap, fixed weighting matrix W = I
n 200 800 1600 3200 6400
α0 0.967 0.954 0.957 0.957 0.957

Rate-adaptive (0.362) (0.188) (0.136) (0.099) (0.072)
β0 0.969 0.951 0.950 0.954 0.955

(0.380) (0.195) (0.139) (0.100) (0.072)
α0 0.861 0.915 0.919 0.915 0.910

Standard (0.280) (0.177) (0.125) (0.088) (0.062)
β0 0.852 0.909 0.913 0.912 0.921

(0.282) (0.184) (0.130) (0.092) (0.065)

Now consider the case of an estimated weighting matrix. Let W
(
θ#

1

)
= plim Wn

(
θ̂1

)
be the probability limit of an estimated weighting matrix computed using an initial GMM
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estimator θ̂1 = arg min
θ

π̂n (θ)′ π̂n (θ) whose probability limit is θ#
1 = arg min

θ
π (θ)′ π (θ). The

pseudo-true parameters are given by θ# = arg min
θ

π (θ)′W
(
θ#

1

)
π (θ). W

(
θ#

1

)
is the inverse

of the variance-covariance matrix of the population moments

W
(
θ#

1

)
=

(
E

[
π
(
·, θ#

1

)
π
(
·, θ#

1

)′]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

=

(
E

[
E

[(
1

2
− 1 (yi ≤ α∗ + β∗di)

)2
∣∣∣∣∣ zi
]
ziz
′
i

]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

=

(
1

4
E [ziz

′
i]− π

(
θ#

1

)
π
(
θ#

1

)′)−1

.

The last line follows from the fact that conditional on zi, 1
2
−1 (yi ≤ α∗ + β∗di) is a Bernoulli

random variable that equals −1
2
with probability Fy|d,w (α∗ + β∗di) and equals 1

2
with prob-

ability 1− Fy|d,w (α∗ + β∗di). Therefore, E
[(

1
2
− 1 (yi ≤ α∗ + β∗di)

)2
∣∣∣ zi] = 1

4
.

The estimated weighting matrix is

Wn ≡ Wn

(
θ̂1

)
=

(
1

4

1

n

n∑
i=1

ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′)−1

.

The bootstrapped weighting matrix is computed using the multinomial bootstrap and an
initial rate-adaptive bootstrap estimator θ̂∗1 computed using a fixed weighting matrixW = I.

W ∗
n ≡ W ∗

n

(
θ̂∗1

)
=

(
1

4

1

n

n∑
i=1

z∗i z
∗′
i − π̂∗n

(
θ̂∗1

)
π̂∗n

(
θ̂∗1

)′)−1

.

The rate-adaptive bootstrap estimator in the case of an estimated weighting matrix is

θ̂∗n = arg min
θ∈Θ

{
π̂n

(
θ̂n

)′
Wn (P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
+

1

2

(
θ − θ̂n

)′(
Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂n,k

(
θ̂
)
Ĥj

)(
θ − θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′Wn (P ∗n − Pn) π

(
·, θ̂n

)
+
(
θ − θ̂n

)′
Ĝ′ (W ∗

n −Wn) π̂n

(
θ̂n

)}
.

Table 4 compares the empirical coverage frequencies and average interval lengths of nomi-
nal 95% equal-tailed confidence intervals

[
θ̂n − c0.975, θ̂n − c0.025

]
constructed using the rate-

adaptive bootstrap estimator and the centered standard bootstrap estimator
θ̃2 = arg minθ∈Θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′
W ∗
n

(
θ̃1

)(
π̂∗n (θ)− π̂n

(
θ̂n

))
, where the weighting ma-

trix depends on θ̃1 = arg minθ∈Θ

(
π̂∗n (θ)− π̂n

(
θ̂n

))′ (
π̂∗n (θ)− π̂n

(
θ̂n

))
. We use B = 2000
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bootstrap iterations, R = 5000 Monte Carlo simulations, and δ = 0.1 and h = 0.3. The
standard bootstrap produces shorter intervals and undercovers for all values of n while the
rate-adaptive bootstrap achieves coverage close to the nominal level.

Table 4: Rate-Adaptive vs. Standard Bootstrap, estimated weighting matrix
n 200 800 1600 3200 6400
α0 0.968 0.949 0.951 0.949 0.947

Rate-adaptive (0.369) (0.195) (0.143) (0.106) (0.079)
β0 0.969 0.951 0.954 0.955 0.956

(0.371) (0.194) (0.142) (0.105) (0.078)
α0 0.889 0.916 0.913 0.886 0.878

Standard (0.278) (0.177) (0.126) (0.089) (0.063)
β0 0.864 0.918 0.904 0.901 0.877

(0.262) (0.176) (0.126) (0.089) (0.063)

6 Conclusion
We have demonstrated that globally misspecified GMM estimators with nonsmooth (specif-
ically non-directionally differentiable) moments have a cubic-root rate of convergence to a
nonstandard asymptotic distribution, hence invalidating the standard bootstrap for infer-
ence. We have proposed an alternative inference procedure that does not require knowing
the rate of convergence to consistently estimate the limiting distribution and is thus robust
to global misspecification and nonsmoothness. Our rate-adaptive bootstrap provides asymp-
totically valid inference for the true parameter when the model is correctly specified and for
the pseudo-true parameter when the model is globally misspecified.

7 Appendix

7.1 Additional Results for Misspecified GMM with Directionally
Differentiable Moments

Asymptotic distribution under fixed weighting matrix

Theorem 5. Suppose π
(
θ#
)

= c for a vector of fixed constants c 6= 0 and that Assumptions
1- 2 are satisfied for γ = 1/2 and ρ = 1, and π (·, θ) is Lipschitz continuous in θ with a
stochastically bounded Lipschitz constant. Suppose that for each ε > 0 and t ∈ Rd,

lim
n→∞

P

∥∥∥∥∥
( √

ng
(
·, θ# + t√

n

)
π
(
·, θ#

) )∥∥∥∥∥
2

1

{∥∥∥∥∥
( √

ng
(
·, θ# + t√

n

)
π
(
·, θ#

) )∥∥∥∥∥ > ε
√
n

}
= 0.

Then θ̂n − θ# = oP (1) and

√
n
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h

}
,
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where U0 ∼ N
(

0, P
(
π
(
·, θ#

)
− π

(
θ#
)) (

π
(
·, θ#

)
− π

(
θ#
))′) and Z0,1 (h) is a mean zero

Gaussian process with covariance kernel Σ1 (s, t) = lim
α→∞

α2Pg
(
·, θ# + s

α

)
g
(
·, θ# + t

α

)′. The
joint covariance kernel of Z0,1 (h) and h′G′WU0 is given by

Σ (s, t) = lim
α→∞

P

[
αg
(
·, θ# + s

α

)
s′G′W

(
π
(
·, θ#

)
− π

(
θ#
)) ] [ αg (·, θ# + t

α

)′ (
π
(
·, θ#

)
− π

(
θ#
))′

WGt
]
.

Note that in the case of smooth misspecified models, the asymptotic distribution in
Theorem 5 reduces down to the one in Theorem 1 of Hall and Inoue (2003) since then
π
(
θ#
)′
WZ0,1 (h) can be replaced by h′Z ′0Wπ

(
θ#
)
, where Z ′0Wπ

(
θ#
)
is a mean zero Gaus-

sian random variable with covariance matrix P
(
∂
∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′
W
(
∂
∂θ
π
(
·, θ#

)
−G

)
.

The next theorem states that the rate adaptive bootstrap is consistent for globally mis-
specified GMM models with directionally differentiable moments.

Theorem 6. Suppose Assumption 3 is satisfied in addition to the assumptions in Theorem
5, Ĝ p→ G, and Ĥj

p→ Hj for j = 1 . . .m. Then,

√
n
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h

}
.

Asymptotic distribution under estimated weighting matrix

Theorem 7. Suppose π
(
θ#
)

= c for a vector of fixed constants c 6= 0 and that Assumptions
1- 2 are satisfied for γ = 1/2 and ρ = 1, and π (·, θ) is Lipschitz continuous in θ with a
stochastically bounded Lipschitz constant.

If Assumption 4 is satisfied, then θ̂n − θ# = oP (1) and
√
n
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 + h′G′Φ0π

(
θ#
)

+
1

2
h′H̄h

}
,

where Φ0π
(
θ#
)
∼ N

(
0, P

(
φ
(
·, θ#

1

)
− φ

(
θ#

1

))
π
(
θ#
)
π
(
θ#
)′ (

φ
(
·, θ#

1

)
− φ

(
θ#

1

))′)
. The

joint covariance kernel of Z0,1 (h), h′G′WU0, and h′G′Φ0π
(
θ#
)
is given by

Ω (s, t) = lim
α→∞

P

 αg
(
·, θ# + s

α

)
s′G′W

(
π
(
·, θ#

)
− π

(
θ#
))

s′G′
(
φ
(
·, θ#

1

)
− φ

(
θ#

1

))
π
(
θ#
)

 αg

(
·, θ# + t

α

)′(
π
(
·, θ#

)
− π

(
θ#
))′

WGt

π
(
θ#
)′ (

φ
(
·, θ#

1

)
− φ

(
θ#
))′

Gt


′

.

If Wn −W = op
(
n−1/2

)
, then θ̂n − θ# = oP (1) and

√
n
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h

}
.

Note that in the case of smooth misspecified models, the asymptotic distribution in
Theorem 7 reduces down to the one in Theorem 2 of Hall and Inoue (2003) since then
π
(
θ#
)′
WZ0,1 (h) can be replaced by h′Z ′0Wπ

(
θ#
)
, where Z ′0Wπ

(
θ#
)
is a mean zero Gaus-

sian random variable with covariance matrix P
(
∂
∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′
W
(
∂
∂θ
π
(
·, θ#

)
−G

)
.
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Theorem 8. Suppose Assumptions 1-3 are satisfied, Ĝ p→ G, and Ĥj
p→ Hj for j = 1 . . .m.

For globally misspecified models where Assumptions 1 and 2 are satisfied for γ = 1/2 and
ρ = 1, if Wn −W = op

(
n−1/2

)
and W ∗

n −Wn = o∗p
(
n−1/2

)
, then

√
n
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h∈Rd

{
h′G′WU0 + π

(
θ#
)′
WZ0,1 (h) +

1

2
h′H̄h

}
.

If instead Assumption 4 is satisfied,

√
n
(
θ̂∗n − θ̂n

)
P
 
W

arg min
h∈Rd

{
h′G′WU0 + π

(
θ#
)′
WZ0,1 (h) + h′G′Φ0π

(
θ#
)

+
1

2
h′H̄h

}
.

7.2 Proofs for Theorems

Proof for Theorem 1

The consistency argument is a direct application of Theorem 5.7 in Van der Vaart (2000)
since the equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in
combination with Assumptions 1(iii) and (iv) imply sup

θ∈Θ

∣∣∣Q̂n(θ)−Q(θ)
∣∣∣ = oP (1). Next we

show that n1/3
(
θ̂n − θ#

)
= OP (1). Define Ĝn (θ) =

√
n (Pn − P ) g (·, θ), ĝ (θ) = Png (·, θ),

and g (θ) = Pg (·, θ). Then π̂n (θ) = g (θ) + π̂n
(
θ#
)

+ η̂n (θ), where η̂n (θ) = 1√
n
Ĝn (θ). Recall

that Q̂n (θ) = 1
2
π̂n (θ)′Wπ̂n (θ). Write Q̂n (θ)− Q̂n

(
θ#
)

= Q1 (θ) + Q̂2 (θ) + Q̂3 (θ), where

Q1 (θ) =
1

2
g (θ)′Wg (θ) + g (θ)′Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′
Wη̂n (θ)

Q̂2 (θ) =
1

2
η̂n (θ)′Wη̂n (θ) + g (θ)′W

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′Wη̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

Wη̂n (θ) .

Apply Kim and Pollard (1990) Lemma 4.1 to η̂n (θ), and in turn Q̂3 (θ): ∀ε > 0, ∃Mn,3 =
OP (1) such that

|Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−2/3M2
n,3.

The 1st, 3rd, and 4th terms in Q̂2 (θ) are all of the form oP (1) η̂n (θ), hence are also bounded
by ε‖θ− θ#‖2 +n−2/3M2

n,2. For the 2nd term in Q̂2 (θ), for n large enough, ∀ε > 0, ∃Mn,22 =
OP (1) such that

|g (θ)′W
(
π̂n
(
θ#
)
− π

(
θ#
))
| = OP

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 + n−2/3M2

n,22.

Therefore, ∀ε > 0, ∃Mn = OP (1) such that |Q̂2 (θ) + Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−2/3M2
n.

Because Q1 (θ) achieves the minimal value of 0 at θ#, the Taylor expansion of Q1 (θ)

around θ# isQ1 (θ) = Q1

(
θ#
)
+
(
θ − θ#

)′ ∂Q1(θ#)
∂θ

+1
2

(
θ − θ#

)′ ∂2Q1(θ#)
∂θ∂θ′

(
θ − θ#

)
+o
(
‖θ − θ#‖2

)
=

1
2

(
θ − θ#

)′ (
H̄ + o (1)

) (
θ − θ#

)
since

∂Q1(θ#)
∂θ

= G′Wg
(
θ#
)
+G′Wπ

(
θ#
)

= 0 and
∂2Q1(θ#)
∂θ∂θ′

=
H̄. Because H̄ is positive definite, there exists C > 0 and a small enough neighborhood of θ#
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such that Q1 (θ) ≥ C
∥∥θ − θ#

∥∥2. By consistency of θ̂n for θ#, with probability approaching

1, Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
= Q̂n

(
θ̂n

)
− Q̂n

(
θ#
)
≤ Q̂n

(
θ̂n

)
− inf

θ∈Θ
Q̂n (θ) ≤ oP

(
n−2/3

)
.

Choose ε so that C − ε > 0. Then,

oP
(
n−2/3

)
≥ Q1

(
θ̂n

)
− ε
∥∥∥θ̂n − θ#

∥∥∥2

− n−2/3M2
n

≥ (C − ε)
∥∥∥θ̂n − θ#

∥∥∥2

− n−2/3M2
n

=⇒
∥∥∥θ̂n − θ#

∥∥∥2

≤ (C − ε)−1 n−2/3M2
n + oP

(
n−2/3

)
= OP

(
n−2/3

)
.

It follows that n1/3
(
θ̂n − θ#

)
= OP (1).

Next, ĥ = n1/3
(
θ̂n − θ#

)
= arg minh n

2/3Q̂n

(
θ# + n−1/3h

)
. Note that θ# being in the

interior of Θ ensures that θ# +n−1/3h will belong in Θ for n large enough. It will follow from
the argmin continuous mapping theorem that ĥ  arg minh π

(
θ#
)′
WZ0,1/2 (h) + 1

2
h′H̄h if

we can show that

n2/3
(
Q̂n

(
θ# + n−1/3h

)
− Q̂n

(
θ#
))
 π

(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

as a process indexed by h in the space of locally bounded functions Bloc
(
Rd
)
equipped with

the topology of uniform convergence on compacta. Since Q1

(
θ# + n−1/3h

)
= Q1

(
θ#
)

+

n−1/3h′
∂Q1(θ#)

∂θ
+ 1

2
n−2/3h′

∂2Q1(θ#)
∂θ∂θ′

h+ o
(
n−2/3

)
, n2/3Q1

(
θ# + n−1/3h

)
= 1

2
h′H̄h+ o (1).

It remains to show that n2/3
(
Q̂2 + Q̂3

) (
θ# + n−1/3h

)
 π

(
θ#
)′
WZ0,1/2 (h). First note

that Assumptions 2(iv) and (v) imply that the Lindeberg condition is satisfied. Then the
Lindeberg-Feller CLT implies that Sn (h) ≡ n2/3η̂n

(
θ# + n−1/3h

)
= n1/6Ĝn

(
θ# + n−1/3h

)
converges in finite dimensional distribution to a mean zero Gaussian process Z0,1/2 (h) with
covariance kernel Σ1/2 (s, t) = lim

α→∞
αPg(·, θ# + s

α
)g(·, θ# + t

α
)′.

To show that Sn (h) is stochastically equicontinuous, it suffices to show that for every
sequence of positive numbers {δn} converging to zero, and for every j = 1, . . . ,m,

n2/3E sup
dj∈D(n)

|Pndj − Pdj| = o(1), (7.1)

where D(n) =
{
dj
(
·, θ#, h1, h2

)
= gj

(
·; θ# + n−1/3h1

)
− gj

(
·; θ# + n−1/3h2

)
such that

max(‖h1‖, ‖h2‖) ≤M and ‖h1 − h2‖ ≤ δn}. Note that D(n) has envelope function Dn =
2GR(n) where R(n) = Mn−1/3.

Using the Maximal Inequality in Lemma 3.1 of Kim and Pollard (1990), for sufficiently
large n, splitting up the expectation according to whether n1/3PnD

2
n ≤ η for each η > 0, and

applying the Cauchy-Schwarz inequality,

n2/3Esup
D(n)

|Pndj − Pdj| ≤ E
√
n1/3PnD2

nJ

n
1/3sup

D(n)

Pnd
2
j

n1/3PnD2
n
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≤√ηJ(1) +
√
En1/3PnD2

n

√√√√EJ2

(
min

(
1,

1

η
n1/3sup

D(n)

Pnd2
j

))
.

To show that this is o (1) for each fixed η > 0, first, note that by Assumption 2(vi),
En1/3PnD

2
n = 4n1/3EG2

R(n) = O(n1/3R(n)) = O(1) since R(n) = Mn−1/3. The proof
will then be complete if n1/3sup

D(n)

Pnd
2
j = op (1). Next, for each K > 0 write Esup

D(n)

Pnd
2
j ≤

EPnsup
D(n)

d2
j1{Dn > K}+KEsup

D(n)

Pn |dj| ≤ EPnD
2
n1{Dn > K}+Ksup

D(n)

P |dj|+KEsup
D(n)

|Pn |dj| − P |dj||.

By Assumption 2(vii), EPnD2
n1{Dn > K} < ηn−1/3 for large enough K. By Assump-

tion 2(viii) and the definition of D(n), Ksup
D(n)

P |dj| = O(n−1/3δn) = o(n−1/3). By As-

sumption 2(vi) and the maximal inequality in Lemma 3.1 of Kim and Pollard (1990),
KEsup

D(n)

|Pn |dj| − P |dj|| < Kn−
1
2J(1)

√
PD2

n = O(n−2/3) = o(n−1/3). Therefore, En1/3sup
D(n)

Pnd
2
j =

o(1).
We have shown that Sn(h)  Z0,1/2 (h), which implies that n2/3Q̂3

(
θ# + n−1/3h

)
 

π
(
θ#
)′
WZ0,1/2 (h). Since the 1st, 3rd and 4th terms in n2/3Q̂2

(
θ# + n−1/3h

)
are all of the

form oP (1)n2/3η̂n
(
θ# + n−1/3h

)
, they all converge in probability to 0. For the 2nd term

there,

n2/3|g
(
θ# + n−1/3h

)′
W
(
π̂n
(
θ#
)
− π

(
θ#
))
| = n2/3OP

(
‖n−1/3h‖√

n

)
= OP

(
hn−1/6

)
= oP (1) .

Therefore n2/3Q̂2

(
θ# + n−1/3h

)
= oP (1). By Slutsky’s Theorem,

n2/3
(
Q1 + Q̂2 + Q̂3

) (
θ# + n−1/3h

)
 π

(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h.

Lemma 2.6 in Kim and Pollard (1990) implies that the Gaussian process −Z0,1/2 (h) has
a unique maximum, which implies that Z0,1/2 (h) has a unique minimum. In combination
with the fact that 1

2
h′H̄h is a convex function of h, there is a unique h that minimizes

π
(
θ#
)′
WZ0,1/2 (h) + 1

2
h′H̄h. The result follows from the argmin continuous mapping theo-

rem (Theorem 2.7 in Kim and Pollard (1990)). �

Proof for Theorems 2 and 6

Equation 4.2 implies that for ĥ∗ = nγ
(
θ̂∗n − θ̂n

)
,

ĥ∗ = arg min
h∈Rd

π̂n

(
θ̂n

)′
Wnγρ

√
n (P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

))
+

√
nnγρ

2n2γ
h′

(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

)
h

+
nγρ

nγ
h′Ĝ′W

√
n (P ∗n − Pn) π

(
·, θ̂n

)
.
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Assumptions 2(iv) and (v) imply the Lindeberg condition is satisfied, so by the Lindeberg-
Feller CLT, Sn(h) ≡ nγρ

√
n (Pn − P )

(
π
(
·, θ# + h

nγ

)
− π

(
·, θ#

))
converges in finite dimen-

sional distribution to a mean zero Gaussian process Z0,ρ (h) with covariance kernel Σρ(s, t) =

lim
α→∞

α2ρPg
(
·, θ# + s

α

)
g
(
·, θ# + t

α

)′.
We already showed in Theorem 1 that Sn(h) is stochastically equicontinuous in h for

ρ = 1/2, γ = 1/3, and we already showed in Theorem 5 that Sn(h) is stochastically equicon-
tinuous in h for ρ = 1, γ = 1/2.

Therefore, Sn (h)  Z0,ρ (h) as a process indexed by h in Bloc
(
Rd
)
equipped with the

topology of uniform convergence on compacta. Theorem 3.6.13 in van der Vaart and Well-
ner (1996) or Theorem 2.6 in Kosorok (2007) then implies that the bootstrapped process
nγρ
√
n (P ∗n − Pn)

(
π
(
·, θ# + h

nγ

)
− π

(
·, θ#

))
is consistent for the same limiting process as

Sn (h):

nγρ
√
n (P ∗n − Pn)

(
π

(
·, θ# +

h

nγ

)
− π

(
·, θ#

)) P
 
W
Z0,ρ (h) .

We already showed nγρ
√
n (Pn − P )

(
π
(
·, θ + h

nγ

)
− π (·, θ)

)
is stochastically equicontinuous

in θ, which implies that for any compact K ⊂ Rd,

nγρ
√
nsup
h∈K

∥∥∥∥(Pn − P )

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

)
−
(
π

(
·, θ# +

h

nγ

)
− π

(
·, θ#

)))∥∥∥∥
= oP

(
1 + nγ

∥∥∥θ̂n − θ#
∥∥∥) = oP (1).

Under the envelope integrability Assumption 3, Lemma 4.2 in Wellner and Zhan (1996)
implies that for any compact K ⊂ Rd,

nγρ
√
nsup
h∈K

∥∥∥∥(P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

)
−
(
π

(
·, θ# +

h

nγ

)
− π

(
·, θ#

)))∥∥∥∥
= o∗P

(
1 + nγ

∥∥∥θ̂n − θ#
∥∥∥) = o∗P (1).

In combination with the fact that π̂n
(
θ̂n

)
p→ π

(
θ#
)
,

π̂n

(
θ̂n

)′
Wnγρ

√
n (P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

))
P
 
W
π
(
θ#
)′
WZ0,ρ (h) ,

as a process indexed by h in Bloc
(
Rd
)
equipped with the topology of uniform convergence on

compacta. For the second term, note that since
√
nnγρ

n2γ = 1, Ĝ p→ G, Ĥj
p→ Hj for j = 1 . . .m,

and π̂n
(
θ̂n

)
p→ π

(
θ#
)
,

√
nnγρ

2n2γ
h′

(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

)
h

p→ 1

2
h′

(
G′WG+

m∑
j=1

m∑
k=1

Wjkπk
(
θ#
)
Hj

)
h ≡ 1

2
h′H̄h.

When γ = 1/3 and ρ = 1/2, nγρ
nγ

= o(1), which implies that the third term is o∗P (1):

nγρ

nγ
h′Ĝ′W

√
n (P ∗n − Pn) π

(
·, θ̂n

)
= o∗P (1).
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It then follows from a bootstrapped version of the argmin continuous mapping theorem (see
Lemma 14.2 in Hong and Li (2020) for proof)

ĥ∗
P
 
W

arg min
h∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

}
.

For misspecified nonsmooth models with γ = 1/2 and ρ = 1, nγρ
nγ

= 1, so the third term also
contributes to the asymptotic distribution.

We showed in Theorem 5
(
π̂n
(
θ#
)′
Wnγρ

√
n (Pn − P )

(
π
(
·, θ# + h

nγ

)
− π

(
·, θ#

))
h′Ĝ′W

√
n (Pn − P )π

(
·, θ#

) )
P
 
W(

π
(
θ#
)′
WZ0,1 (h)

h′G′WU0

)
. Under Assumption 2, GR ≡

{
πj (·, θ)− πj

(
·, θ#

)
: ‖θ − θ#‖ ≤ R, j = 1 . . .m

}
for R near zero are uniformly manageable classes (and therefore Donsker classes) that satisfy
for all j = 1 . . .m, P

(
πj (·, θ)− πj

(
·, θ#

))2 → 0 for θ → θ#. By Lemma 3.3.5 of van der
Vaart and Wellner (1996),∥∥∥√n (Pn − P )

(
π
(
·, θ̂n

)
− π

(
·, θ#

))∥∥∥ = oP

(
1 +
√
n
∥∥∥θ̂n − θ#

∥∥∥) = oP (1).

Under the envelope integrability Assumption 3, Lemma 4.2 in Wellner and Zhan (1996)
implies that the process is bootstrap equicontinuous.∥∥∥√n (P ∗n − Pn)

(
π
(
·, θ̂n

)
− π

(
·, θ#

))∥∥∥ = o∗P

(
1 +
√
n
∥∥∥θ̂n − θ#

∥∥∥) = o∗P (1).

Therefore, π̂n

(
θ̂n

)′
Wnγρ

√
n (P ∗n − Pn)

(
π
(
·, θ̂n + h

nγ

)
− π

(
·, θ̂n

))
h′Ĝ′W

√
n (P ∗n − Pn) π

(
·, θ̂n

)  P
 
W

(
π
(
θ#
)′
WZ0,1 (h)

h′G′WU0

)
.

And it follows from a bootstrapped version of the argmin continuous mapping theorem (see
Lemma 14.2 in Hong and Li (2020) for proof)

ĥ∗
P
 
W

arg min
h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h

}
.

Under correct model specification, π
(
θ#
)

= 0, so the first term π
(
θ#
)′
WZ0,1 (h) disappears

and

ĥ∗
P
 
W

arg min
h∈Rd

{
1

2
h′G′WGh+ h′G′WU0

}
= (G′WG)

−1
G′WN

(
0, Pπ

(
·, θ#

)
π
(
·, θ#

)′)
.

For smooth models that are misspecified, π̂n
(
θ̂n

)′
Wn (P ∗n − Pn)

(
π
(
·, θ̂n + h√

n

)
− π

(
·, θ̂n

))
P
 
W

h′Z ′0Wπ
(
θ#
)
, where Z ′0Wπ

(
θ#
)
is a mean zero Gaussian random variable with covariance

matrix P
(
∂
∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′
W
(
∂
∂θ
π
(
·, θ#

)
−G

)
.
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Furthermore, the joint distribution of Z ′0Wπ
(
θ#
)
and U0 is given by(

U0

Z ′0Wπ
(
θ#
) ) ∼ N

(
0,

(
Σ11 Σ12

Σ21 Σ22

))

Σ11 = P
(
π
(
·, θ#

)
− π

(
θ#
)) (

π
(
·, θ#

)
− π

(
θ#
))′

Σ12 = P
(
π
(
·, θ#

)
− π

(
θ#
))
π
(
θ#
)′
W

(
∂

∂θ
π
(
·, θ#

)
−G

)
Σ21 = P

(
∂

∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
) (
π
(
·, θ#

)
− π

(
θ#
))′

Σ22 = P

(
∂

∂θ
π
(
·, θ#

)
−G

)′
Wπ

(
θ#
)
π
(
θ#
)′
W

(
∂

∂θ
π
(
·, θ#

)
−G

)
.

Therefore, the asymptotic distribution is given by

ĥ∗
P
 
W

arg min
h∈Rd

{
h′Z ′0Wπ

(
θ#
)

+ h′G′WU0 +
1

2
h′H̄h

}
= H̄−1N (0, G′WΣ11WG+ Σ22 +G′WΣ12 + Σ21WG) .

�

Proof for Theorem 3

The consistency argument is a direct application of Theorem 5.7 in Van der Vaart (2000) since
the equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in combina-
tion with Assumptions 1(iii) and (iv) andWn−W = op(1) imply sup

θ∈Θ

∣∣∣Q̂n(θ)−Q(θ)
∣∣∣ = oP (1).

Next, write Q̂n (θ)− Q̂n

(
θ#
)

= Q1 (θ) + Q̂2 (θ) + Q̂3 (θ) + Q̂4 (θ) + Q̂5 (θ) + Q̂6 (θ), where

Q1 (θ) =
1

2
g (θ)′Wg (θ) + g (θ)′Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′
Wη̂n (θ)

Q̂2 (θ) =
1

2
η̂n (θ)′Wη̂n (θ) + g (θ)′W

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′Wη̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

Wη̂n (θ)

Q̂4 (θ) =
1

2
g (θ)′ (Wn −W ) g (θ) + g (θ)′ (Wn −W ) π

(
θ#
)

Q̂5 (θ) =g (θ)′ (Wn −W )
(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′ (Wn −W ) η̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

(Wn −W ) η̂n (θ)

Q̂6 (θ) =π
(
θ#
)′

(Wn −W ) η̂n (θ) +
1

2
η̂n (θ)′ (Wn −W ) η̂n (θ) .

We already showed in Theorem 1 that ∀ε > 0, there exists Mn = OP (1) such that |Q̂2 (θ) +
Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−2/3M2

n.
Next recall that Kim and Pollard (1990) Lemma 4.1 applied to η̂n (θ), and in turn Q̂6 (θ) =

oP (1) η̂n (θ) implies that ∀ε > 0, ∃Mn,6 = OP (1) such that

|Q̂6 (θ) | ≤ ε‖θ − θ#‖2 + n−2/3M2
n,6.
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The 2nd and 3rd terms in Q̂5 (θ) are also of the form oP (1) η̂n (θ), hence are also bounded
by ε‖θ− θ#‖2 +n−2/3M2

n,51, for some Mn,51 = OP (1) and ∀ε > 0. The 1st term in Q̂5 (θ) can
also be bounded by, for some Mn,52 = OP (1) and ∀ε > 0,

|g (θ)′ (Wn −W )
(
π̂n
(
θ#
)
− π

(
θ#
))
| = op

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 + n−2/3M2

n,52.

If Wn−W = OP (n−γ) for γ ≥ 1/3,
∂Q̂4(θ#)

∂θ
= G′ (Wn −W ) g

(
θ#
)

+G′ (Wn −W ) π
(
θ#
)

=

OP (n−γ). Taylor expanding Q̂4 (θ) around θ# gives for some Mn,4 = OP (1) and ∀ε > 0,

Q̂4 (θ) = Q̂4

(
θ#
)

+
(
θ − θ#

)′ ∂Q̂4

(
θ#
)

∂θ
+

1

2

(
θ − θ#

)′ ∂2Q̂4

(
θ#
)

∂θ∂θ′
(
θ − θ#

)
+ op

(
‖θ − θ#‖2

)
=

1

2

(
θ − θ#

)′(
G′ (Wn −W )G+

m∑
j=1

m∑
k=1

(Wn,jk −Wjk) πk
(
θ#
)
Hj + op (1)

)(
θ − θ#

)
+OP

(
‖θ − θ#‖

nγ

)
≤ ε‖θ − θ#‖2 + n−2γM2

n,4.

Then ∀ε > 0, there existsMn = OP (1) such that |Q̂2 (θ)+Q̂3 (θ)+Q̂4 (θ)+Q̂5 (θ)+Q̂6 (θ) | ≤
ε‖θ − θ#‖2 + n−2/3M2

n.
We already showed that there exists some C > 0 such that almost surely Q1

(
θ̂n

)
≥

C
∥∥∥θ̂n − θ#

∥∥∥2

. Then,

Q1

(
θ̂n

)
+Q̂2

(
θ̂n

)
+Q̂3

(
θ̂n

)
+Q̂4

(
θ̂n

)
+Q̂5

(
θ̂n

)
+Q̂6

(
θ̂n

)
≤ Q̂n

(
θ̂n

)
− inf
θ∈Θ

Q̂n (θ) ≤ oP
(
n−2/3

)
.

Choose ε so that C − ε > 0. Then,

oP
(
n−2/3

)
≥ Q1

(
θ̂n

)
− ε
∥∥∥θ̂n − θ#

∥∥∥2

− n−2/3M2
n

≥ (C − ε)
∥∥∥θ̂n − θ#

∥∥∥2

− n−2/3M2
n

=⇒
∥∥∥θ̂n − θ#

∥∥∥2

≤ (C − ε)−1 n−2/3M2
n + oP

(
n−2/3

)
= OP

(
n−2/3

)
.

It follows that n1/3
(
θ̂n − θ#

)
= OP (1).

We already showed in Theorem 1 that n2/3Q1

(
θ# + n−1/3h

)
= 1

2
h′H̄h+o(1), n2/3Q̂3

(
θ# + n−1/3h

)
 

π
(
θ#
)′
WZ0 (h), and n2/3Q̂2

(
θ# + n−1/3h

)
= oP (1). Furthermore, ifWn−W = OP

(
n−1/3

)
,

n2/3Q̂4

(
θ# + n−1/3h

)
=

1

2
n2/3g

(
θ# + n−1/3h

)′
(Wn −W ) g

(
θ# + n−1/3h

)
+ n2/3g

(
θ# + n−1/3h

)′
(Wn −W ) π

(
θ#
)

= n2/3OP

(∥∥n−1/3h
∥∥2

n1/3

)
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+
(
n1/3

{
g
(
θ#
)′

+ h′G′n−1/3
}

+ oP (1)
)
n1/3 (Wn −W ) π

(
θ#
)

= h′G′n1/3 (Wn −W ) π
(
θ#
)

+ oP (1) h′G′W0

n2/3Q̂5

(
θ# + n−1/3h

)
= n2/3g

(
θ# + n−1/3h

)′
(Wn −W )

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g
(
θ# + n−1/3h

)′
(Wn −W )n2/3η̂n

(
θ# + n−1/3h

)
+
(
π̂n
(
θ#
)
− π

(
θ#
))′

(Wn −W )n2/3η̂n
(
θ# + n−1/3h

)
= n2/3OP

(∥∥n−1/3h
∥∥

n5/6

)
+OP

(∥∥n−1/3h
∥∥

n1/3

)
OP (1) +OP

(
n−5/6

)
OP (1)

= oP (1)

n2/3Q̂6

(
θ# + n−1/3h

)
= π

(
θ#
)′

(Wn −W )n2/3η̂n
(
θ# + n−1/3h

)
+

1

2
η̂n
(
θ# + n−1/3h

)′
(Wn −W )n2/3η̂n

(
θ# + n−1/3h

)
= OP

(
n−1/3

)
OP (1) +OP

(
n−2/3

)
OP

(
n−1/3

)
OP (1)

= oP (1).

By assumption,(
π
(
θ#
)′
Wn2/3 (Pn − P ) g

(
·, θ# + n−1/3h

)
h′G′n1/3 (Wn −W ) π

(
θ#
) )

 

(
π
(
θ#
)′
WZ0,1/2 (h)

h′G′W0

)
.

Therefore, by Slutsky’s theorem and the argmin continuous mapping theorem,

n1/3
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) + h′G′W0 +

1

2
h′H̄h

}
.

If Wn −W = op
(
n−1/3

)
, n1/3

(
θ̂n − θ#

)
 arg minh∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) + 1

2
h′H̄h

}
be-

cause

n2/3Q̂4

(
θ# + n−1/3h

)
= n2/3oP

(∥∥n−1/3h
∥∥2

n1/3

)
+ n2/3oP

(∥∥n−1/3h
∥∥

n1/3

)
= oP

(
n−1/3

)
+ oP (1) = oP (1).

�

Proof for Theorems 4 and 8

Equation 4.1 implies that for ĥ∗ = nγ
(
θ̂∗n − θ̂n

)
,

ĥ∗ = arg min
h∈Rd

π̂n

(
θ̂n

)′
Wnn

γρ
√
n (P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

))
+

√
nnγρ

2n2γ
h′

(
Ĝ′WnĜ+

m∑
j=1

m∑
k=1

Wn,jkπ̂nk

(
θ̂n

)
Ĥj

)
h
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+
nγρ

nγ
h′Ĝ′Wn

√
n (P ∗n − Pn)π

(
·, θ̂n

)
+
nγρ

nγ
h′Ĝ′
√
n (W ∗

n −Wn) π̂n

(
θ̂n

)
.

We already showed in Theorem 2 that

π̂n

(
θ̂n

)′
Wnγρ

√
n (P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

))
P
 
W
π
(
θ#
)′
WZ0,ρ (h) .

Consistency of Wn for W implies that

π̂n

(
θ̂n

)′
Wnn

γρ
√
n (P ∗n − Pn)

(
π

(
·, θ̂n +

h

nγ

)
− π

(
·, θ̂n

))
P
 
W
π
(
θ#
)′
WZ0,ρ (h) .

We also showed in Theorem 2 that
√
nnγρ

2n2γ
h′

(
Ĝ′WĜ+

m∑
j=1

m∑
k=1

Wjkπ̂nk

(
θ̂n

)
Ĥj

)
h

p→ 1

2
h′

(
G′WG+

m∑
j=1

m∑
k=1

Wjkπk
(
θ#
)
Hj

)
h ≡ 1

2
h′H̄h.

For misspecified nonsmooth models with γ = 1/3 and ρ = 1/2, the third term is o∗P (1):

n−γ/2h′Ĝ′Wn

√
n (P ∗n − Pn) π

(
·, θ̂n

)
= o∗P (1).

If Wn −W = op
(
n−1/3

)
and W ∗

n −Wn = o∗p
(
n−1/3

)
, the fourth term is also o∗P (1):

h′Ĝ′n1/3 (W ∗
n −Wn) π̂n

(
θ̂n

)
= o∗P (1).

Therefore, only the first two terms contribute to the asymptotic distribution. It follows from
a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗
P
 
W

arg min
h∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) +

1

2
h′H̄h

}
.

When Wn −W = OP

(
n−1/3

)
and W ∗

n −Wn = O∗P
(
n−1/3

)
, we assumed(

π
(
θ#
)′
Wn2/3 (P ∗n − Pn) g

(
·, θ# + n−1/3h

)
h′G′n1/3 (W ∗

n −Wn) π
(
θ#
) )

P
 
W

(
π
(
θ#
)′
WZ0,1/2 (h)

h′G′W0

)
. Under the uni-

form manageability Assumption 2 and the envelope integrability Assumption 3, we can invoke
Lemma 4.2 in Wellner and Zhan (1996) to show bootstrap equicontinuity. Therefore, π̂n

(
θ̂n

)′
Wnn

2/3 (P ∗n − Pn)
(
π
(
·, θ̂n + h

n1/3

)
− π

(
·, θ̂n

))
h′G′n1/3 (W ∗

n −Wn) π̂n

(
θ̂n

)  P
 
W

(
π
(
θ#
)′
WZ0,1/2 (h)

h′G′W0

)
.

It follows from a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗
P
 
W

arg min
h∈Rd

{
π
(
θ#
)′
WZ0,1/2 (h) + h′G′W0 +

1

2
h′H̄h

}
.
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For misspecified nonsmooth models with ρ = 1, γ = 1/2, we already showed in Theorem 7 π
(
θ#
)′
Wnn (Pn − P ) g

(
·, θ# + n−1/2h

)
h′G′Wn

√
n (Pn − P ) π

(
·, θ#

)
h′G′
√
n (Wn −W ) π

(
θ#
)

 
 π

(
θ#
)′
WZ0,1 (h)

h′G′WU0

h′G′Φ0π
(
θ#
)

 .

Under Assumption 4, the bootstrapped weighting matrix can be written as
√
n (W ∗

n −Wn) =
√
n (P ∗n − Pn)φ

(
·, θ#

1

)
+ o∗P (1). Under the uniform manageability Assumption 2 and the

envelope integrability Assumption 3, we can invoke Lemma 4.2 in Wellner and Zhan (1996)
to show bootstrap equicontinuity. Therefore,

π̂n

(
θ̂n

)′
Wnn (P ∗n − Pn)

(
π
(
·, θ̂n + h√

n

)
− π

(
·, θ̂n

))
h′Ĝ′Wn

√
n (P ∗n − Pn) π

(
·, θ̂n

)
h′Ĝ′
√
n (W ∗

n −Wn) π̂n

(
θ̂n

)
 P
 
W

 π
(
θ#
)′
WZ0,1 (h)

h′G′WU0

h′G′Φ0π
(
θ#
)

 .

It follows from a bootstrapped version of the argmin continuous mapping theorem that

ĥ∗
P
 
W

arg min
h∈Rd

{
h′G′WU0 + π

(
θ#
)′
WZ0,1 (h) + h′G′Φ0π

(
θ#
)

+
1

2
h′H̄h

}
.

For misspecified smooth models where ρ = 1 and γ = 1/2, π
(
θ#
)′
WZ0,1 (h) can be replaced

by h′Z ′0Wπ
(
θ#
)
, where the joint distribution of U0, Z ′0Wπ

(
θ#
)
, and Φ0π

(
θ#
)
is given by U0

Z ′0Wπ
(
θ#
)

Φ0π
(
θ#
)
 ∼ N

0,

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 .

Then the asymptotic distribution is given by

ĥ∗
P
 
W

arg min
h∈Rd

{
h′G′WU0 + h′Z ′0Wπ

(
θ#
)

+ h′G′Φ0π
(
θ#
)

+
1

2
h′H̄h

}
= N

(
0, H̄−1ΩW H̄

−1
)

ΩW ≡ G′WΣ11WG+ Σ22 +G′WΣ12 + Σ21WG+G′Σ33G+G′WΣ13G+G′Σ31WG+ Σ23G+G′Σ32.

Under correct model specification, π
(
θ#
)

= 0, so the second and third terms disappear:

ĥ∗
P
 
W

arg min
h∈Rd

{
1

2
h′G′WGh+ h′G′WU0

}
= (G′WG)

−1
G′WN

(
0, Pπ

(
·, θ#

)
π
(
·, θ#

)′)
.

�

Proof for Theorem 5

The consistency argument is the same as in Theorem 1. Next we show that
√
n
(
θ̂n − θ#

)
=

OP (1). Recall that Q̂n (θ)− Q̂n

(
θ#
)

= Q1 (θ) + Q̂2 (θ) + Q̂3 (θ), where

Q1 (θ) =
1

2
g (θ)′Wg (θ) + g (θ)′Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′
Wη̂n (θ)
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Q̂2 (θ) =
1

2
η̂n (θ)′Wη̂n (θ) + g (θ)′W

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′Wη̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

Wη̂n (θ) ,

and η̂n (θ) = (Pn − P ) g (·, θ), ĝ (θ) = Png (·, θ), and g (θ) = Pg (·, θ). Apply a modified
version of Kim and Pollard (1990) Lemma 4.1 with γ = 1/2, ρ = 1, 1 to η̂n (θ), and in turn
Q̂3 (θ): ∀ε > 0, ∃Mn,3 = OP (1) such that

|Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−1M2
n,3.

The 1st, 3rd, and 4th terms in Q̂2 (θ) are all of the form oP (1) η̂n (θ), hence are also bounded
by ε‖θ − θ#‖2 + n−1M2

n,2. For the 2nd term in Q̂2 (θ), for n large enough, ∀ε > 0, ∃Mn,22 =
OP (1) such that

|g (θ)′W
(
π̂n
(
θ#
)
− π

(
θ#
))
| = OP

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 + n−1M2

n,22.

Therefore, ∀ε > 0, ∃Mn = OP (1) such that |Q̂2 (θ) + Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−1M2
n.

Because Q1 (θ) achieves the minimal value of 0 at θ#, the Taylor expansion of Q1 (θ)

around θ# isQ1 (θ) = Q1

(
θ#
)
+
(
θ − θ#

)′ ∂Q1(θ#)
∂θ

+1
2

(
θ − θ#

)′ ∂2Q1(θ#)
∂θ∂θ′

(
θ − θ#

)
+o
(
‖θ − θ#‖2

)
=

1
2

(
θ − θ#

)′ (
H̄ + o (1)

) (
θ − θ#

)
since

∂Q1(θ#)
∂θ

= G′Wg
(
θ#
)
+G′Wπ

(
θ#
)

= 0 and
∂2Q1(θ#)
∂θ∂θ′

=
H̄. Because H̄ is positive definite, there exists C > 0 and a small enough neighborhood of θ#

such that Q1 (θ) ≥ C
∥∥θ − θ#

∥∥2. By consistency of θ̂n for θ#, with probability approaching

1, Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+ Q̂2

(
θ̂n

)
+ Q̂3

(
θ̂n

)
= Q̂n

(
θ̂n

)
− Q̂n

(
θ#
)
≤ Q̂n

(
θ̂n

)
− inf

θ∈Θ
Q̂n (θ) ≤ oP

(
n−1
)
.

Choose ε so that C − ε > 0. Then,

oP
(
n−1
)
≥ Q1

(
θ̂n

)
− ε
∥∥∥θ̂n − θ#

∥∥∥2

− n−1M2
n

≥ (C − ε)
∥∥∥θ̂n − θ#

∥∥∥2

− n−1M2
n

=⇒
∥∥∥θ̂n − θ#

∥∥∥2

≤ (C − ε)−1 n−1M2
n + oP

(
n−1
)

= OP

(
n−1
)
.

It follows that
√
n
(
θ̂n − θ#

)
= OP (1).

Next, ĥ =
√
n
(
θ̂n − θ#

)
= arg minh nQ̂n

(
θ# + n−1/2h

)
. Note that θ# being in the in-

terior of Θ ensures that θ#+n−1/2h will belong in Θ for n large enough. It will follow from the
argmin continuous mapping theorem that ĥ arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 + 1

2
h′H̄h

}
if we can show that

n
(
Q̂n

(
θ# + n−1/2h

)
− Q̂n

(
θ#
))
 π

(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h,

1The main revisions to Lemma 4.1 of Kim and Pollard (1990) are redefining A (n, j) =
(j − 1)n−γ ≤ |θ| ≤ jn−γ , bounding the jth summand in P (Mn > m) by n4γP sup|θ|<jn−γ |Png (·, θ) −

Pg (·, θ) |2�
[
η (j − 1)

2
+m2

]2
, where the numerator is further bounded by n4γ

(
n−1C ′jn−γ(2ρ)

)
= C ′j.
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as a process indexed by h in the space of locally bounded functions Bloc
(
Rd
)
equipped with

the topology of uniform convergence on compacta. Since Q1

(
θ# + n−1/2h

)
= Q1

(
θ#
)

+

n−1/2h′
∂Q1(θ#)

∂θ
+ 1

2
n−1h′

∂2Q1(θ#)
∂θ∂θ′

h+ o (n−1), nQ1

(
θ# + n−1/2h

)
= 1

2
h′H̄h+ o (1).

It remains to show that n
(
Q̂2 + Q̂3

) (
θ# + n−1/2h

)
 π

(
θ#
)′
WZ0,1 (h) + h′G′WU0.

Since the 1st, 3rd and 4th terms in nQ̂2

(
θ# + n−1/2h

)
are all of the form oP (1)nη̂n

(
θ# + n−1/2h

)
,

they all converge in probability to 0. For the 2nd term, we can Taylor expand g
(
θ# + n−1/2h

)
around θ#:
√
ng
(
θ# + n−1/2h

)′
W
√
n
(
π̂n
(
θ#
)
− π

(
θ#
))

= h′ (G+ o(1))′W
√
n
(
π̂n
(
θ#
)
− π

(
θ#
))
.

Since we assumed the joint Lindeberg condition: for each ε > 0 and t ∈ Rd,

lim
n→∞

P

∥∥∥∥∥
( √

ng
(
·, θ# + t√

n

)
π
(
·, θ#

) )∥∥∥∥∥
2

1

{∥∥∥∥∥
( √

ng
(
·, θ# + t√

n

)
π
(
·, θ#

) )∥∥∥∥∥ > ε
√
n

}
= 0,

the Lindeberg-Feller CLT implies that Sn (h) ≡
(

π
(
θ#
)′
Wnη̂n

(
θ# + n−1/2h

)
h′G′W

√
n
(
π̂n
(
θ#
)
− π

(
θ#
)) ) con-

verges in finite dimensional distribution to
(
π
(
θ#
)′
WZ0,1 (h)

h′G′WU0

)
, where Z0,1 (h) is a mean

zero Gaussian process with covariance kernel Σ1 (s, t) = lim
α→∞

α2Pg(·, θ# + s
α

)g(·, θ# + t
α

)′,

and U0 ∼ N
(

0, P
(
π
(
·, θ#

)
− π

(
θ#
)) (

π
(
·, θ#

)
− π

(
θ#
))′).

Since h′G′W
√
n
(
π̂n
(
θ#
)
− π

(
θ#
))

is a linear (and therefore convex) function of h, point-
wise convergence implies uniform convergence over compact sets K ⊂ Rd (Pollard (1991)).
Therefore, to show that Sn (h) is stochastically equicontinuous, it suffices to show that for
every sequence of positive numbers {δn} converging to zero, and for every j = 1, . . . ,m,

nEsup
D(n)

|Pndj − Pdj| = o(1), (7.2)

where D(n) = {dj
(
·, θ#, h1, h2

)
= gj

(
·, θ# + n−1/2h1

)
− gj

(
·, θ# + n−1/2h2

)
such that

max(‖h1‖, ‖h2‖) ≤ M and ‖h1 − h2‖ ≤ δn}. Note that D(n) has envelope function Dn =
2GR(n) where R(n) = Mn−1/2.

Using the Maximal Inequality in Lemma 3.1 of Kim and Pollard (1990), for sufficiently
large n, splitting up the expectation according to whether nPnD2

n ≤ η for each η > 0, and
applying the Cauchy-Schwarz inequality,

nEsup
D(n)

|Pndj − Pdj| ≤ E
√
nPnD2

nJ

nsup
D(n)

Pnd
2
j

nPnD2
n


≤√ηJ(1) +

√
EnPnD2

n

√√√√EJ2

(
min

(
1,

1

η
nsup

D(n)

Pnd2
j

))
.
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To show that this is o (1) for each fixed η > 0, first, note that by Assumption 2(vi),
EnPnD

2
n = 4nEG2

R(n) = O (nR(n)2) = O(1) since R(n) = Mn−1/2. The proof will then
be complete if nsup

D(n)

Pnd
2
j = op (1).

For eachK > 0 write Esup
D(n)

Pnd
2
j ≤ EPnsup

D(n)

d2
j1{Dn > K}+KEsup

D(n)

Pn|dj| ≤ EPnD
2
n1{Dn >

K} + Ksup
D(n)

P |dj| + KEsup
D(n)

|Pn|dj| − P |dj||. By Assumption 2(vii), EPnD2
n1{Dn > K} <

ηn−1 for large enough K. By Assumption 2(viii) and the definition of D(n), Ksup
D(n)

P |dj| =

O(n−1δn) = o(n−1). Under the assumption that g (·, θ) is Lipschitz in θ, so that Dn =
OP

(
n−1/2δn

)
, use the maximal inequality in Lemma 3.1 of Kim and Pollard (1990) to show

KEsup
D(n)

|Pn|dj| − P |dj|| < Kn−
1
2J(1)

√
PD2

n = O(n−1δn) = o(n−1). Therefore, Ensup
D(n)

Pnd
2
j =

o(1). It follows that(
π
(
θ#
)′
Wnη̂n

(
θ# + n−1/2h

)
h′G′W

√
n
(
π̂n
(
θ#
)
− π

(
θ#
)) ) (

π
(
θ#
)′
WZ0,1 (h)

h′G′WU0

)
as a process indexed by h in the product space of locally bounded functions

{
Bloc

(
Rd
)}2

equipped with the topology of uniform convergence on compacta. By Slutsky’s Theorem,

n
(
Q1 + Q̂2 + Q̂3

) (
θ# + n−1/2h

)
 π

(
θ#
)′
WZ0,1 (h) + h′G′WU0 +

1

2
h′H̄h.

Lemma 2.6 in Kim and Pollard (1990) implies that the Gaussian process π
(
θ#
)′
WZ0,1 (h)

has a unique minimum. In combination with the fact that h′G′WU0 + 1
2
h′H̄h is a convex

function of h, there is a unique h that minimizes π
(
θ#
)′
WZ0,1 (h) + h′G′WU0 + 1

2
h′H̄h.

The result follows from the argmin continuous mapping theorem (Theorem 2.7 in Kim and
Pollard (1990)). �

Proof for Theorem 7

The consistency argument is the same as in Theorem 3. Next, write Q̂n (θ) − Q̂n

(
θ#
)

=

Q1 (θ) + Q̂2 (θ) + Q̂3 (θ) + Q̂4 (θ) + Q̂5 (θ) + Q̂6 (θ), where

Q1 (θ) =
1

2
g (θ)′Wg (θ) + g (θ)′Wπ

(
θ#
)
, Q̂3 (θ) = π

(
θ#
)′
Wη̂n (θ)

Q̂2 (θ) =
1

2
η̂n (θ)′Wη̂n (θ) + g (θ)′W

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′Wη̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

Wη̂n (θ)

Q̂4 (θ) =
1

2
g (θ)′ (Wn −W ) g (θ) + g (θ)′ (Wn −W ) π

(
θ#
)

Q̂5 (θ) =g (θ)′ (Wn −W )
(
π̂n
(
θ#
)
− π

(
θ#
))

+ g (θ)′ (Wn −W ) η̂n (θ) +
(
π̂n
(
θ#
)
− π

(
θ#
))′

(Wn −W ) η̂n (θ)

Q̂6 (θ) =π
(
θ#
)′

(Wn −W ) η̂n (θ) +
1

2
η̂n (θ)′ (Wn −W ) η̂n (θ) .

We already showed in Theorem 5 that ∀ε > 0, there exists Mn = OP (1) such that |Q̂2 (θ) +
Q̂3 (θ) | ≤ ε‖θ − θ#‖2 + n−1M2

n.
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A modified version of Kim and Pollard (1990) Lemma 4.1 applied to η̂n (θ), and in turn
Q̂6 (θ) = oP (1) η̂n (θ) implies that ∀ε > 0, ∃Mn,6 = OP (1) such that

|Q̂6 (θ) | ≤ ε‖θ − θ#‖2 + n−1M2
n,6.

The 2nd and 3rd terms in Q̂5 (θ) are also of the form oP (1) η̂n (θ), hence are also bounded by
ε‖θ−θ#‖2+n−1M2

n,51. The 1st term in Q̂5 (θ) can also be bounded by, for someMn,52 = OP (1)
and ∀ε > 0,

|g (θ)′ (Wn −W )
(
π̂n
(
θ#
)
− π

(
θ#
))
| = op

(
‖θ − θ#‖√

n

)
≤ ε‖θ − θ#‖2 + n−1M2

n,52.

If Wn−W = OP (n−γ) for γ ≥ 1/2,
∂Q̂4(θ#)

∂θ
= G′ (Wn −W ) g

(
θ#
)

+G′ (Wn −W ) π
(
θ#
)

=

OP (n−γ). Taylor expanding Q̂4 (θ) around θ# gives for some Mn,4 = OP (1) and ∀ε > 0,

Q̂4 (θ) = Q̂4

(
θ#
)

+
(
θ − θ#

)′ ∂Q̂4

(
θ#
)

∂θ
+

1

2

(
θ − θ#

)′ ∂2Q̂4

(
θ#
)

∂θ∂θ′
(
θ − θ#

)
+ op

(
‖θ − θ#‖2

)
=

1

2

(
θ − θ#

)′(
G′ (Wn −W )G+

m∑
j=1

m∑
k=1

(Wn,jk −Wjk) πk
(
θ#
)
Hj + op (1)

)(
θ − θ#

)
+OP

(
‖θ − θ#‖

nγ

)
≤ ε‖θ − θ#‖2 + n−2γM2

n,4.

Then ∀ε > 0, there existsMn = OP (1) such that |Q̂2 (θ)+Q̂3 (θ)+Q̂4 (θ)+Q̂5 (θ)+Q̂6 (θ) | ≤
ε‖θ − θ#‖2 + n−1M2

n. We already showed that there exists some C > 0 such that almost

surely Q1

(
θ̂n

)
≥ C

∥∥∥θ̂n − θ#
∥∥∥2

. Then,

Q1

(
θ̂n

)
+Q̂2

(
θ̂n

)
+Q̂3

(
θ̂n

)
+Q̂4

(
θ̂n

)
+Q̂5

(
θ̂n

)
+Q̂6

(
θ̂n

)
≤ Q̂n

(
θ̂n

)
− inf
θ∈Θ

Q̂n (θ) ≤ oP
(
n−1
)
.

Choose ε so that C − ε > 0. Then,

oP
(
n−1
)
≥ Q1

(
θ̂n

)
− ε
∥∥∥θ̂n − θ#

∥∥∥2

− n−1M2
n

≥ (C − ε)
∥∥∥θ̂n − θ#

∥∥∥2

− n−1M2
n

=⇒
∥∥∥θ̂n − θ#

∥∥∥2

≤ (C − ε)−1 n−1M2
n + oP

(
n−1
)

= OP

(
n−1
)
.

It follows that
√
n
(
θ̂n − θ#

)
= OP (1).

We already showed in Theorem 5 that nQ1

(
θ# + n−1/2h

)
= 1

2
h′H̄h+o(1), and nQ̂2

(
θ# + n−1/2h

)
+

nQ̂3

(
θ# + n−1/2h

)
 π

(
θ#
)′
WZ0,1 (h)+h′G′W ′U0. Furthermore, ifWn−W = OP

(
n−1/2

)
,

nQ̂4

(
θ# + n−1/2h

)
=

1

2
ng
(
θ# + n−1/2h

)′
(Wn −W ) g

(
θ# + n−1/2h

)
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+ ng
(
θ# + n−1/2h

)′
(Wn −W ) π

(
θ#
)

= nOP

(∥∥n−1/2h
∥∥2

√
n

)
+
(√

n
{
g
(
θ#
)′

+ h′G′n−1/2
}

+ oP (1)
)√

n (Wn −W ) π
(
θ#
)

= h′G′
√
n (Wn −W ) π

(
θ#
)

+ oP (1)

 h′G′Φ0π
(
θ#
)

nQ̂5

(
θ# + n−1/2h

)
= ng

(
θ# + n−1/2h

)′
(Wn −W )

(
π̂n
(
θ#
)
− π

(
θ#
))

+ g
(
θ# + n−1/2h

)′
(Wn −W )nη̂n

(
θ# + n−1/2h

)
+
(
π̂n
(
θ#
)
− π

(
θ#
))′

(Wn −W )nη̂n
(
θ# + n−1/2h

)
= nOP

(∥∥n−1/2h
∥∥

n

)
+OP

(∥∥n−1/2h
∥∥

√
n

)
OP (1) +OP

(
n−1
)
OP (1)

= OP

(
n−1/2

)
+OP

(
n−1
)

+OP

(
n−1
)

= oP (1)

nQ̂6

(
θ# + n−1/2h

)
= π

(
θ#
)′

(Wn −W )nη̂n
(
θ# + n−1/2h

)
+

1

2
η̂n
(
θ# + n−1/2h

)′
(Wn −W )nη̂n

(
θ# + n−1/2h

)
= OP

(
n−1/2

)
OP (1) +OP

(
n−1
)
OP

(
n−1/2

)
OP (1)

= oP (1).

The joint Lindeberg condition is satisfied by Assumption 4: for each ε > 0 and t ∈ Rd,

lim
n→∞

P

∥∥∥∥∥∥∥∥

√
ng
(
·, θ# + t√

n

)
π
(
·, θ#

)
vech

(
φ
(
·, θ#

1

))

∥∥∥∥∥∥∥∥

2

1


∥∥∥∥∥∥∥∥

√
ng
(
·, θ# + t√

n

)
π
(
·, θ#

)
vech

(
φ
(
·, θ#

1

))

∥∥∥∥∥∥∥∥ > ε

√
n

 = 0.

Therefore, by the Lindeberg-Feller CLT and stochastic equicontinuity arguments similar to
those in Theorem 5, π

(
θ#
)′
Wnn (Pn − P ) g

(
·, θ# + n−1/2h

)
h′G′Wn

√
n (Pn − P ) π

(
·, θ#

)
h′G′
√
n (Pn − P )φ

(
·, θ#

1

)
π
(
θ#
)

 
 π

(
θ#
)′
WZ0,1 (h)

h′G′WU0

h′G′Φ0π
(
θ#
)

 ,

as a process indexed by h in the product space of locally bounded functions
{
Bloc

(
Rd
)}3

equipped with the topology of uniform convergence on compacta. By Assumption 4,
√
n (Wn −W ) =

√
n (Pn − P )φ

(
·, θ#

1

)
+ oP (1); therefore, π

(
θ#
)′
Wnn (Pn − P ) g

(
·, θ# + n−1/2h

)
h′G′Wn

√
n (Pn − P ) π

(
·, θ#

)
h′G′
√
n (Wn −W ) π

(
θ#
)

 
 π

(
θ#
)′
WZ0,1 (h)

h′G′WU0

h′G′Φ0π
(
θ#
)

 .
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By Slutsky’s theorem and the argmin continuous mapping theorem,

√
n
(
θ̂n − θ#

)
 arg min

h∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′W ′U0 + h′G′Φ0π

(
θ#
)

+
1

2
h′H̄h

}
If Wn −W = op

(
n−1/2

)
,

nQ̂4

(
θ# + n−1/2h

)
= noP

(∥∥n−1/2h
∥∥2

√
n

)
+ noP

(∥∥n−1/2h
∥∥

√
n

)

= oP

(
1√
n

)
+ oP (1) = oP (1),

which implies
√
n
(
θ̂n − θ#

)
 arg minh∈Rd

{
π
(
θ#
)′
WZ0,1 (h) + h′G′W ′U0 + 1

2
h′H̄h

}
. �

7.3 More Details for Examples

7.3.1 IV Quantile Regression

We show that the classes GR ≡
{
πj (·, θ)− πj

(
·, θ#

)
:
∥∥θ − θ#

∥∥ ≤ R, j = 1, . . . ,m
}

have
envelope functions which decay at the linear rate:

GR (·) = sup
‖θ−θ#‖≤R

∣∣πj (·, θ)− πj
(
·, θ#

)∣∣
= sup
‖θ−θ#‖≤R

∣∣zij (1 (yi ≤ q
(
x′iθ

#
))
− 1 (yi ≤ q (x′iθ))

)∣∣ .
Using monotonicity of q (·), we can bound the second moment of the envelope function by
considering all possible ways of adding or subtracting R from each coordinate of θ#.

PG2
R ≤ E

|zij|2E
 sup
‖θ−θ#‖≤R

∣∣1 (yi ≤ q
(
x′iθ

#
))
− 1 (yi ≤ q (x′iθ))

∣∣∣∣∣∣∣∣xi, zi


≤ E

|zij|2 ∑
ω∈{−1,1}d

(
P
(
q
(
x′i
(
θ# − ωR

))
≤ yi ≤ q

(
x′iθ

#
)∣∣xi, zi))


+ E

|zij|2 ∑
ω∈{−1,1}d

P
(
q
(
x′iθ

#
)
≤ yi ≤ q

(
x′i
(
θ# + ωR

))∣∣xi, zi)


≤ E

|zij|2 sup
θ∈Θ

∑
ω∈{−1,1}d

2fy|x,z (q (x′iθ)) q
′ (x′iθ)x

′
iωR

 = O(R).

For the third inequality, we applied mean-value expansions to the probabilities since we
assumed that Fy|x,z is absolutely continuous and q (·) is twice differentiable.

In the case of a fixed weighting matrix, the asymptotic distribution of the IV quan-
tile regression estimator is given in Theorem 1. We now consider the case of an estimated
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weighting matrix. The 2-step GMM estimator θ̂n = arg min
θ

π̂n (θ)′Wn

(
θ̂1

)
π̂n (θ) depends

on the 1-step GMM estimator θ̂1 = arg min
θ

π̂n (θ)′W1π̂n (θ) whose probability limit is θ#
1 =

arg min
θ

π (θ)′W1π (θ). The pseudo-true parameters are given by θ# = arg min
θ

π (θ)′W
(
θ#

1

)
π (θ),

where W
(
θ#

1

)
is the inverse of the variance-covariance matrix of the population moments

W
(
θ#

1

)
=

(
E

[
π
(
·, θ#

1

)
π
(
·, θ#

1

)′]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

=

(
E

[(
τ − 1

(
yi ≤ q

(
x′iθ

#
1

)))2

ziz
′
i

]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

=

(
E

[
E

[(
τ − 1

(
yi ≤ q

(
x′iθ

#
1

)))2
∣∣∣∣xi, zi] ziz′i]− π (θ#

1

)
π
(
θ#

1

)′)−1

=

(
E
[(
τ 2 + (1− 2τ)Fy|x,z

(
q
(
x′iθ

#
1

)))
ziz
′
i

]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

.

The last line follows from the fact that conditional on xi, zi, τ − 1
(
yi ≤ q

(
x′iθ

#
1

))
is a

Bernoulli random variable that equals τ − 1 with probability Fy|x,z
(
q
(
x′iθ

#
1

))
and equals τ

with probability 1− Fy|x,z
(
q
(
x′iθ

#
1

))
. Therefore,

E

[(
τ − 1

(
yi ≤ q

(
x′iθ

#
1

)))2
∣∣∣∣ zi] = (τ − 1)2 Fy|x,z

(
q
(
x′iθ

#
1

))
+ τ 2

(
1− Fy|x,z

(
q
(
x′iθ

#
1

)))
= τ 2 + (1− 2τ)Fy|x,z

(
q
(
x′iθ

#
1

))
.

Note that in the case of correct specification, W
(
θ#

1

)
reduces down to (τ (1− τ)E [ziz

′
i])
−1

since Fy|x,z
(
q
(
x′iθ

#
1

))
= τ .

The estimated weighting matrix is

Wn

(
θ̂1

)
=

(
1

n

n∑
i=1

(
τ 2 + (1− 2τ) F̂y|x,z

(
q
(
x′iθ̂1

)))
ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′)−1

=

(
τ 2 1

n

n∑
i=1

ziz
′
i + (1− 2τ)

1

n2

n∑
i=1

n∑
j=1

1
(
yj ≤ q

(
x′iθ̂1

))
ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′)−1

π̂n

(
θ̂1

)
=

1

n

n∑
i=1

(
τ − 1

(
yi ≤ q

(
x′iθ̂1

)))
zi.

Suppose there exists Dn such that the following mean value expansion around θ#
1 holds:(

Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
(
Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

+D′n

(
θ̂1 − θ#

1

)
+ oP (1).
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Dn can be interpreted as a subgradient (with respect to θ1) of Wn (θ1) π
(
θ#
)
evaluated at

θ#
1 that is consistent for the population derivative matrix: Dn

p→ D0 ≡
∂W (θ1)π(θ#)

∂θ1

∣∣∣∣
θ1=θ#1

.

If the 1-step GMM estimator θ̂1 has an influence function representation, then there is also
an influence function representation for Wn

(
θ̂1

)
. However, θ̂1 has an influence function

representation only in the case of correct specification in which case we can use the simpler
estimated weighting matrix Wn =

(
τ (1− τ) 1

n

∑
i ziz

′
i

)−1 as in Chernozhukov and Hansen

(2005). In the case of misspecification so that n1/3
(
θ̂1 − θ#

1

)
 J , the estimated weighting

matrix is cubic-root consistent because of the dominant effect of θ̂1.

n1/3
(
Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
n1/3

√
n

√
n
(
Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)︸ ︷︷ ︸

OP (1)

+D′nn
1/3
(
θ̂1 − θ#

1

)
+ oP (1)

= D′nn
1/3
(
θ̂1 − θ#

1

)
+ oP (1)

 D′0J ≡ W0.

7.3.2 Simulated Method of Moments

The classes GR ≡
{
πj (·, θ)− πj

(
·, θ#

)
:
∥∥θ − θ#

∥∥ ≤ R, j = 1, . . . ,m
}

have envelope func-
tions

GR (·) = sup
‖θ−θ#‖≤R

∣∣πj (·, θ)− πj
(
·, θ#

)∣∣
= sup
‖θ−θ#‖≤R

∣∣∣∣∣zij 1

S

S∑
s=1

(
1
(
h
(
x′iθ

#
)

+ ηis > 0
)
− 1 (h (x′iθ) + ηis > 0)

)∣∣∣∣∣ .
Using similar arguments as in the previous example,

PG2
R ≤ E

|zij|2E
 sup
‖θ−θ#‖≤R

1

S

S∑
s=1

∣∣1 (h (x′iθ#
)

+ ηis > 0
)
− 1 (h (x′iθ) + ηis > 0)

∣∣∣∣∣∣∣∣xi, zi


≤ E

|zij|2 1

S

S∑
s=1

∑
ωs∈{−1,1}d

P
(
h
(
x′i
(
θ# − ωsR

))
≤ −ηis ≤ h

(
x′iθ

#
)∣∣xi, zi)


+ E

|zij|2 1

S

S∑
s=1

∑
ωs∈{−1,1}d

P
(
h
(
x′iθ

#
)
≤ −ηis ≤ h

(
x′i
(
θ# + ωsR

))∣∣xi, zi)


≤ E

|zij|2 1

S

S∑
s=1

sup
θ∈Θ

∑
ωs∈{−1,1}d

2fη|x,z (h (x′iθ))h
′ (x′iθ)x

′
iωsR

 = O(R).
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Just as in the previous example, the pseudo-true parameters are given by θ# = arg min
θ

π (θ)′W
(
θ#

1

)
π (θ),

where W
(
θ#

1

)
is the inverse of the variance-covariance matrix of the population moments:

W
(
θ#

1

)
=

(
E

[
π
(
·, θ#

1

)
π
(
·, θ#

1

)′]
− π

(
θ#

1

)
π
(
θ#

1

)′)−1

=

E
(yi − 1

S

S∑
s=1

1
(
h
(
x′iθ

#
1

)
+ ηis > 0

))2

ziz
′
i

− π (θ#
1

)
π
(
θ#

1

)′−1

.

The estimated weighting matrix is

Wn

(
θ̂1

)
=

 1

n

n∑
i=1

(
yi −

1

S

S∑
s=1

1
(
h
(
x′iθ̂1

)
+ ηis > 0

))2

ziz
′
i − π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′−1

.

Suppose there exists Dn such that the following mean value expansion around θ#
1 holds:(

Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
(
Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)

+D′n

(
θ̂1 − θ#

1

)
+ oP (1).

Dn can be interpreted as a subgradient (with respect to θ1) of Wn (θ1) π
(
θ#
)
evaluated at

θ#
1 that is consistent for the population derivative matrix: Dn

p→ D0 ≡
∂W (θ1)π(θ#)

∂θ1

∣∣∣∣
θ1=θ#1

.

If the 1-step GMM estimator θ̂1 has an influence function representation, then there is also
an influence function representation for Wn

(
θ̂1

)
. However, θ̂1 has an influence function

representation only in the case of correct specification in which case we can use Wn

(
θ̂1

)
=(

1
n

∑n
i=1

(
yi − 1

S

∑S
s=1 1

(
h
(
x′iθ̂1

)
+ ηis > 0

))2

ziz
′
i

)−1

. In the case of misspecification so

that n1/3
(
θ̂1 − θ#

1

)
 J , the estimated weighting matrix is cubic-root consistent because

of the dominant effect of θ̂1.

n1/3
(
Wn

(
θ̂1

)
−W

(
θ#

1

))
π
(
θ#
)

=
n1/3

√
n

√
n
(
Wn

(
θ#

1

)
−W

(
θ#

1

))
π
(
θ#
)︸ ︷︷ ︸

OP (1)

+D′nn
1/3
(
θ̂1 − θ#

1

)
+ oP (1)

= D′nn
1/3
(
θ̂1 − θ#

1

)
+ oP (1)

 D′0J ≡ W0.

7.3.3 Dynamic Censored Regression

The classes GR ≡
{
πj (·, θ)− πj

(
·, θ#

)
:
∥∥θ − θ#

∥∥ ≤ R, j = 1, . . . ,m
}

have envelope func-
tions

GR (·) = sup
‖θ−θ#‖≤R

∣∣πj (·, θ)− πj
(
·, θ#

)∣∣
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= sup
‖θ−θ#‖≤R

∣∣max {0, yit − yit−1θ} −max
{

0, yit − yit−1θ
#
}∣∣ .

Because each moment condition πj (·, θ) is Lipschitz in θ, PG2
R will beO (R2) if E sup

1≤t≤T
|yit|2 <

∞ 2. For yi· ≡
[
yi2 , ..., yiT

]′ and yi·− ≡ [ yi1 , ..., yiT−1

]′, W (
θ#

1

)
is the inverse of

the variance-covariance matrix of the population moments

W
(
θ#1

)
=

(
E

[
π
(
·, θ#1

)
π
(
·, θ#1

)′]
− π

(
θ#1

)
π
(
θ#1

)′)−1
=

(
E

[(
max

{
0, yi· − yi·−θ#1

}
− yi·−

)(
max

{
0, yi· − yi·−θ#1

}
− yi·−

)′]
− π

(
θ#1

)
π
(
θ#1

)′)−1
.

The estimated weighting matrix is

Wn

(
θ̂1

)
=

(
1

n

n∑
i=1

(
max

{
0, yi· − yi·−θ̂1

}
− yi·−

)(
max

{
0, yi· − yi·−θ̂1

}
− yi·−

)′
− π̂n

(
θ̂1

)
π̂n

(
θ̂1

)′)−1

π̂n

(
θ̂1

)
=

1

n

n∑
i=1

(
max

{
0, yi· − yi·−θ̂1

}
− yi·−.

)
If the 1-step GMM estimator θ̂1 has an influence function representation

√
n
(
θ̂1 − θ#

1

)
=

√
n (Pn − P )κ

(
·, θ#

1

)
+ oP (1), then there is also an influence function representation for the

estimated weighting matrix, which we now derive. Suppose there exists ∆n such that the
following mean value expansion around θ#

1 holds:
√
n vech

(
Wn

(
θ̂1

)
−W

(
θ#

1

))
=
√
n vech

(
Wn

(
θ#

1

)
−W

(
θ#

1

))
+ ∆′n

√
n
(
θ̂1 − θ#

1

)
+ oP (1)

= −vech
(
W
(
θ#

1

)√
n (Pn − P )ψ

(
·, θ#

1

)
W
(
θ#

1

))
+ ∆′0

√
n (Pn − P )κ

(
·, θ#

1

)
+ oP (1)

= vech
(√

n (Pn − P )φ
(
·, θ#

1

))
+ oP (1).

∆n can be interpreted as a subgradient of vech (Wn (θ1)) evaluated at θ#
1 that is consistent

for the population derivative matrix: ∆n
p→ ∆0 ≡ ∂vech(W (θ1))

∂θ1

∣∣∣
θ1=θ#1

.

We can obtain the expression for
√
n (Pn − P )ψ

(
·, θ#

1

)
using U-statistic projection ar-

guments:

1√
n

n∑
i=1

(
π
(
·, θ#

1

)
π
(
·, θ#

1

)′
− E

[
π
(
·, θ#

1

)
π
(
·, θ#

1

)′])
−
√
n

(
π̂n

(
θ#

1

)
π̂n

(
θ#

1

)′
− π

(
θ#

1

)
π
(
θ#

1

)′)

=
1√
n

n∑
i=1


(

max
{

0, yi· − yi·−θ#
1

}
− yi·−

)(
max

{
0, yi· − yi·−θ#

1

}
− yi·−

)′
︸ ︷︷ ︸

δ(yi·,yi·)

− E [δ (yi·, yi·)]


2We thank an anonymous referee for pointing this out.
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−
√
n

n2

n∑
i=1

n∑
j=1


(

max
{

0, yi· − yi·−θ#
1

}
− yi·−

)(
max

{
0, yj· − yj·−θ#

1

}
− yj·−

)′
︸ ︷︷ ︸

δ(yi·,yj·)

− E [δ (yi·, yj·)]

︸ ︷︷ ︸
g(yi·,yj·)


=

1√
n

n∑
i=1

(δ (yi·, yi·)− E [δ (yi·, yi·)])−
1√
n

n∑
i=1

E [g (yi·, yj·)| yi·]−
1√
n

n∑
j=1

E [g (yi·, yj·)| yj·] + oP (1)

=
√
n (Pn − P )ψ

(
·, θ#

1

)
+ oP (1),

where the second to last equality follows from the fact that 1
n2

∑n
i=1

∑n
j=1 g (yi·, yj·) is a non-

degenerate V-statistic which has the same asymptotic distribution as the non-degenerate U-
statistic 2

n(n−1)

∑
1≤i<j≤n g (yi·, yj·) if E [‖vech (g (yi·, yi·)) ‖] <∞ and E [‖vech (g (yi·, yj·)) ‖2] <

∞. A discussion of this asymptotic equivalence result can be found in Section 8.2 of Newey
and McFadden (1994), Section 6.4 of Serfling (1980), and Appendix A of Zhou et al. (2021).

The bootstrapped weighting matrix is computed using the multinomial bootstrap and an
initial rate-adaptive bootstrap estimator θ̂∗1 computed using a fixed weighting matrix.

W ∗n

(
θ̂∗1

)
=

(
1

n

n∑
i=1

(
max

{
0, y∗i· − y∗i·−θ̂∗1

}
− y∗i·−

)(
max

{
0, y∗i· − y∗i·−θ̂∗1

}
− y∗i·−

)′
− π̂n

(
θ̂∗1

)
π̂n

(
θ̂∗1

)′)−1

π̂n

(
θ̂∗1

)
=

1

n

n∑
i=1

(
max

{
0, y∗i· − y∗i·−θ̂∗1

}
− y∗i·−

)
.

We can show that when the bootstrapped 1-step GMM estimator θ̂∗1 has the same in-
fluence function representation as θ̂1,

√
n
(
θ̂∗1 − θ̂1

)
=
√
n (P ∗n − Pn)κ

(
·, θ#

1

)
+ o∗P (1), the

bootstrapped weighting matrix W ∗
n

(
θ̂∗1

)
has the same influence function representation as

Wn

(
θ̂1

)
. Suppose there exists ∆∗n such that W ∗

n

(
θ̂∗1

)
has a mean value expansion around

θ#
1 . ∆∗n can be interpreted as a subgradient of vech (W ∗

n (θ1)) evaluated at θ#
1 that is consis-

tent for the population derivative matrix: ∆∗n
p→ ∆0 ≡ ∂vech(W (θ1))

∂θ1

∣∣∣
θ1=θ#1

. Then since ∆n is a

subgradient of vech (Wn (θ1)) evaluated at θ#
1 , and it is also consistent for ∆0, we can write

√
n vech

(
W ∗
n

(
θ̂∗1

)
−Wn

(
θ̂1

))
=
√
n vech

(
W ∗
n

(
θ̂∗1

)
−Wn

(
θ#

1

))
−
√
n vech

(
Wn

(
θ̂1

)
−Wn

(
θ#

1

))
=
√
n vech

(
W ∗
n

(
θ#

1

)
−Wn

(
θ#

1

))
+
(

∆∗′n
√
n
(
θ̂∗1 − θ

#
1

)
−∆′n

√
n
(
θ̂∗1 − θ

#
1

))
+ o∗P (1)

=
√
n vech

(
W ∗
n

(
θ#

1

)
−Wn

(
θ#

1

))
+ ∆′0

√
n
(
θ̂∗1 − θ̂1

)
+ o∗P (1)

= −vech
(
W
(
θ#

1

)√
n (P ∗n − Pn)ψ

(
·, θ#

1

)
W
(
θ#

1

))
+ ∆′0

√
n (P ∗n − Pn)κ

(
·, θ#

1

)
+ oP (1)

= vech
(√

n (P ∗n − Pn)φ
(
·, θ#

1

))
+ o∗P (1),
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where
√
n
(
W ∗
n

(
θ#

1

)
−Wn

(
θ#

1

))
= −W

(
θ#

1

)√
n (P ∗n − Pn)ψ

(
·, θ#

1

)
W
(
θ#

1

)
+ oP (1) fol-

lows from the consistency of the multinomial bootstrap for V-statistics of order 2 (see The-
orem 3.1 in Bickel and Freedman (1981)).

7.4 Monte Carlo Simulation for Smooth Misspecified GMM

Now suppose we consider the data combination example in Section 7.1 of Lee (2014). Suppose
we observe (yi, zi) ∈ R2, and our goal is to estimate θ = Ezi. Suppose we think that the
mean of yi is 0, and we would like to exploit this information to get more accurate estimates
of θ. Our moments are

π1 (·, θ) = yi, π2 (·, θ) = zi − θ.

However, suppose the actual mean of yi is δ 6= 0, so the model is misspecified. We generate
data as (

yi
zi

)
i.i.d∼ N

((
δ
0

)
,

(
1 0.5

0.5 1

))
.

As shown in the supplemental appendix of Lee (2014), the 1-step GMM estimator (using
the identity weighting matrix) is θ̂1 = z̄ and the 2-step GMM estimator using the optimal

weighting matrix Wn =

(
S2
y Syz

Syz S2
z

)−1

= 1
S2
yS

2
z−S2

yz

(
S2
z −Syz

−Syz S2
y

)
is θ̂2 = z̄ − Syz

S2
y
ȳ.

We would like to compare the performance of our rate-adaptive bootstrap to the standard
bootstrap estimators θ̃∗1 = z̄∗ and θ̃∗2 = z̄∗ − Syz∗

S2
y∗
ȳ∗.

It turns out that the rate-adaptive bootstrap 1-step GMM estimator is numerically iden-
tical to the standard bootstrap 1-step GMM estimator. We can see this by noting that
(P ∗n − Pn)

(
π (·, θ)− π

(
·, θ̂n

))
= 0 , H = 0, G = [0;−1], G′G = 1, and therefore

θ̂∗1 = arg min
θ∈Θ

{
1

2

(
θ − θ̂1

)2

+
(
θ − θ̂1

)
Ĝ′ (P ∗n − Pn) π

(
·, θ̂1

)}
= arg min

θ∈Θ

{
1

2
(θ − z̄)2 − (θ − z̄) (z̄∗ − z̄)

}
= z̄∗.

The rate-adaptive 2-step GMM estimator differs from the standard bootstrap 2-step GMM
estimator:

θ̂∗2 = arg min
θ∈Θ

{
1

2

(
θ − θ̂2

)2

Ĝ′WnĜ+
(
θ − θ̂2

)
Ĝ′Wn (P ∗n − Pn)π

(
·, θ̂2

)
+
(
θ − θ̂2

)
Ĝ′ (W ∗

n −Wn) π̂n

(
θ̂2

)}
= arg min

θ∈Θ

{
1

2

(
θ − θ̂2

)2 S2
y

S2
yS

2
z − S2

yz

+
(
θ − θ̂2

) (Syz (ȳ∗ − ȳ)− S2
y (z̄∗ − z̄)

)
S2
yS

2
z − S2

yz

+
(
θ − θ̂2

) (Syz∗ − S2
y∗
Syz
S2
y

)
ȳ

S2
y∗S

2
z∗ − S2

yz∗
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=⇒ θ̂∗2 = z̄∗ − Syzȳ
∗

S2
y

−
S2
yS

2
z − S2

yz

S2
y∗S

2
z∗ − S2

yz∗

(
Syz∗

S2
y

−
S2
y∗

S2
y

Syz
S2
y

)
ȳ.

We examine the empirical coverage frequencies of nominal 95% equal-tailed rate-adaptive
bootstrap confidence intervals

[
θ̂2 − c0.975, θ̂2 − c0.025

]
, where c0.975 and c0.025 are the 97.5th

and 2.5th percentiles of θ̂∗2 − θ̂2. We also examine the empirical coverage frequencies of
nominal 95% equal-tailed standard bootstrap confidence intervals:

[
θ̂2 − d0.975, θ̂2 − d0.025

]
,

where d0.975 and d0.025 are the 97.5th and 2.5th percentiles of θ̃∗2 − θ̂2. We also examine the
empirical coverage frequencies of Lee (2014)’s nominal 95% Misspecification-Robust (MR)
bootstrap confidence intervals. We use B = 5000 bootstrap iterations and R = 5000 Monte
Carlo simulations.

From Tables 5 and 6 which correspond to δ = 1 and δ = 0.1 respectively, we can see that
the rate-adaptive bootstrap performs similarly to the standard and MR bootstraps in terms of
both coverage and confidence interval width. The coverage frequencies of the three methods
are very similar because in the smooth case, the asymptotic distribution remains normal so
the standard bootstrap will be consistent. Results for symmetric confidence intervals are
very similar and available upon request.

Table 5: Empirical Coverage Frequencies for δ = 1
n 200 800 1600 3200 6400 9600

Rate-adaptive 0.948 0.953 0.948 0.952 0.953 0.953
(0.343) (0.170) (0.120) (0.085) (0.060) (0.049)

Standard 0.944 0.952 0.948 0.953 0.952 0.953
(0.339) (0.170) (0.120) (0.085) (0.060) (0.049)

MR 0.944 0.951 0.949 0.952 0.952 0.953
(0.339) (0.170) (0.120) (0.085) (0.060) (0.049)

Table 6: Empirical Coverage Frequencies for δ = 0.1
n 200 800 1600 3200 6400 9600

Rate-adaptive 0.950 0.947 0.953 0.950 0.951 0.952
(0.240) (0.121) (0.085) (0.060) (0.043) (0.035)

Standard 0.950 0.947 0.952 0.950 0.951 0.952
(0.241) (0.121) (0.085) (0.060) (0.043) (0.035)

MR 0.951 0.947 0.952 0.950 0.950 0.952
(0.241) (0.121) (0.085) (0.060) (0.043) (0.035)
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