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The Proximal Bootstrap for Finite-Dimensional Regularized
Estimators'

By JESSIE L1

We propose a computationally efficient
bootstrap procedure to conduct pointwise
asymptotically valid inference for a large
class of /7m-consistent estimators with non-
standard asymptotic distributions for which
standard bootstrap procedures are known to
be inconsistent. The application we consider
in this paper is finite-dimensional regular-
ized estimators, such as the lasso (Tibshirani
1996), ¢,-norm regularized quantile regression
(Belloni and Chernozhukov 2011), ¢;-norm sup-
port vector regression (Zhu et al. 2004, Bai et al.
2019), and trace regression via nuclear norm reg-
ularization (Koltchinskii, Lounici, and Tsybakov
2011, Moon and Weidner 2018). Another applica-
tion that will be explored in a subsequent paper is
constrained optimization problems with a possi-
bly nonsmooth and nonconvex objective function
and a finite number of either estimated or fixed
inequality and/or equality constraints, and where
the true parameter can lie on the boundary of the
constraint set (Andrews 1999, 2000, 2002a).

Motivated by the optimization literature and
recent contributions in computationally efficient
bootstrap procedures (e.g., Forneron and Ng
2020), our proximal bootstrap estimator can
be expressed as the solution to a convex opti-
mization problem and efficiently computed
starting from an initial \/7z-consistent estima-
tor using built-in and freely available software.
Additionally, when the sample Hessian is pro-
portional to the identity matrix, the proximal
bootstrap has a closed-form solution. In the case
of a smooth sample objective function and no
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regularization, the proximal bootstrap is very
similar to the k-step bootstrap (for k = 1) pro-
posed by Davidson and MacKinnon (1999) and
investigated further by Andrews (2002b).

The consistency of the proximal bootstrap
relies on a scaling sequence (labeled «, in this
paper) that converges to zero at a slower-than-v/7
rate. The purpose of the slower-than-v/7 rate
is to offset the estimation error from the ini-
tial v n-consistent estimator. The purpose of o,
is similar to that of ¢, in the numerical bootstrap
in Hong and Li (2020). However, we want
to emphasize that the proximal bootstrap is a
different procedure than the numerical boot-
strap because it solves a different optimization
problem. The proximal bootstrap works only
for «/m-consistent estimators but is typically
more computationally efficient than the numer-
ical bootstrap.

Section I reviews the concept of proximal
mappings from the optimization literature.
Section II contains all of the theoretical results
demonstrating consistency of the proximal boot-
strap for finite-dimensional regularized estima-
tors. Section III concludes. The online Appendix
contains the proof of consistency; provides the
specific form of the proximal bootstrap estimator
for the lasso, £;-norm support vector regression
(of which ¢;-norm regularized quantile regres-
sion is a special case), and trace regression via
nuclear norm regularization; and also contains a
Monte Carlo simulation for the lasso.

1. Proximal Mappings
Given an Euclidean space D and a func-

tion 7 : D — R, the proximal mapping of r is
the operator given by

prox,(z) = argmin
peD

r(B) + 18- zI13
2

forany z € D.
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Given a function r:D +— R and a symmet-
ric positive definite matrix H, the scaled prox-
imal mapping of r is the operator given by,

for |6zl = (B—2)'H(B—2),
proxy,(2) = argmin{r(3) + 58—l
forany z € D.

When r is a proper closed and convex func-
tion, then prox,(z) is a singleton for any z € D
(Beck 2017, theorem 6.3). The same can be said
for proxy;,(z) (Lee, Sun, and Saunders 2014).

The proximal map often has a closed-form
solution. For instance, the proximal mapping of
the ¢;-norm is given by

_ . lya_ 2
proxyj,(z) = argmin{ A + 310~ </}
= sign(z)max{|z| - )\,O}

= (z=A)"=(z+A)",

where xT = max(x,O) and x~ = fmin(x,O).

Although it is rarely the case that the scaled
proximal map has a closed-form solution, it can
still be efficiently computed as the solution to
a convex optimization problem if r is convex.
Additionally, Friedlander and Goh (2017) show
that for certain r that have a “quadratic support”
representation (which is satisfied for many func-
tions such as the £, norm, the ¢, norm, and indi-
cators on polyhedral cones), the scaled proximal
map can be written as a quadratic optimization
problem over conic constraints.

II. Proximal Bootstrap
A. Notation

Consider a random sample X;,X,, ..., X, of
independent draws from a probability measure P
on a sample space X. Define the empirical mea-
sure P, = (1/n) 27:15)(,., where ¢, is the measure
that assigns mass 1 at x and 0 everywhere else.
Denote the bootstrap empirical measure by P;,
which can refer to the multinomial, wild, or other
exchangeable bootstraps. Weak convergence is
defined in the sense of Kosorok (2007): Z, ~ Z
in the metric space (D,d) if and only if
supsep, |E*f(Z,) — Ef(Z)] — O, where BL, is
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the space of functions f : D — R with Lipschitz
norm bounded by 1. Conditional weak con-
vergence is also defined in the sense of
Kosorok (2007): Z, '\Vl\j Z in the metric space
(D,d) if and only if supep, |Ewf(Z,) —
Ef(Z)| 50 and Enf(Z,)" — Enf(Z,). 50
for all fe BL,, where BL; is the space
of functions f:D — R with Lipschitz
norm bounded by 1, Ej, denotes expec-
tation with respect to the bootstrap
weights WV conditional on the data, and f(Z,)"
and f(Z,). denote measurable majorants and
minorants with respect to the joint data (including
the weights W). Let X, = op(1) if the law of X;,
is governed by P, and if P,(|X;,| > €) = op(1)
forall e > 0. Also define M;, = O, (1) (hence
also O,(1)) if lim,, . limsup, ., P(P,(M,
>m)>e)—>O,Ve>0.

B. Finite-Dimensional Regularized Estimators

We first consider v/7-consistent estimators fin
that minimize an objective function that can be
written as the sum of two functions: the random,
Hossibly nonconvex, nonsmooth loss function
0,(0) and the penalty function (\,/v7)r(/3),
where r:R¢ — R is a typically convex but
nonsmooth deterministic function, and (\,/v/7)
= o(1). We assume d is fixed. Formally,

A

By = argmin{Qn(ﬁ) + jnﬁr(ﬁ) }

BeR?

We propose a proximal bootstrap estimator B,’[
that can be efficiently computed using standard,
built-in optimization routines starting from
an initial +/7-consistent estimator 7 (Bn—
ﬁo) = 0,(1), where ) = argmingcpQ().
One possible 5, is (3,, but sometimes there are
more computationally efficient estimators. For
some o,, — 0and a,,v1 — 00,

6: = proan,a,,)\nr(~) (Bn —a,vn

X Hrjl(,l\:{(an) _2n(Bn) ) )
Here, ?n(Bn) is a consistent estimate of /()

= 00Q(f)/08, where Q(f3) is a lower semi-
continuous function that is twice differentiable

at By, and supsex| 0.(8) — Q(B)] = 0,(1)

for every compact subset K of R“. In the case
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where Qn( f3) is differentiable, 7,,( f3) can simply
be the Jacobian of Q,(f3). More generally, to

~

handle nondifferentiable Q,(3), ,(3) is a sub-
gradient of Qn(ﬂ). Note, (Bn) is a bootstrap
analog of 2,,( B,) using the multinomial, wild, or
other exchangeable bootstraps; H, is a consis-
tent, symmetric, positive definite estimate of the
population Hessian H, = 82Q(60) /0B

If H, = (1/c)l, for some constant c, then [3;
reduces down to an unscaled proximal map,
which often has a closed-form solution:

B
= prox(lld,a,,)\,,r(-) (Bn —Qy mdd(iﬂ _n) - 2/1(Bn) ) )

= mgglin{anAnr(ﬁ)
+ i ”ﬂ - Bn
+ ol (B) = (31"}
= arg;nin{cozn /\,,r(ﬁ)
+ %”ﬂ - Bn

+ ol (B) = (317}
proxc(v")\,lr(») (/Bn —cay \/ﬁ(,l\; /Bn) - 2n(/Bn) ) ) .

Even if there is no closed form for @; ,itis still
the solution to a convex optimization problem

assuming r(/3) is convex:

A

Jon arggnn{ a, A, 1(5)
+ 2183,

+a, vl (15(3,)

= argénin{anknr(ﬁ)
+ anﬁ(iyf(ﬁn)_ 2VL(B"))/
X (ﬁ— Bn) + %Hﬁ - Bn‘

2
H, ("

Furthermore, for certain types of r(ﬁ), we can
use proposition 4.1 in Friedlander and Goh
(2017) to efficiently compute the proximal
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bootstrap by solving a quadratic optimization
problem over conic constraints. For example, if

r(B) = Bl
b = 1, (8,5, — o B!
< (1(3) ~1(3)))

- anAn'y*),

. P
= argmin K nH Ly

re{rllx=1}

— (B — apva ity
< (i(3) ~ 1(3) )

Remark 1: In the case of r(8) = 0,
smooth Q,,(ﬁ), and j3, that satisfies ?H(B,,) =0,
the proximal bootstrap is similar to the k-step
bootstrap (for k = 1) proposed by Davidson
and MacKinnon (1999) and investigated further
by Andrews (2002b), except with an additional
scaling factor of o, v/7:

Brt = Bn_an\ﬁnlqrjl(z;(ﬁn) _2n(Bn))
= Bn_an\/ﬁgrjl,l\;:(ﬁn)'

If o, = 1/v7 in this case, then the proximal
bootstrap coincides with the one-step bootstrap.

C. Assumptions

The first assumption is needed to show con-
sistency of 3, for f3.

ASSUMPTION I: (i) 3, = argmingege{ 0,(6)
+ (\,/v7) r(ﬁ)} is uniformly tight. (ii) [,
= argmingcpiQ () is unique, where Q(f3) is
a lower semicontinuous function that is twice
differentiable at [3, and supgeK|Qn(ﬁ) — Q(ﬁ)|
= 0,(1) for every compact subset K of R

The next assumption states that the objec-
tive function admits a uniform local quadratic
approximation around /77 neighborhoods of 3.
It is needed to derive the asymptotic distribution
of \/ﬁ(ﬁn - 60)
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ASSUMPTION 2: There exists a symmetric,
positive definite H, and ﬁ(ln(ﬁo) — l(ﬁo))
= 0,(1) such that for any 6, — 0,

(n0u(B0+ L) — n0u ()
— ' (1(5o) = 1(60))
— HHR ) /(14 1))

sup
(|l <v7s,

= 0p(1).
The next assumption is needed to show

that \/_(l (ﬂo)—l(ﬁo)) and \/_(l*(ﬂo)

1,(fBy) ) have the same asymptotic distribution.

ASSUMPTION 3: There exists a func-
tion g:X — R indexed by a parame-
ter B € R? such that for any 3 € RY, vn

% (1,(8) ~1(8)) = v (P, = P)s(-.5) +o,(1)
and\/_(A* ~1,(8)) = va(P; - P,)g(-.0)

( )’ where hmnﬂooP”g(’/BO) HZ
><1(||g( Bo)ll > e\/ﬁ) = 0foreache > 0.

The next assumption is needed to show sto-
chastic equicontinuity of 7 (2,,(6) - l(ﬂ))
and bootstrap equicontinuity results, which
will be used to show \/ﬁ(?,’{(Bn) - 2,,(3,1)) and
NG (i,f (Bo) —?n(ﬁo)) have the same asymp-
totic distribution.

ASSUMPTION 4 (i) Gp = {g(-.0) —
g(+Bo) : 118 = Boll < R} is a Donsker classfor

some R > 0, andP( (-.8) —g(- 60))
for B — By (ii) lim,\ﬂoollmsupnﬂxsup,zkt

8(+.8) —g(-.5%)
XP{SUpg(-,a)ego-,,HmH >t =0

forany 6, — O.

Note, (i) will imply stochastic equicontinuity,
which in combination with the envelope func-
tion integrability condition in (ii) will imply
bootstrap equlcontlnulty A sufﬁ01ent condition

B) ~
for (ii) is supy(. g)eg, ||m|| < Cfor

some constant C.

The next assumption states that r(f) is
closed, convex, and Hadamard directionally
differentiable at (. It is needed to derive the
asymptotic distribution of v7n ( B, — 60).
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ASSUMPTION 5: r: R¢ — R is a proper closed,
convex function, and there is a continuous
map rj, R? — R such that for all h,, — h € RY,

. r(Bo + e, hy,) — r(5 ,
hm%w! (o an) (%) _ rﬂo(h)| =0

The next theorem demonstrates consistency
of the proximal bootstrap by showing that the

limiting distribution of (3} — B,,) /v, coincides
with the limiting distribution of v/72(, — ).

THEOREM 1: Suppose Assumptions 1-5 are
satisfied and N\, — A\ € [0,00). Then for any
B, such that \/ﬁ(ﬁn—ﬁo) = 0,(1), for any
H, that is a consistent, symmetric, positive
definite estimate of H,, and for any sequence
o, such that o, — 0 and vno, — 00,

vit(B, = o) ~ T and (B = ) /o~y T,
where J = argminhERd{)\O rg, (h) + R Wy +
(1/2)" Hyh}y and Wy ~ N(0,P(g(-.00) —
Pg(-.60))(g(+>00) —Pg(‘ﬂo))')-

III. Conclusion

We have proposed a computationally effi-
cient proximal bootstrap estimator that con-
sistently estimates the limiting distribution of
v/n-consistent estimators for which the stan-
dard bootstrap is known to be inconsistent.
This paper has considered the application to
finite-dimensional regularized estimators; an
application to constrained estimators will be
explored in a subsequent paper.
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1 Examples of Regularized Estimators

1.1 LASSO

B = arg min {% i (v — B)" + j/—% Hﬁl}

rﬁo Zp: h;sign (Bo;) 1 (Boj # 0) + |h;| 1 (Bo; = 0))

B = s min 0, 81, + 0 (i: (5a) 1 (B)) (8= Bu) + 5 18— Bl
L(Bo) = —E [ (yi — xiB)], == le yi — 7if,)

Hy = E [z;2))] Zx !

Examples of Z;*L (Bn) include the multinomial and wild bootstrap analogs of L, (Bn):

l* 5n = ——Z (?Jz* —xfl5n>, l* 5n = —%i 91’1 (yz—x;5n>
=1

where & are i.i.d. variables with variance 1 and finite 3rd moment and & = %Z?:1 &.
If H, = %Id, B; has a closed form solution:

B = pro<eaa|, <Bn — comy/n (ZZ (Bn) = I (Bn)>>
= (B — cony/n (15 (Ba) — 1 (B)) = cond) = (B — canv/m (B2 (Ba) = I () ) + coms )

where 27 = max(z,0) and z~ = —min(z, 0).



1.2 /;-norm support vector regression

The ¢;-norm support vector regression (SVR) estimator of Zhu et al. (2004) is similar to the
¢y penalized quantile regression estimator of Belloni and Chernozhukov (2011):

. 1 D W
m=a@mm{ﬁg¥m@rﬂﬁﬂ—@ +;§5h}

The objective uses a relaxed version of the check function:

@Aw—ﬁ@—HV

=({(1=7)1(y; — 2B <0) +71(y; — 2,8 >0)} |y — '] — k)"
)= =) —2if) —r) (= =7) (i —2if) = > 0) ,yi—x;8 <0
(7 (y —fﬁ H)Qﬂ%—xm—ﬁ>0) i — i8>0
(—(1—=7)(y; —xip) — k)1 (yz»<:1c’ﬂ—ﬁ) VY — T8 <0
(1 (y; — 2P) —/{)1( >z + ) Y — x>0
~ (= i) = 1 (3= 2l + )~ (=7 - i)+ 001 (i< 0l - )

The proximal bootstrap estimator is

5 = argmin a8l + anv/n (B3 1 (B)) (8= B) + 5 18— Bully,

~ —

l, (5n) is a consistent estimate of [ (fy) using 3,:

[(By) =—-F lIz (7'1 (?Jz‘ > 380 + ;) —(1-7)1 (yi < ;8 — 1 f 7_))]
i (5.) = _%le (71 (= a4 5) == m1 (<t - )
The population Hessian and its consistent estimate using /3, are given by
Hy=F [x,x; (Tfym (xgﬁo - ;) + (1 —=7) fya (x;ﬁo 1 f T))]
1, = %Z <rfy|x (a0 + =) + (1= 1) fe (:czﬁn - 11))

An example of fy|x (y) is —Z] K (y), where Ky, (y) = +K (y/h) and K (u) is a kernel

function that is symmetric around 0 and integrates to 1.

1.3 Trace Regression via Nuclear Norm Regularization

n

. )1 /
©,, = arg min {EZ (yi —tr (0'X5)) + An H@*}

@eRdl x do _



where O], = Z;h:qu 0, (©) is the nuclear norm of ©, and 0, (©) is the jth largest singular
value of O.

67 = argmin aua 01, + ani (i2 (6,) 1 (61)) (0 - 6.) + 5[0 - 647,
(6,) =~ Z; X; (s — tr (60X)) s Hy — %Zl XX
o
Te, (h) = ; (hj1 (0 (©0) # 0) + [hj| 1 (0} (60) = 0))
In the case of H,, = 21, , the proximal bootstrap has a closed form:
61 = prozeait, (O = convn (15 (6,) =1 (84))) = USian, V7
where 0, = diag {max (51 — caphn, 0),max (S — canAn, 0) ;... max (La, ndy — CnAns 0)1,

and for j = 1...dy A dy, ¥, are the singular values of O, — cpa/n <ZZ ((:)n) — Zn ((:)n)>.

2 Proof of Theorem 1

Assumption 1 implies that the conditions of part 2 of Corollary 3.2.3 of van der Vaart and

Wellner (1996) are satisfied, and therefore 3, 5 fy = argmin@Q (3). To derive its asymptotic
BeRd
distribution, use the centered and scaled parameter h = \/n (8 — 5o):

Vi (B = ) = argmin { (0 =) =0 ) + duvr (504 1)}
r (ﬁo + \/%) — 7 (Bo)
1/y/n

= argmin { h'v/n <Zn (Bo) — 1 (ﬁo)> + %h'Hoh + A\ + 0,(1)
h

1
v arg min {/\07“/50 (h) + h,WO + §h,H0h}
h

The second line is due to the uniform in h local quadratic expansion of nQ,, (ﬁo + \%) —

n@n (Bo), which follows from assumption 2. The last line follows from the following arguments.
Assumption 3 implies the Lindeberg Condition is satisfied and /n (P, — P) g (-, Bo) »~~> W.

: o r(Bot g5 ) (B .
Assumption 5 implies W — 714, (h) for each h € R? and that rj (k) is a convex

. (Bt 1) —r
function of h. Since h'\/n (ln (Bo) —1 (ﬁo)> + 1M Hoh + X, <w> is a convex

function of h , pointwise convergence implies uniform convergence over compact sets K < R?

(Pollard (1991)). Therefore,

0Qu (Bo+ =) = 1 () + M (B = ) = A (B) o HWa 33+ ar, 1)

3



as a process indexed by h in the space of bounded functions ¢* (K) for any compact
K < R Convexity implies Aorly, (h) + KWy + 1h'Hoh has a unique minimum, so by the
argmin continuous mapping theorem (Theorem 3.2.2 in van der Vaart and Wellner (1996)),
Vi (Bu = o)~ .

Now we show B* 2 By. Since o, — 0 and o\, — 0 imply apA,r (B + By) = o(1) and

v/, (I7 (B) = I (B,)) = o3(1).

B:; - /80 = arghmin {O‘n)\nr (h + /BO) + % Hh + BO - ﬂ_n + Q4n\/ﬁ]rl'r:1 (Z;kz (Bn) - Zn (671))

1 - 1
arg;nin {ﬁh’Hoh + W H, (60 - Bn) - 5 Hﬁo 5nHH } + 0,(1)

= Bn - 50 + Op(l) = Op(l)
The second line follows from convexity of the proximal bootstrap objective function, which
_ 2
implies the difference between a;, A7 (h + o)+ Hh + Bo — B + ap/nH! (l* (ﬁn) (Bn)> H )
Hy

and 1 3 Hh + By — B"HHO = 1h’H0h + W H, (BO ) 5 Hﬁo @LHHO converges uniformly in
probability to zero over any compact subset of R%.

To derive B;L“’s asymptotic distribution, first note that because \/n (Bn — 60) = 0,(1)
and /na,, — o0,

b g VP (BB) aos,

+ 1
oy, oy, Vnay, o, o (1)

It therefore suffices to show that @ \?Ef J. To do this, use the centered and scaled
parameter h = (5 — 5y) /o
BE — Bo

Qp

— arganin fa,hor (B + ) + (52 (B2) = 6 (5)) (0 = B+ auh) + 5 160 = B + iy |

—argmin{/\n (r(ﬁoJranh)—r(ﬁo))jL\/ﬁ(i: (B.) — i (ﬁn)>’<ﬁo—5n +h) :

h Qi Qp

60 Bn

(e77

)

— argmin {/\n (T(ﬂo T anh) 77 (50)> + W (B (Ba) = 1 (Ba)) + %h’th + 0;';(1)}

h an
%;; arg min {Aor’ﬁo (h) + KWy + ;h’Hoh}
We have used ’8 0—bn  _ \/ﬁf/ﬂﬁo;nﬁ")
dlfferentlablhty of r (ﬁ) at p, and the following arguments. Assumption 4(i) says Gr =
{g(-,8) —g (-, Bo): |8 — Bo| < R}isaDonsker class for some R > 0, and P (g (-, 8) — g (-, 50))* —
0 for f — (y. By Lemma 3.3.5 of van der Vaart and Wellner (1996), \/n (P, — P) g (-, ) is
stochastically equicontinuous, which implies

H\/E(Pn - P) (g (aBn) _g('vﬁo))H = 0p (1 + \/ﬁHBn - ﬁOH) =

= o,(1), H, 5 Hy, the assumption of directional




Stochastic equicontinuity and the envelope integrability condition in assumption 4(ii) imply
that the assumptions of Lemma 4.2 in Wellner and Zhan (1996) are satisfied. Therefore,
Vn(PFf—P,)g(-,p) is bootstrap equicontinuous, which implies

[V By = Pa) (9 (- Ba) — 9 (. 80)) | = o) (1+v/n|Ba—Bof]) =
Therefore, h'\/n (Z;; (3,) — L, (Bn)) = W\ (B = Po) g (- o)+ v/n (B = o) (9 (- 8n) — 9. (-, 50)) +

P . o . : .
0, (1) v~~~ h'Wy. By convexity, pointwise convergence implies uniform convergence over
W

compact sets K < R?, so

A (T (Bo + anh) — 7 (Bo)) W ([;; (3,) — I, (Bn)) + %h’th v At (1) + W'Wo + %h’Hoh

Qn

as a process indexed by A in the space of bounded functions ¢* (K) for any compact K < R?.
BE—Bo 50

(see Lemma 14.2 in Hong and Li (2020)). |

W J follows from the bootstrap version of the argmin continuous mapping theorem

Monte Carlo Simulation for Finite-dimensional Lasso
We consider the following data generating process:

yi=aiBo+e, Bo=(1 000 0) 2~N(0I+050 —1I5),&~N(0,1)

We compute the Lasso estimator 3, = argmin {;n S (i —2i8)? + \’\/—% HﬁHl} using the
B

CVX modeling software in Matlab developed by Grant and Boyd (2009). The proximal
. N NN _ _
bootstrap estimator 3 = argmin a, \,, | B[, +an/n (lf; (Bn) — ln (ﬂn)> (B—Bn)+3 Hﬁ - ﬁan )
6 n

for Bn = Bru Hn = %Z?:l .TZ'ZL’§7 Zn (Bn) = _% 2?21 Lg (yz - x;BTL)a and lA;kL (Bn) = _% Z?:l l’f (y;l< - I’?’Bﬂ)?
is computed using the fminunc Matlab function so that we can run the code in parallel (the
current version of CVX does not support parallel for loops). We also tried using the fmincon
Matlab function, and the results were the same.
We consider five different sample sizes n € {100, 500, 1000, 5000, 10000}, three different
s for each n: o, € {n=Y3 n=Y* n=Y/6} and two choices of A, € {0.1,0.5}. We use 5000
bootstrap iterations and 2000 Monte Carlo simulations. Empirical coverage frequencies for

equal-tailed nominal 95% confidence intervals [ﬂn — Cg”’,ﬁn — CQTE , where ¢, is the 7-th

percentile of Bib Pon b and average interval lengths are reported in tables 1-3. Although the

proximal bootstrap undercovers for smaller sample sizes, it achieves coverage very close to
95% for sufficiently large n.



Table 1: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n™/3
An = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.940 0.940 0.945 0.957 0.951 0.933 0.933 0.938 0.958 0.950
(0.489) (0.222) (0.157) (0.070) (0.050) (0.450) (0.204) (0.145) (0.065) (0.046)
0.922 0.944 0.946 0.946 0.947 0.919 0.940 0.942 0.950 0.949
(0.458) (0.209) (0.147) (0.066) (0.047) (0.308) (0.143) (0.101) (0.045) (0.032)
0.935 0.945 0.942 0.953 0.954 0.934 0.944 0.939 0.953 0.945
(0.459) (0.208) (0.147) (0.066) (0.047) (0.308) (0.143) (0.101) (0.046) (0.032)
0.933 0.935 0.948 0.953 0.949 0.936 0.938 0.940 0.945 0.945
(0.456) (0.208) (0.147) (0.066) (0.047) (0.306) (0.142) (0.101) (0.045) (0.032)
0.929 0.947 0.953 0.939 0.950 0.936 0.949 0.951 0.938 0.945
(0.457) (0.208) (0.148) (0.066) (0.047) (0.306) (0.143) (0.102) (0.045) (0.032)

Table 2: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n=4
Ap = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.930 0.940  0.945 0.957  0.952 0.888 0.935 0.940  0.958  0.952
(0.485) (0.222) (0.157) (0.070) (0.050) (0.425) (0.204) (0.145) (0.065) (0.046)
0.921 0.944  0.946  0.946 0.948 0.921 0.942 0.943  0.950  0.950
(0.458) (0.209) (0.147) (0.066) (0.047) (0.306) (0.143) (0.101) (0.045) (0.032)
0.936 0.945 0.943  0.953 0.954  0.934  0.945 0.939  0.953  0.946
(0.458) (0.208) (0.147) (0.066) (0.047) (0.307) (0.143) (0.101) (0.045) (0.032)
0.933 0.935 0.948  0.954  0.950 0.933 0.939 0.940  0.947  0.944
(0.455) (0.208) (0.147) (0.066) (0.047) (0.304) (0.142) (0.101) (0.045) (0.032)
0.929 0.947  0.953  0.939 0.950 0.938 0.950 0.952 0.938  0.945
(0.456) (0.208) (0.147) (0.066) (0.047) (0.304) (0.143) (0.101) (0.045) (0.032)



Table 3: Proximal Bootstrap Coverage Frequencies and Interval Lengths for a,, = n=/6
An = 0.1 An = 0.5

n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.913 0.934 0.946 0.958 0.952 0.784 0.902 0.929 0.958 0.953
(0.462) (0.220) (0.157) (0.070) (0.050) (0.349) (0.190) (0.143) (0.065) (0.046)
0.921 0.944 0.946 0.946 0.948 0.919 0.941 0.943 0.951 0.950
(0.457) (0.208) (0.147) (0.066) (0.047) (0.302) (0.142) (0.101) (0.045) (0.032)
0.934 0.946 0.943 0.953 0.954 0.930 0.944 0.939 0.953 0.946
(0.458) (0.208) (0.147) (0.066) (0.047) (0.303) (0.142) (0.101) (0.045) (0.032)
0.933 0.936 0.949 0.953 0.950 0.933 0.937 0.941 0.948 0.945
(0.455) (0.207) (0.147) (0.066) (0.047) (0.300) (0.142) (0.101) (0.045) (0.032)
0.928 0.948 0.954 0.940 0.950 0.939 0.951 0.952 0.938 0.947
(0.456) (0.208) (0.147) (0.066) (0.047) (0.301) (0.142) (0.101) (0.045) (0.032)

We also compare the proximal bootstrap to the standard multinomial bootstrap estimator

B;L“* = arg ;nin {% > (y;“ — x;“/ﬁf + \’\/—% 18 ||1} . Empirical coverage frequencies for equal-

tailed nominal 95% confidence intervals [Bn — df}f 3 Bn — dQTi], where d, is the 7-th percentile

of \/n (B;k* — Bn>, and average interval lengths are reported in table 4. We use 5000

bootstrap iterations and 2000 Monte Carlo simulations. Interestingly, for the case of A\, =
0.1, the standard bootstrap coverage frequencies are close to the nominal level. The surprisingly
good coverage of the standard bootstrap under certain DGPs is also documented in section
6.2 of Chatterjee and Lahiri (2011). However, when we use A, = 0.5, the standard bootstrap
undercovers for the nonzero parameter and overcovers for the zero parameters. Additionally,
the standard bootstrap confidence intervals are on average wider than the proximal bootstrap
confidence intervals.

Table 4: Standard Bootstrap Coverage Frequencies and Interval Lengths

Ap = 0.1 Ay = 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000
0.947 0944 0945 0961 0953 0915 0917 0914 0926  0.920
(0.509) (0.224) (0.158) (0.071) (0.050) (0.474) (0.211) (0.149) (0.067) (0.047)
0.950 0960 0.959 0966 0965 0982 0.98  0.983 0987  0.991
(0.477) (0.211) (0.149) (0.067) (0.047) (0.329) (0.150) (0.107) (0.048) (0.034)
0.963 0961 0961 0969 0966 0987 0.991 0985  0.989  0.990
(0.478) (0.211) (0.149) (0.067) (0.047) (0.328) (0.151) (0.107) (0.048) (0.034)
0.959  0.955 0.964 0967 0964 0980 0982 0986 0.990  0.991
(0.474) (0.211) (0.149) (0.067) (0.047) (0.327) (0.151) (0.107) (0.048) (0.034)
0.958 0967 0966 0954 0965 0987 0.993 0989 0989  0.993
(0.476) (0.211) (0.149) (0.067) (0.047) (0.327) (0.150) (0.107) (0.048) (0.034)
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