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The Proximal Bootstrap for  Finite-Dimensional Regularized 
Estimators†

By Jessie Li*

We propose a computationally efficient 
bootstrap procedure to conduct pointwise 
asymptotically valid inference for a large 
class of   √ 

_
 n   -consistent estimators with non-

standard asymptotic distributions for which 
standard bootstrap procedures are known to 
be inconsistent. The application we consider 
in this paper is  finite-dimensional regular-
ized estimators, such as the lasso (Tibshirani 
1996),   ℓ 1   -norm regularized quantile regression 
(Belloni and Chernozhukov 2011),   ℓ 1   -norm sup-
port vector regression (Zhu et al. 2004, Bai et al. 
2019), and trace regression via nuclear norm reg-
ularization (Koltchinskii, Lounici, and Tsybakov 
2011, Moon and Weidner 2018). Another applica-
tion that will be explored in a subsequent paper is 
constrained optimization problems with a possi-
bly  nonsmooth and  nonconvex objective function 
and a finite number of either estimated or fixed 
inequality and/or equality constraints, and where 
the true parameter can lie on the boundary of the 
constraint set (Andrews 1999, 2000, 2002a).

Motivated by the optimization literature and 
recent contributions in computationally efficient 
bootstrap procedures (e.g., Forneron and  Ng 
2020), our proximal bootstrap estimator can 
be expressed as the solution to a convex opti-
mization problem and efficiently computed 
starting from an initial   √ 

_
 n   -consistent estima-

tor using  built-in and freely available software. 
Additionally, when the sample Hessian is pro-
portional to the identity matrix, the proximal 
bootstrap has a closed-form solution. In the case 
of a smooth sample objective function and no 

regularization, the proximal bootstrap is very 
similar to the  k-step bootstrap (for  k = 1 ) pro-
posed by Davidson and MacKinnon (1999) and 
investigated further by Andrews (2002b).

The consistency of the proximal bootstrap 
relies on a scaling sequence (labeled   α n    in this 
paper) that converges to zero at a slower-than-  √ 

_
 n    

rate. The purpose of the slower-than-  √ 
_

 n    rate 
is to offset the estimation error from the ini-
tial   √ 

_
 n   -consistent estimator. The purpose of   α n    

is similar to that of   ϵ n    in the numerical bootstrap 
in Hong and  Li (2020). However, we want 
to emphasize that the proximal bootstrap is a 
different procedure than the numerical boot-
strap because it solves a different optimization 
problem. The proximal bootstrap works only 
for   √ 

_
 n   -consistent estimators but is typically 

more computationally efficient than the numer-
ical bootstrap.

Section  I reviews the concept of proximal 
mappings from the optimization literature. 
Section II contains all of the theoretical results 
demonstrating consistency of the proximal boot-
strap for  finite-dimensional regularized estima-
tors. Section III concludes. The online Appendix 
contains the proof of consistency; provides the 
specific form of the proximal bootstrap estimator 
for the lasso,   ℓ 1   -norm support vector regression 
(of which   ℓ 1   -norm regularized quantile regres-
sion is a special case), and trace regression via 
nuclear norm regularization; and also contains a 
Monte Carlo simulation for the lasso.

I. Proximal Mappings

Given an Euclidean space    and a func-
tion  r  :  ↦ ℝ , the proximal mapping of  r  is 
the operator given by

 pro x r   (z)  =  arg min  
β∈

    {r (β)  +   1 _ 
2
   ∥ β −  z ∥  2  

2 } 

 for any z ∈  .
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Given a function  r :  ↦ ℝ  and a symmet-
ric positive definite matrix  H , the scaled prox-
imal mapping of  r  is the operator given by, 
for   ∥ β − z∥  H  2   =  (β − z) ′ H (β − z)  ,

 pro x H,r   (z)  =  arg min  
β∈

    {r (β)  +   1 _ 
2
  ∥β −  z∥  H  2  } 

 for any z ∈  .

When  r  is a proper closed and convex func-
tion, then  pro x r   (z)   is a singleton for any  z ∈   
(Beck 2017, theorem 6.3). The same can be said 
for  pro x H,r   (z)   (Lee, Sun, and Saunders 2014).

The proximal map often has a closed-form 
solution. For instance, the proximal mapping of 
the   ℓ 1   -norm is given by

 pro x λ∥⋅ ∥ 1     (z)  =  arg min  
β
    {λ∥ β∥ 1   +   1 _ 

2
   ∥β − z∥  2  

2 }  

  = sign (z) max { | z |  − λ, 0}  

  =   (z − λ)    +  −   (z + λ)    −  ,

where   x   +  ≡ max (x, 0)   and   x   −  ≡ − min (x, 0)  .
Although it is rarely the case that the scaled 

proximal map has a closed-form solution, it can 
still be efficiently computed as the solution to 
a convex optimization problem if  r  is convex. 
Additionally, Friedlander and Goh (2017) show 
that for certain  r  that have a “quadratic support” 
representation (which is satisfied for many func-
tions such as the   ℓ 1    norm, the   ℓ 2    norm, and indi-
cators on polyhedral cones), the scaled proximal 
map can be written as a quadratic optimization 
problem over conic constraints.

II. Proximal Bootstrap

A. Notation

Consider a random sample   X 1  ,  X 2  , … ,  X n    of 
independent draws from a probability measure  P  
on a sample space   . Define the empirical mea-
sure   P n   ≡ (1/n)  ∑ i=1  

n    δ  X i     , where   δ x    is the measure 
that assigns mass  1  at  x  and 0 everywhere else. 
Denote the bootstrap empirical measure by   P  n  

⁎  , 
which can refer to the multinomial, wild, or other 
exchangeable bootstraps. Weak convergence is 
defined in the sense of Kosorok (2007):   Z n   ↝ Z  
in the metric space   (, d)   if and only if 
  sup f∈B L 1     | E   ⁎  f ( Z n  )  − Ef (Z) | → 0 , where  B L 1    is 

the space of functions  f  :  ↦ ℝ  with Lipschitz 
norm bounded by  1 . Conditional weak con-
vergence is also defined in the sense of 
Kosorok (2007):   Z n     ↝  


     Z  in the metric space 

  (, d)   if and only if   sup f∈B L 1    | E    f ( Z n  )  − 
Ef (Z) |  →   p

   0  and   E    f   ( Z n  )    ⁎  −  E    f   ( Z n  )  ⁎    →   p
   0   

for all  f ∈ B L 1   , where  B L 1    is the space 
of functions  f :  ↦ ℝ  with Lipschitz 
norm bounded by  1 ,   E     denotes expec-
tation with respect to the bootstrap 
weights    conditional on the data, and  f   ( Z n  )    ⁎   
and  f   ( Z n  )  ⁎    denote measurable majorants and 
minorants with respect to the joint data (including 
the weights   ). Let   X  n  

⁎  =  o  P  ⁎   (1)   if the law of   X  n  
⁎   

is governed by   P n    and if   P n   (| X  n  
⁎  |  > ϵ)  =  o P   (1)   

for all  ϵ > 0 . Also define   M  n  
⁎  =  O  p  

⁎  (1)   (hence 
also   O p   (1)  ) if   lim m→∞   lim  sup n→∞   P ( P n   ( M  n  

⁎  
> m)  > ϵ)  → 0 ,  ∀ ϵ > 0 .

B.  Finite-Dimensional Regularized Estimators

We first consider   √ 
_

 n   -consistent estimators    β ˆ   n    
that minimize an objective function that can be 
written as the sum of two functions: the random, 
possibly  nonconvex,  nonsmooth loss function 
   Q ˆ   n   (β)   and the penalty function  ( λ n  / √ 

_
 n  ) r (β)  , 

where  r  :   ℝ   d  ↦ ℝ  is a typically convex but 
 nonsmooth deterministic function, and  ( λ n  / √ 

_
 n  ) 

= o (1)  . We assume  d  is fixed. Formally,

    β ˆ   n   =  arg min  
β∈ ℝ   d 

    {  Q ˆ   n   (β)  +   
 λ n   _  √ 
_

 n    r (β) }  .

We propose a proximal bootstrap estimator    β ˆ    n  
⁎   

that can be efficiently computed using standard, 
 built-in optimization routines starting from 
an initial   √ 

_
 n   -consistent estimator   √ 

_
 n   (  β ¯   n   − 

 β 0  )  =  O p   (1)  , where   β 0   =  arg min β∈ ℝ   d   Q (β)  . 
One possible    β ¯   n    is    β ˆ   n   , but sometimes there are 
more computationally efficient estimators. For 
some   α n   → 0  and   α n    √ 

_
 n   → ∞ ,

   β ˆ    n  
⁎  = pro x   H ¯   n  , α n   λ n  r (⋅)    (  β ¯   n   −  α n    √ 

_
 n   

 ×   H ¯    n  −1  (  l ̂    n  
⁎  (  β ¯   n  )  −   l ̂   n   (  β ¯   n  ) ) ) . 

Here,    l ̂   n   (  β ¯   n  )   is a consistent estimate of  l ( β 0  )   
= ∂ Q ( β 0  ) /∂ β , where  Q (β)   is a lower semi-
continuous function that is twice differentiable 
at   β 0   , and   sup β∈K    |   Q ˆ   n   (β)  − Q (β) |  =  o p   (1)   
for every compact subset  K  of   ℝ   d  . In the case 
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where    Q ˆ   n   (β)   is differentiable,    l ̂   n   (β)   can simply 
be the Jacobian of    Q ˆ   n   (β)  . More generally, to 
handle  nondifferentiable    Q ˆ   n   (β)  ,    l ̂   n   (β)   is a sub-
gradient of    Q ˆ   n   (β)  . Note,    l ̂    n  

⁎  (  β ¯   n  )   is a bootstrap 
analog of    l ̂   n   (  β ¯   n  )   using the multinomial, wild, or 
other exchangeable bootstraps;    H ¯   n    is a consis-
tent, symmetric, positive definite estimate of the 
population Hessian   H 0   =  ∂   2 Q ( β 0  ) /∂β∂  β ′   .

If    H ¯   n   = (1/c) I d    for some constant  c , then    β ˆ    n  
⁎   

reduces down to an unscaled proximal map, 
which often has a closed-form solution:

   β ˆ    n  
⁎  

= pro x   1 _ c   I d  , α n   λ n  r (⋅)    (  β ¯   n   −  α n    √ 
_

 n   c I d   (   l ̂    n  
⁎  (  β ¯   n  )   −     l ̂   n   (  β ¯   n  ) ) )  

 =  arg min  
β
    { α n    λ n   r (β)  

 +   1 _ 
2c

    ∥β −   β ¯   n   

 + c α n    √ 
_

 n   (   l ̂    n  
⁎  (  β ¯   n  )  −    l ̂   n   (  β ¯   n  ) ) ∥   

2
 }  

 =  arg min  
β
    {c α n    λ n   r (β) 

 +   1 _ 
2
    ∥β −   β ¯   n   

 + c α n    √ 
_

 n   (   l ̂    n  
⁎  (  β ¯   n  )  −    l ̂   n   (  β ¯   n  ) ) ∥   

2
 }  

 = pro x c α n   λ n  r (⋅)    (  β ¯   n   − c α n    √ 
_

 n   (   l ̂    n  
⁎  (  β ¯   n  )  −    l ̂   n   (  β ¯   n  ) ) )  .

Even if there is no closed form for    β ˆ    n  
⁎  , it is still 

the solution to a convex optimization problem 
assuming  r (β)   is convex:

   β ˆ    n  
⁎  =  arg min  

β
    { α n    λ n   r (β)  

 +   1 _ 
2
   ∥β −   β ¯   n   

 +   α n    √ 
_

 n     H ¯    n  −1  (  l ̂    n  
⁎  (  β ¯   n  )  

 −   l ̂   n   (  β ¯   n  ) ) ∥    H ¯   n    
2  }  

  =  arg min  
β
    { α n    λ n   r (β)  

  +  α n    √ 
_

 n    (  l ̂    n  
⁎  (  β ¯   n  ) −   l ̂   n   (  β ¯   n  ) )  ′  

  ×  (β −   β ¯   n  )  +   1 _ 
2
  ∥β −    β ¯   n  ∥    H ¯   n    

2  }  .

Furthermore, for certain types of  r (β)  , we can 
use proposition 4.1 in Friedlander and  Goh 
(2017) to efficiently compute the proximal 

bootstrap by solving a quadratic optimization 
problem over conic constraints. For example, if 
 r (β)  =  ∥β∥ 1   ,

   β ˆ    n  
⁎  =   H ¯    n  −1  (  H ¯   n   (  β ¯   n   −  α n    √ 

_
 n     H ¯    n  −1 

 ×  (  l ̂    n  
⁎  (  β ¯   n  )  −   l ̂   n   (  β ¯   n  ) ) )  

 −  α n    λ n    γ   ⁎ ) , 

  γ   ⁎  =   arg min  
γ∈ {γ: ∥γ∥ ∞  ≤1} 

    
 α n    λ n   _ 

2
    γ ′    H ¯    n  −1  γ 

 −   (  β ¯   n   −  α n    √ 
_

 n     H ¯    n  −1 

 ×  (  l ̂    n  
⁎  (  β ¯   n  )  −   l ̂   n   (  β ¯   n  ) ) )  ′  γ .

Remark 1: In the case of  r (β)  = 0 , 

smooth    Q ˆ   n   (β)  , and    β ¯   n    that satisfies    l ̂   n   (  β ¯   n  )  = 0 , 
the proximal bootstrap is similar to the  k-step 
bootstrap (for  k = 1 ) proposed by Davidson 
and MacKinnon (1999) and investigated further 
by Andrews (2002b), except with an additional 
scaling factor of   α n    √ 

_
 n   :

    β ˆ    n  
⁎  =   β ¯   n   −  α n    √ 

_
 n     H ¯    n  −1  (  l ̂    n  

⁎  (  β ¯   n  )  −   l ̂   n   (  β ¯   n  ) )  

 =   β ¯   n   −  α n    √ 
_

 n     H ¯    n  −1    l ̂    n  
⁎  (  β ¯   n  )  .

If   α n   = 1 /  √ 
_

 n    in this case, then the proximal 
bootstrap coincides with the  one-step bootstrap.

C. Assumptions

The first assumption is needed to show con-
sistency of    β ˆ   n    for   β 0   .

ASSUMPTION 1: (i)    β ˆ   n   =  arg min β∈ 핉   d    {  Q ˆ   n   (β)  
+ ( λ n  / √ 

_
 n  ) r (β) }   is uniformly tight. (ii)   β 0   

=  arg min β∈ 핉   d   Q (β)   is unique, where  Q (β)   is 
a lower semicontinuous function that is twice 
differentiable at   β 0    and   sup β∈K   |  Q ˆ   n   (β)  − Q (β) |  
=  o p   (1)   for every compact subset  K  of   핉   d  .

The next assumption states that the objec-
tive function admits a uniform local quadratic 
approximation around   √ 

_
 n    neighborhoods of   β 0   . 

It is needed to derive the asymptotic distribution 
of   √ 

_
 n   (  β ˆ   n   −  β 0  )  .
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ASSUMPTION 2: There exists a symmetric, 
positive definite   H 0    and   √ 

_
 n   (  l ̂   n   ( β 0  )  − l ( β 0  ) )   

=  O p   (1)   such that for any   δ n   → 0 ,

   sup  
∥h∥≤ √ 

_
 n   δ n  

   | (n  Q ˆ   n   ( β 0   +   h _  √ 
_

 n    )  − n  Q ˆ   n   ( β 0  )  

 − h′  √ 
_

 n   (  l ̂   n   ( β 0  )  − l ( β 0  ) )  

 −   1 _ 2  h′ H 0  h) /(1 +  ∥h∥   2 )|  
  =  o p   (1)  .

The next assumption is needed to show 
that   √ 

_
 n   (  l ̂   n   ( β 0  )  − l ( β 0  ) )   and   √ 

_
 n   (  l ̂    n  

⁎  ( β 0  )  −  
  l ̂   n   ( β 0  ) )   have the same asymptotic distribution.

ASSUMPTION 3: There exists a func-
tion  g  :  ↦ 핉  indexed by a parame-
ter  β ∈  핉   d   such that for any  β ∈  핉   d  ,   √ 

_
 n   

× (  l ̂   n   (β)  − l (β) )  =  √ 
_

 n   ( P n   − P) g ( ⋅ , β)  +  o p  (1 ) 
and   √ 

_
 n   (  l ̂    n  

⁎  (β)  −   l ̂   n   (β) )  =  √ 
_

 n   ( P  n  
⁎  −  P n  ) g ( ⋅ , β)  

+  o  p  
⁎  (1)  , where   lim n→∞   P∥g ( ⋅ ,  β 0  )   ∥   2   

× 1 (∥g ( ⋅ ,  β 0  ) ∥ > ϵ  √ 
_

 n  )  = 0  for each  ϵ > 0 .

The next assumption is needed to show sto-
chastic equicontinuity of   √ 

_
 n   (  l ̂   n   (β)  − l (β) )    

and bootstrap equicontinuity results, which 
will be used to show   √ 

_
 n   (  l ̂    n  

⁎  (  β ¯   n  )  −   l ̂   n   (  β ¯   n  ) )   and 
  √ 

_
 n   (  l ̂    n  

⁎  ( β 0  )  −   l ̂   n   ( β 0  ) )   have the same asymp-
totic distribution.

ASSUMPTION 4: (i)    R   ≡  {g ( ⋅ , β)  −  
g ( ⋅ ,  β 0  )   :  ∥β −  β 0  ∥ ≤ R}   is a Donsker class for 
some  R > 0 , and  P   (g ( ⋅ , β)  − g ( ⋅ ,  β 0  ) )    2  → 0  

for  β →  β 0   . (ii)   lim λ→∞    lim sup n→∞    sup t≥λ    t   2   

× P { sup g (⋅,β) ∈   δ n    
  ∥  

g ( ⋅ , β)  − g ( ⋅ ,  β 0  ) 
  ____________  

1 +  √ 
_

 n   ∥β −  β 0  ∥
  ∥ > t}  = 0  

for any   δ n   → 0 .

Note, (i) will imply stochastic equicontinuity, 
which in combination with the envelope func-
tion integrability condition in (ii) will imply 
bootstrap equicontinuity. A sufficient condition 

for (ii) is   sup g (⋅,β) ∈   δ n    
   ∥  

g ( ⋅ , β)  − g ( ⋅ ,  β 0  ) 
  ____________  

1 +  √ 
_

 n   ∥β −  β 0  ∥
  ∥ ≤ C  for 

some constant  C .
The next assumption states that  r (β)   is 

closed, convex, and Hadamard directionally 
 differentiable at   β 0   . It is needed to derive the 
asymptotic distribution of   √ 

_
 n   (  β ˆ   n   −  β 0  )  .

ASSUMPTION 5:  r  :   ℝ   d  → ℝ  is a proper closed, 
convex function, and there is a continuous 
map   r   β 0    ′    :   핉   d  → 핉  such that for all   h n   → h ∈  핉   d  ,  

  lim  α n  ↓0   |  r ( β 0   +  α n    h n  )  − r ( β 0  ) 
  ______________  α n     −  r   β 0    ′   (h) |  = 0 .

The next theorem demonstrates consistency 
of the proximal bootstrap by showing that the 

limiting distribution of  (  β ˆ    n  
⁎  −   β ˆ   n  )/ α n    coincides 

with the limiting distribution of   √ 
_

 n   (  β ˆ   n   −  β 0  )  .

THEOREM 1: Suppose Assumptions  1–5 are  
satisfied and   λ n   →  λ 0   ∈  [0, ∞)  . Then for any 
   β ¯   n    such that   √ 

_
 n   (  β ¯   n   −  β 0  )  =  O p   (1)  , for any 

   H ¯   n    that is a consistent, symmetric, positive  
definite estimate of   H 0   , and for any sequence 
  α n    such that   α n   → 0  and   √ 

_
 n   α n   → ∞ ,  

  √ 
_

 n   (  β ˆ   n   −  β 0  )  ↝   and   (  β ˆ    n  
⁎  −   β ˆ   n  ) / α n    ↝  


  


     ,  

where    =  arg min h∈ 핉   d    { λ 0    r   β 0    ′   (h)  +  h ′    W 0   + 
(1/2) h ′    H 0   h}    and    W 0   ∼ N (0, P (g ( ⋅ ,  β 0  )  − 
Pg ( ⋅ ,  β 0  ) )   (g ( ⋅ ,  β 0  )  − Pg ( ⋅ ,  β 0  ) )  ′  )  .

III. Conclusion

We have proposed a computationally effi-
cient proximal bootstrap estimator that con-
sistently estimates the limiting distribution of 
  √ 

_
 n   -consistent estimators for which the stan-

dard bootstrap is known to be inconsistent. 
This paper has considered the application to 
 finite-dimensional regularized estimators; an 
application to constrained estimators will be 
explored in a subsequent paper.
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1 Examples of Regularized Estimators

1.1 LASSO

β̂n “ arg min
β

#

1

2n

n
ÿ

i“1

pyi ´ x
1
iβq

2
`
λn
?
n
}β}1

+

r1β0 phq “
p
ÿ

j“1

phjsign pβ0jq 1 pβ0j ‰ 0q ` |hj| 1 pβ0j “ 0qq

β̂˚n “ arg min
β

αnλn }β}1 ` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

l pβ0q “ ´E rxi pyi ´ x
1
iβqs , l̂n

`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

xi
`

yi ´ x
1
iβ̄n

˘

H0 “ E rxix
1
is , H̄n “

1

n

n
ÿ

i“1

xix
1
i

Examples of l̂˚n
`

β̄n
˘

include the multinomial and wild bootstrap analogs of l̂n
`

β̄n
˘

:

l̂˚n
`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

x˚i

´

y˚i ´ x
˚1

i β̄n

¯

, l̂˚n
`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

`

ξi ´ ξ̄
˘

xi

´

yi ´ x
1

iβ̄n

¯

where ξi are i.i.d. variables with variance 1 and finite 3rd moment and ξ̄ “ 1
n

řn
i“1 ξi.

If H̄n “
1
c
Id, β̂˚n has a closed form solution:

β̂˚n “ proxcαnλn}¨}1

´

β̄n ´ cαn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯¯

“

´

β̄n ´ cαn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

´ cαnλn

¯`

´

´

β̄n ´ cαn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

` cαnλn

¯´

where x` ” maxpx, 0q and x´ ” ´minpx, 0q.

1



1.2 `1-norm support vector regression

The `1-norm support vector regression (SVR) estimator of Zhu et al. (2004) is similar to the
`1 penalized quantile regression estimator of Belloni and Chernozhukov (2011):

β̂n “ arg min

#

1

n

n
ÿ

i“1

pρτ pyi ´ x
1
iβq ´ κq

`
`
λn
?
n
}β}1

+

The objective uses a relaxed version of the check function:

pρτ pyi ´ x
1
iβq ´ κq

`

“ ptp1´ τq 1 pyi ´ x
1
iβ ď 0q ` τ1 pyi ´ x

1
iβ ą 0qu |yi ´ x

1
iβ| ´ κq

`

“

#

p´ p1´ τq pyi ´ x
1
iβq ´ κq 1 p´ p1´ τq pyi ´ x

1
iβq ´ κ ą 0q , yi ´ x

1
iβ ď 0

pτ pyi ´ x
1
iβq ´ κq 1 pτ pyi ´ x

1
iβq ´ κ ą 0q , yi ´ x

1
iβ ą 0

“

#

p´ p1´ τq pyi ´ x
1
iβq ´ κq 1

`

yi ă x1iβ ´
κ

1´τ

˘

, yi ´ x
1
iβ ď 0

pτ pyi ´ x
1
iβq ´ κq 1

`

yi ą x1iβ `
κ
τ

˘

, yi ´ x
1
iβ ą 0

“ pτ pyi ´ x
1
iβq ´ κq 1

´

yi ą x1iβ `
κ

τ

¯

´ pp1´ τq pyi ´ x
1
iβq ` κq 1

ˆ

yi ă x1iβ ´
κ

1´ τ

˙

The proximal bootstrap estimator is

β̂˚n “ arg min
β

αnλn }β}1 ` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

l̂n
`

β̄n
˘

is a consistent estimate of l pβ0q using β̄n:

l pβ0q “ ´E

„

xi

ˆ

τ1
´

yi ą x1iβ0 `
κ

τ

¯

´ p1´ τq 1

ˆ

yi ă x1iβ0 ´
κ

1´ τ

˙˙

l̂n
`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

xi

ˆ

τ1
´

yi ą x1iβ̄n `
κ

τ

¯

´ p1´ τq 1

ˆ

yi ă x1iβ̄n ´
κ

1´ τ

˙˙

The population Hessian and its consistent estimate using β̄n are given by

H0 “ E

„

xix
1
i

ˆ

τfy|x

´

x1iβ0 `
κ

τ

¯

` p1´ τq fy|x

ˆ

x1iβ0 ´
κ

1´ τ

˙˙

H̄n “
1

n

n
ÿ

i“1

xix
1
i

ˆ

τ f̂y|x

´

x1iβ̄n `
κ

τ

¯

` p1´ τq f̂y|x

ˆ

x1iβ̄n ´
κ

1´ τ

˙˙

An example of f̂y|x pyq is 1
n

řn
j“1Kh pyq, where Kh pyq “

1
h
K py{hq and K puq is a kernel

function that is symmetric around 0 and integrates to 1.

1.3 Trace Regression via Nuclear Norm Regularization

Θ̂n “ arg min
ΘPRd1ˆd2

#

1

n

n
ÿ

i“1

pyi ´ tr pΘ
1Xiqq ` λn }Θ}˚

+

2



where }Θ}
˚
“
řd1^d2
j“1 σj pΘq is the nuclear norm of Θ, and σj pΘq is the jth largest singular

value of Θ.

Θ̂˚
n “ arg min

Θ
αnλn }Θ}˚ ` αn

?
n
´

l̂˚n
`

Θ̄n

˘

´ l̂n
`

Θ̄n

˘

¯1
`

Θ´ Θ̄n

˘

`
1

2

›

›Θ´ Θ̄n

›

›

2

H̄n

l̂n
`

Θ̄n

˘

“ ´
1

n

n
ÿ

i“1

Xi

`

yi ´ tr
`

Θ̄1
nXi

˘˘

, H̄n “
1

n

n
ÿ

i“1

XiX
1
i

r1Θ0
phq “

d1^d2
ÿ

j“1

phj1 pσj pΘ0q ‰ 0q ` |hj| 1 pσj pΘ0q “ 0qq

In the case of H̄n “
1
c
Id1 , the proximal bootstrap has a closed form:

Θ̂˚
n “ proxcαnλn}¨}˚

´

Θ̄n ´ cαn
?
n
´

l̂˚n
`

Θ̄n

˘

´ l̂n
`

Θ̄n

˘

¯¯

“ UΣcαnλnV
T

where Σcαnλn “ diag tmax pΣ1 ´ cαnλn, 0q ,max pΣ2 ´ cαnλn, 0q , ...,max pΣd1^d2 ´ cαnλn, 0qu,
and for j “ 1...d1 ^ d2, Σj are the singular values of Θ̄n ´ cαn

?
n
´

l̂˚n
`

Θ̄n

˘

´ l̂n
`

Θ̄n

˘

¯

.

2 Proof of Theorem 1
Assumption 1 implies that the conditions of part 2 of Corollary 3.2.3 of van der Vaart and
Wellner (1996) are satisfied, and therefore β̂n

p
Ñ β0 “ arg min

βPRd

Q pβq. To derive its asymptotic

distribution, use the centered and scaled parameter h “
?
n pβ ´ β0q:

?
n
´

β̂n ´ β0

¯

“ arg min
h

"

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q ` λn
?
nr

ˆ

β0 `
h
?
n

˙*

“ arg min
h

$

&

%

h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h` λn

¨

˝

r
´

β0 `
h?
n

¯

´ r pβ0q

1{
?
n

˛

‚` opp1q

,

.

-

ù arg min
h

"

λ0r
1
β0
phq ` h1W0 `

1

2
h1H0h

*

The second line is due to the uniform in h local quadratic expansion of nQ̂n

´

β0 `
h?
n

¯

´

nQ̂n pβ0q, which follows from assumption 2. The last line follows from the following arguments.
Assumption 3 implies the Lindeberg Condition is satisfied and

?
n pPn ´ P q g p¨, β0q ù W0.

Assumption 5 implies
r
´

β0`
h?
n

¯

´rpβ0q

1{
?
n

Ñ r1β0 phq for each h P Rd and that r1β0 phq is a convex

function of h. Since h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

` 1
2
h1H0h ` λn

ˆ

r
´

β0`
h?
n

¯

´rpβ0q

1{
?
n

˙

is a convex

function of h , pointwise convergence implies uniform convergence over compact sets K Ă Rd

(Pollard (1991)). Therefore,

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q ` λn
?
nr

ˆ

β0 `
h
?
n

˙

´ λn
?
nr pβ0q ù h1W0 `

1

2
h1H0h` λ0r

1
β0
phq

3



as a process indexed by h in the space of bounded functions `8 pKq for any compact
K Ă Rd. Convexity implies λ0r

1
β0
phq ` h1W0 `

1
2
h1H0h has a unique minimum, so by the

argmin continuous mapping theorem (Theorem 3.2.2 in van der Vaart and Wellner (1996)),
?
n
´

β̂n ´ β0

¯

ù J .

Now we show β̂˚n
p
Ñ β0. Since αn Ñ 0 and αnλn Ñ 0 imply αnλnr ph` β0q “ op1q and

αn
?
nH̄n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“ o˚pp1q,

β̂˚n ´ β0 “ arg min
h

"

αnλnr ph` β0q `
1

2

›

›

›
h` β0 ´ β̄n ` αn

?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯
›

›

›

2

H̄n

*

“ arg min
h

"

1

2
h1H0h` h

1H0

`

β0 ´ β̄n
˘

`
1

2

›

›β0 ´ β̄n
›

›

2

H0

*

` opp1q

“ β̄n ´ β0 ` opp1q “ opp1q

The second line follows from convexity of the proximal bootstrap objective function, which

implies the difference between αnλnr ph` β0q`
1
2

›

›

›
h` β0 ´ β̄n ` αn

?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯›

›

›

2

H̄n

and 1
2

›

›h` β0 ´ β̄n
›

›

2

H0
“ 1

2
h1H0h ` h1H0

`

β0 ´ β̄n
˘

` 1
2

›

›β0 ´ β̄n
›

›

2

H0
converges uniformly in

probability to zero over any compact subset of Rd.
To derive β̂˚n’s asymptotic distribution, first note that because

?
n
´

β̂n ´ β0

¯

“ Opp1q

and
?
nαn Ñ 8,

β̂˚n ´ β̂n
αn

“
β̂˚n ´ β0

αn
´

?
n
´

β̂n ´ β0

¯

?
nαn

“
β̂˚n ´ β0

αn
` opp1q

It therefore suffices to show that β̂˚n´β0
αn

P
ù
W

J . To do this, use the centered and scaled
parameter h “ pβ ´ β0q {αn:

β̂˚n ´ β0

αn
“ arg min

h

"

αnλnr pβ0 ` αnhq ` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

H̄n

*

“ arg min
h

#

λn

ˆ

r pβ0 ` αnhq ´ r pβ0q

αn

˙

`
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

“ arg min
h

"

λn

ˆ

r pβ0 ` αnhq ´ r pβ0q

αn

˙

` h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh` o

˚
p p1q

*

P
ù
W

arg min
h

"

λ0r
1
β0
phq ` h1W0 `

1

2
h1H0h

*

We have used β0´β̄n
αn

“

?
npβ0´β̄nq
?
nαn

“ opp1q, H̄n
p
Ñ H0, the assumption of directional

differentiability of r pβq at β0, and the following arguments. Assumption 4(i) says GR ”
tg p¨, βq ´ g p¨, β0q : }β ´ β0} ď Ru is a Donsker class for someR ą 0, and P pg p¨, βq ´ g p¨, β0qq

2
Ñ

0 for β Ñ β0. By Lemma 3.3.5 of van der Vaart and Wellner (1996),
?
n pPn ´ P q g p¨, βq is

stochastically equicontinuous, which implies
›

›

?
n pPn ´ P q

`

g
`

¨, β̄n
˘

´ g p¨, β0q
˘
›

› “ op
`

1`
?
n
›

›β̄n ´ β0

›

›

˘

“ opp1q

4



Stochastic equicontinuity and the envelope integrability condition in assumption 4(ii) imply
that the assumptions of Lemma 4.2 in Wellner and Zhan (1996) are satisfied. Therefore,
?
n pP ˚n ´ Pnq g p¨, βq is bootstrap equicontinuous, which implies

›

›

?
n pP ˚n ´ Pnq

`

g
`

¨, β̄n
˘

´ g p¨, β0q
˘
›

› “ o˚p
`

1`
?
n
›

›β̄n ´ β0

›

›

˘

“ o˚pp1q

Therefore, h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“ h1
?
n pP ˚n ´ Pnq g p¨, β0q`h

1
?
n pP ˚n ´ Pnq

`

g
`

¨, β̄n
˘

´ g p¨, β0q
˘

`

o˚p p1q
P

ù
W

h1W0. By convexity, pointwise convergence implies uniform convergence over

compact sets K Ă Rd, so

λn

ˆ

r pβ0 ` αnhq ´ r pβ0q

αn

˙

` h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

P
ù
W

λ0r
1
β0
phq ` h1W0 `

1

2
h1H0h

as a process indexed by h in the space of bounded functions `8 pKq for any compact K Ă Rd.
β̂˚n´β0
αn

P
ù
W

J follows from the bootstrap version of the argmin continuous mapping theorem
(see Lemma 14.2 in Hong and Li (2020)). �

Monte Carlo Simulation for Finite-dimensional Lasso
We consider the following data generating process:

yi “ x1iβ0 ` εi, β0 “
`

1 0 0 0 0
˘1
, xi „ N p0, I5 ` 0.5 pιι1 ´ I5qq , εi „ N p0, 1q

We compute the Lasso estimator β̂n “ arg min
β

!

1
2n

řn
i“1 pyi ´ x

1
iβq

2
` λn?

n
}β}1

)

using the

CVX modeling software in Matlab developed by Grant and Boyd (2009). The proximal

bootstrap estimator β̂˚n “ arg min
β

αnλn }β}1`αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`1
2

›

›β ´ β̄n
›

›

2

H̄n
,

for β̄n “ β̂n, H̄n “
1
n

řn
i“1 xix

1
i, l̂n

`

β̄n
˘

“ ´ 1
n

řn
i“1 xi

`

yi ´ x
1
iβ̄n

˘

, and l̂˚n
`

β̄n
˘

“ ´ 1
n

řn
i“1 x

˚
i

`

y˚i ´ x
˚1

i β̄n
˘

,
is computed using the fminunc Matlab function so that we can run the code in parallel (the
current version of CVX does not support parallel for loops). We also tried using the fmincon
Matlab function, and the results were the same.

We consider five different sample sizes n P t100, 500, 1000, 5000, 10000u, three different
αn’s for each n: αn P

 

n´1{3, n´1{4, n´1{6
(

, and two choices of λn P t0.1, 0.5u. We use 5000
bootstrap iterations and 2000 Monte Carlo simulations. Empirical coverage frequencies for
equal-tailed nominal 95% confidence intervals

”

β̂n ´
c97.5?
n
, β̂n ´

c2.5?
n

ı

, where cτ is the τ -th

percentile of β̂˚n´β̂n
αn

, and average interval lengths are reported in tables 1-3. Although the
proximal bootstrap undercovers for smaller sample sizes, it achieves coverage very close to
95% for sufficiently large n.
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Table 1: Proximal Bootstrap Coverage Frequencies and Interval Lengths for αn “ n´1{3

λn “ 0.1 λn “ 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000

0.940 0.940 0.945 0.957 0.951 0.933 0.933 0.938 0.958 0.950
p0.489q p0.222q p0.157q p0.070q p0.050q p0.450q p0.204q p0.145q p0.065q p0.046q
0.922 0.944 0.946 0.946 0.947 0.919 0.940 0.942 0.950 0.949
p0.458q p0.209q p0.147q p0.066q p0.047q p0.308q p0.143q p0.101q p0.045q p0.032q
0.935 0.945 0.942 0.953 0.954 0.934 0.944 0.939 0.953 0.945
p0.459q p0.208q p0.147q p0.066q p0.047q p0.308q p0.143q p0.101q p0.046q p0.032q
0.933 0.935 0.948 0.953 0.949 0.936 0.938 0.940 0.945 0.945
p0.456q p0.208q p0.147q p0.066q p0.047q p0.306q p0.142q p0.101q p0.045q p0.032q
0.929 0.947 0.953 0.939 0.950 0.936 0.949 0.951 0.938 0.945
p0.457q p0.208q p0.148q p0.066q p0.047q p0.306q p0.143q p0.102q p0.045q p0.032q

Table 2: Proximal Bootstrap Coverage Frequencies and Interval Lengths for αn “ n´1{4

λn “ 0.1 λn “ 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000

0.930 0.940 0.945 0.957 0.952 0.888 0.935 0.940 0.958 0.952
p0.485q p0.222q p0.157q p0.070q p0.050q p0.425q p0.204q p0.145q p0.065q p0.046q
0.921 0.944 0.946 0.946 0.948 0.921 0.942 0.943 0.950 0.950
p0.458q p0.209q p0.147q p0.066q p0.047q p0.306q p0.143q p0.101q p0.045q p0.032q
0.936 0.945 0.943 0.953 0.954 0.934 0.945 0.939 0.953 0.946
p0.458q p0.208q p0.147q p0.066q p0.047q p0.307q p0.143q p0.101q p0.045q p0.032q
0.933 0.935 0.948 0.954 0.950 0.933 0.939 0.940 0.947 0.944
p0.455q p0.208q p0.147q p0.066q p0.047q p0.304q p0.142q p0.101q p0.045q p0.032q
0.929 0.947 0.953 0.939 0.950 0.938 0.950 0.952 0.938 0.945
p0.456q p0.208q p0.147q p0.066q p0.047q p0.304q p0.143q p0.101q p0.045q p0.032q
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Table 3: Proximal Bootstrap Coverage Frequencies and Interval Lengths for αn “ n´1{6

λn “ 0.1 λn “ 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000

0.913 0.934 0.946 0.958 0.952 0.784 0.902 0.929 0.958 0.953
p0.462q p0.220q p0.157q p0.070q p0.050q p0.349q p0.190q p0.143q p0.065q p0.046q
0.921 0.944 0.946 0.946 0.948 0.919 0.941 0.943 0.951 0.950
p0.457q p0.208q p0.147q p0.066q p0.047q p0.302q p0.142q p0.101q p0.045q p0.032q
0.934 0.946 0.943 0.953 0.954 0.930 0.944 0.939 0.953 0.946
p0.458q p0.208q p0.147q p0.066q p0.047q p0.303q p0.142q p0.101q p0.045q p0.032q
0.933 0.936 0.949 0.953 0.950 0.933 0.937 0.941 0.948 0.945
p0.455q p0.207q p0.147q p0.066q p0.047q p0.300q p0.142q p0.101q p0.045q p0.032q
0.928 0.948 0.954 0.940 0.950 0.939 0.951 0.952 0.938 0.947
p0.456q p0.208q p0.147q p0.066q p0.047q p0.301q p0.142q p0.101q p0.045q p0.032q

We also compare the proximal bootstrap to the standard multinomial bootstrap estimator
β̂˚˚n “ arg min

β

!

1
2n

řn
i“1

`

y˚i ´ x
˚1

i β
˘2
` λn?

n
}β}1

)

. Empirical coverage frequencies for equal-

tailed nominal 95% confidence intervals
”

β̂n ´
d97.5?
n
, β̂n ´

d2.5?
n

ı

, where dτ is the τ -th percentile

of
?
n
´

β̂˚˚n ´ β̂n

¯

, and average interval lengths are reported in table 4. We use 5000

bootstrap iterations and 2000 Monte Carlo simulations. Interestingly, for the case of λn “
0.1, the standard bootstrap coverage frequencies are close to the nominal level. The surprisingly
good coverage of the standard bootstrap under certain DGPs is also documented in section
6.2 of Chatterjee and Lahiri (2011). However, when we use λn “ 0.5, the standard bootstrap
undercovers for the nonzero parameter and overcovers for the zero parameters. Additionally,
the standard bootstrap confidence intervals are on average wider than the proximal bootstrap
confidence intervals.

Table 4: Standard Bootstrap Coverage Frequencies and Interval Lengths

λn “ 0.1 λn “ 0.5
n 100 500 1000 5000 10000 100 500 1000 5000 10000

0.947 0.944 0.945 0.961 0.953 0.915 0.917 0.914 0.926 0.920
p0.509q p0.224q p0.158q p0.071q p0.050q p0.474q p0.211q p0.149q p0.067q p0.047q
0.950 0.960 0.959 0.966 0.965 0.982 0.986 0.983 0.987 0.991
p0.477q p0.211q p0.149q p0.067q p0.047q p0.329q p0.150q p0.107q p0.048q p0.034q
0.963 0.961 0.961 0.969 0.966 0.987 0.991 0.985 0.989 0.990
p0.478q p0.211q p0.149q p0.067q p0.047q p0.328q p0.151q p0.107q p0.048q p0.034q
0.959 0.955 0.964 0.967 0.964 0.989 0.982 0.986 0.990 0.991
p0.474q p0.211q p0.149q p0.067q p0.047q p0.327q p0.151q p0.107q p0.048q p0.034q
0.958 0.967 0.966 0.954 0.965 0.987 0.993 0.989 0.989 0.993
p0.476q p0.211q p0.149q p0.067q p0.047q p0.327q p0.150q p0.107q p0.048q p0.034q
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