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We demonstrate how to use the proximal bootstrap to conduct asymptotically valid inference
for y/n-consistent estimators defined as the solution to a constrained optimization problem with
a possibly nonsmooth and nonconvex sample objective function and a constraint set defined by
smooth equalities and/or inequalities which can be estimated from the data. We allow for the
inequalities to drift towards equality as the sample size goes to infinity, and show how to use test-
inversion to construct a uniformly asymptotically valid confidence set for the parameters. The
proximal bootstrap estimator is typically much faster to compute than alternative bootstrap
procedures because it can be written as the solution to a quadratic programming problem.
Monte Carlo simulations illustrate the correct coverage of the proximal bootstrap in a boundary
constrained maximum likelihood model, a boundary constrained nonsmooth GMM model, and
a conditional logit model with estimated capacity constraints.
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1 Introduction

This paper considers using the proximal bootstrap estimator proposed in Li (2021) to conduct
asymptotically valid inference for a large class of y/n-consistent estimators with possibly non-

standard asymptotic distributions for which standard bootstrap procedures fail. The application
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which we will focus on in this paper is estimators defined by the solution to a constrained opti-
mization problem with smooth inequality and/or equality constraints and a possibly nonsmooth
and nonconvex sample objective function. A well-known example of a constrained estimator with
a nonstandard distribution is the constrained MLE estimator where the true parameter lies on the
boundary of the constraint set. It is well known (see e.g. Andrews (2000)) that applying a standard
bootstrap procedure to estimate the distribution of the constrained estimator is inconsistent when
the true parameters (g lie on the boundary of the constraint set C. An example of an inconsistent
standard bootstrap procedure is the nonparametric bootstrap, which involves resampling the data
with replacement, computing the constrained estimator on the resampled data sets, and then use
the percentiles of these estimators to form confidence intervals.

Motivated by the optimization literature and recent contributions in computationally efficient
bootstrap procedures (e.g. Kline and Santos (2012), Armstrong et al. (2014), Forneron and Ng
(2019)), our proximal bootstrap estimator can be expressed as the solution to a convex optimiza-
tion problem and efficiently computed starting from an initial consistent estimator using built-in
and freely available software. The proximal bootstrap can consistently estimate the non-standard
asymptotic distribution of constrained estimators when the parameters are on the boundary, but
not drifting towards the boundary. When the parameters are drifting towards the boundary at
an unknown rate, the proximal bootstrap typically cannot consistently replicate the estimator’s
distribution. However, we are still able to conduct uniformly asymptotically valid inference on the
entire parameter vector using a confidence set constructed by inverting a test statistic based on the
difference between two objectives. We can also conduct uniformly asymptotically valid inference on
subvectors of the parameter vector using either projection or profiling of the objective functions.
This idea of using test inversion to construct uniformly asymptotically valid confidence regions has
similarities to the literature on partially identified models, for example, Chernozhukov et al. (2007),
Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Han (2009), Andrews
and Guggenberger (2010), Andrews and Soares (2010), Bugni (2010), Canay (2010), and many oth-
ers. However, we do not handle partial identification in this paper because our object of interest 3y
is assumed to be unique.

Another novel part of this paper is that we provide a general asymptotic distribution for estima-

tors defined by the solution to constrained optimization problems where the Lagrangian admits a



uniform local quadratic expansion in y/n neighborhoods of . This local quadratic expansion rules
out linear programming estimators and other estimators that have large flat regions near By. The
asymptotic distribution is derived using ideas from the optimization literature and encompasses as
special cases the results in Geyer (1994), Andrews (1999),Andrews (2000), and Andrews (2002a)
for constrained estimators with non-random constraint sets and true parameters possibly lying on
the boundaries of the constraint sets. Andrews (1999) derives the asymptotic distribution of con-
strained extremum estimators where the rescaled constraint set 4/n (C' — 8y) can be approximated
by a convex cone. Geyer (1994) considers a more general case where the cone does not need to be
convex.

Our paper was inspired by ideas in the optimization literature on sequential quadratic program-
ming, where a local quadratic approximation is used to approximate the objective function on each
iteration. The proximal bootstrap estimator is in effect applying such a local quadratic approxi-
mation centered around an initial y/n-consistent estimate of the parameters. Because we want the
estimation error from this initial estimate to be negligible in the proximal bootstrap approxima-
tion of our estimator’s asymptotic distribution, we need to use a scaling sequence «, that satisfies
ap — 0 and y/na,, — ©. a;, will also serve as a selection device so that the active constraints are
included in the asymptotic distribution while the inactive, non-drifting constraints are not. The
oy, in this paper is similar to the €, in the numerical bootstrap Hong and Li (2020). However,
we want to emphasize that the proximal bootstrap is a different procedure than the numerical
bootstrap because it solves a different optimization problem. The proximal bootstrap works only
for y/n-consistent estimators but is more computationally efficient than the numerical bootstrap.
Additionally, Hong and Li (2020) looked only at estimators with non-random constraints that do
not depend on the data and did not consider drifting constraints. In the case of a smooth sample
objective function without constraints, the proximal bootstrap is similar (but not identical) to the
k-step bootstrap (for k = 1) proposed by Davidson and MacKinnon (1999) and investigated further
by Andrews (2002b). The proximal bootstrap has an additional scaling factor of ay+/n in front
of the inverse Hessian times Jacobian, which is different from the k-step bootstrap which uses a
scaling of 1. There are also some similarities with the score bootstrap of Kline and Santos (2012) for
unconstrained problems, but our method of inference is still different even when the constraints are

not active. We have the additional scaling factor in front of the score and we can handle nonsmooth



objectives.

The statistics literature contains many papers on constrained estimation such as Shapiro (1988),
Shapiro (1989), Shapiro (1990), Knight (2001), Knight (2006), and Knight (2010). While several
of these papers derive the non-standard asymptotic distributions of various constrained estimators,
we did not see them propose a practical inference procedure as we do. Examples of econometrics
papers on constrained estimation include Moon and Schorfheide (2009), Kaido and Santos (2014),
Kaido (2016), Gafarov (2016), Chen et al. (2018), Hsieh et al. (2022), Kaido et al. (2019), Kaido
et al. (2021), Horowitz and Lee (2019), Fang and Seo (2021), and Chernozhukov et al. (2023). While
many of these papers are concerned with either conducting inference on the optimal value of the
constrained optimization problem or testing whether the constraints are valid, we are interested
in conducting inference on the optimal solution. Perhaps the closest paper to ours is Hsieh et al.
(2022) who also consider inference for the optimal solution, but they focus on linear programming
(LP) and convex quadratic programming (QP) problems with linear constraints. In contrast to
Hsieh et al. (2022), we allow for nonconvex and nonlinear objective and constraint functions, but
we do not handle linear programming or partially identified models. Our inference procedure is
also different from theirs because we use resampling followed by inverting a test statistic while they
exploit the fact that the primal-dual formulation of the Karush-Kuhn-Tucker (KKT) conditions can
be written as a set of moment inequalities and then apply test inversion.

We offer simulation evidence supporting the uniform asymptotic validity of the proximal boot-
strap test-inversion procedure. For a two-sided boundary constrained maximum likelihood model,
we compare the empirical coverage frequencies of the proximal bootstrap test-inversion confidence
interval to the intervals proposed by Hsieh et al. (2022), Fang and Santos (2019), subsampling,
and the nonparametric bootstrap. The only methods that were uniformly valid across all drifting
parameters were the proximal bootstrap and Hsieh et al. (2022), and we found in simulations that
the proximal bootstrap is less conservative and has shorter average interval length. For a bound-
ary constrained nonsmooth GMM model and a conditional logit model with estimated capacity
constraints, we did not include a comparison with Hsieh et al. (2022) or Fang and Santos (2019)
because we believe their methods do not apply. But we still compared the proximal bootstrap with
subsampling and the nonparametric bootstrap and found that the proximal bootstrap achieves cov-

erage close to the nominal level while subsampling and the nonparametric bootstrap undercover. In



all simulations, we found that the coverage and average interval length of the proximal bootstrap
test-inversion confidence interval were not sensitive to the choice of ay,.

The outline of our paper is as follows. Subsection 1.1 contains examples of constrained estimators
and Subsection 1.2 contains the notation. Section 2 contains the main theoretical results. Subsection
2.1 shows pointwise consistency of the proximal bootstrap for constrained estimators with non-
random constraint sets. Subsubsection 2.1.1 illustrates how to apply the proximal bootstrap for
the Andrews (2000) example. In Subsection 2.2, by considering all rates of drift for the inequality
constraints, we show how to conduct uniformly asymptotically valid inference by inverting a test
statistic involving the objective function. Section 2.3 proposes a double bootstrap algorithm for
choosing ay,. Section 2.4 contains an extension of our results to estimators with constraints that are
estimated (meaning they depend on the data). Section 3 contains Monte Carlo simulation evidence
demonstrating the uniform validity of the proximal bootstrap for a boundary constrained MLE
model with a two-sided estimated constraint, a boundary constrained nonsmooth GMM model, and
a conditional logit model with estimated capacity constraints. Section 4 concludes. Section 5 is the

Appendix which contains proofs of the theorems.

1.1 Examples of Constrained Estimators

Example 1. An example of a constrained estimator with a non-random constraint set is the bound-
ary constrained maximum likelihood estimator in Andrews (2000). Suppose we have a simple loca-
tion model with i.i.d data:

y; = Po+ €, €~ N(0,1)

The maximum likelihood estimator subject to the constraint that g > 0 is

n

B = argmin o 3" (i~ )

p=0 3

Example 2. Another example is a nonsmooth GMM estimator with a non-negativity constraint.
Our model is

yi = Po+ €, € ~N(0,1)



For 7 (-, 8) = [1(yi < B) — 7,y — B] and 70, (8) = [2 20, 1 (ys < B) — 0.5, L 357 i — ]

b = agmin {00 (8) = 3 (8) 7 (9}

B£=0

Example 3. An example involving an estimated constraint set is a conditional logit model with
capacity constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium
demand for each housing unit should not exceed the supply of that housing unit. Let the choices
be given by y;; = 1 <ny > yh vk # j), where the utility of individual ¢ = 1...n from picking choice
7 = 1...J is given by y;"j = Boxij +€ij, where €;; i Type 1 Extreme Value. The researcher observes
the choices y;; but not the utilities yZ*J and would like to estimate the parameters Sy using maximum

likelihood. For P (§) = 2

n J
A 1
= =3 > wiyn Py
I} arg;nax ng-:ljzly]n J(ﬁ)

1 & -
t. =) P <bjforallj=1...J0
S n; i (B) ; for all j

1.2 Notation

Consider a random sample X, = (X1, Xo, ..., X;;) of independent draws from a probability mea-
sure P on a sample space X. Define the empirical measure P, = %22;1 0x,, where ¢, is the
measure that assigns mass 1 at x and zero everywhere else. Denote the bootstrap empirical mea-
sure by P = %2?:1 Whidx,, which can refer to the multinomial, wild, or other exchangeable
bootstraps. An exchangeable bootstrap requires that W,, = (Wp1,...,W,,) is an exchange-
able vector of nonnegative weights which sum to 1. For the multinomial bootstrap, W,, is a
multinomial random vector (independent of the data) with probabilities (1/n,...,1/n). For the
wild bootstrap, P = %Z;;l (&/En) dx,, where & are non-negative i.i.d. random variables (in-
dependent of the data) with finite third moments and &, = %Z?:l &. Weak convergence is
defined in the sense of Kosorok (2007): Z, v~ Z in the metric space (D, d) if and only if
supsepr, |E*f(Zn) — Ef(Z)| — 0 where BL; is the space of functions f : D — R with Lips-
chitz norm bounded by 1. E*f(Z,) is the outer expectation of f(Z,), which is the infimum over

all EU where U is measurable, U > f(Z,), and EU exists. Conditional weak convergence is



also defined in the sense of Kosorok (2007): Z, VV%’) Z in the metric space (D, d) if and only if
sWpsepr, |Bwf(Zn) — Ef(Z)| = 0 and Ewf(Zn)* — Ewf(Zn)« —— 0 for all f € BL1, where BL;
is the space of functions f : D — R with Lipschitz norm bounded by 1, Ew denotes expectation
with respect to the bootstrap weights W conditional on the data, and f(Z,)* and f(Z,)« denote
measurable majorants and minorants with respect to the joint data (including the weights W). Let
Xy =05 (1)if P(| X} > €|l&,) = op (1) for all e > 0. Also define M;¥ = O% (1) (hence also Op (1))

if limy, o0 lim sup,,_, ., P (P (M} > m|X,,) > €) — 0 Ve > 0.

2 Proximal Bootstrap

2.1 Proximal Bootstrap with non-estimated constraints

In this section, we consider constrained estimators with a finite number of non-estimated inequality
and/or equality constraints f; (f) that are twice continuously differentiable over a compact param-
eter space B ¢ R%, where d is fixed. The non-random constraint set C' < B is a closed subset of
B and Qn (B) is a possibly non-smooth, nonconvex function that converges uniformly to a function
Q (B) that is twice continuously differentiable at 3y, which is the true parameter on which we would
like to conduct inference. We assume that our constraints C' are correctly specified so that we can

express fy = argmin@ (f), and we can estimate [y using
BeC

~

Bn =argmin Q, (), C={BeB:f;(B)=0forje& f;(8) <0 forjeT}
peC

where £ contains the indices of the equality constraints and Z those of the inequality constraints.
We will assume [ is the unique argmin of @ () over C. We will show that the proximal bootstrap
can consistently estimate the distribution of y/n (Bn — 50) both when fj lies in the interior and on
the boundary of C, but not when it is drifting towards the boundary. Nevertheless, we will show in
Section 2.2 by applying test-inversion, we can form a uniformly asymptotically valid confidence set.

Next, we define the proximal bootstrap estimator. For any 3, such that \/n (Bn - ﬁo) = 0p(1),

let Fnj — 6f5'[(3/3) . and an = %é(ﬂﬁ,) 5 for all j, and let {an for je€ v I} be a set of optimal

Lagrange multipliers obtained from solving for 3,. These Lagrange multipliers can be obtained

directly as outputs from the optimization algorithm used to compute 3,. For any sequence a, such



that ay, — 0 and y/nay, — ©, define 3* = arg minA* (), where
BeC*

A3.(8) = ann (15 (Ba) = 1 () (9= 8a) + 5 13 = Bully, + 5 2 M9 Bull,

jESUI (1)

*={BeB:fj(Bn)+F,’lj(ﬂ—Bn)=Oforj€5,fj(Bn)+l*:',;j(5—ﬁ_n)<OforjeI}

Here, C* is a linearization of C' around f3,,, where 3, is an initial y/n-consistent estimator of S,
such as f3, = 3n The sequence «, ensures that 3,’s asymptotic distribution does not enter into

the proximal bootstrap estimator’s asymptotic distribution. Ly (Bn) is a consistent estimate of

[(Bo) = aQO (8) e using f3,,, and f,’; (Bn) is a bootstrap (e.g. multinomial, wild) analog of In (Bn)
If Qn (B) is differentiable, In (Bn) can simply be the Jacobian of Q, (B) evaluated at 3,. More
generally, to handle non-differentiable Q,, (8), ln (Bn) is a subgradient of Q, (B) at B,, meaning
that for any (3, On (B) — On (Bn) >, (Bn)/ (5 — Bn) H, is a consistent estimate of the population

Hessian Hyp = azagg[(f)

constructed using f3,.
=pP0
We now discuss why we named the procedure the proximal bootstrap. Given a function r : D —

R and a symmetric positive definite matrix H, the scaled proximal mapping of r is the operator

given by, for |3 — ZH%( = (86— z)/ H (B - 2),

1
proxy, (z) = arg min {7‘ (B) + 3 18 — z%} for any z € D
peD

We can equivalently express the proximal bootstrap estimator using a scaled proximal map as

~ —

B = Proxp, p1(¢cs) ( —anynB,! (Z (Bn) = In (571)))
- argmm{ 1B € C%) + anv/n (B (Bu) —in (Ba)) (8= ) + 518~ Bl }

BeRd

where B,, = H, + ZjGEUI AnjGrj and 01 (8 ¢ C*) evaluates to oo if 8 does not lie in C* and
evaluates to 0 otherwise. Because C* is a closed, convex set, ool (8 ¢ C*) will be a proper closed,
convex function. The intuition for the proximal bootstrap is that Bf; is the point inside C* that is
closest to, or "proximal" to, 3, — a,\/nB;, ! (ZZ (Bn) —1, (Bn)> . Note that the proximal bootstrap
estimator is the solution to a quadratic programming problem, which is a convex problem if B,, is

positive definite. This quadratic programming problem can be substantially faster to solve than the



original constrained problem used to compute Bn Therefore, our proximal bootstrap estimator has
a computational advantage over the standard bootstrap in cases where the standard bootstrap is

consistent.

2.1.1 Proximal Bootstrap in Andrews (2000) Example

Before we go into the technical details, we illustrate how to apply the proximal bootstrap to the

boundary constrained maximum likelihood estimator in Andrews (2000) (example 1):

5 . A _ ozl _

= arg min {Qn (B) =52 wi—h) } max (Y, 0)
= =1

Andrews (2000) shows that the asymptotic distribution of \/n (Bn — ,6()) under pointwise asymp-

totics is given by

arg min{h'Wo + %h’Hoh} = max{—H(;lWo,O} ,if By =0
4 {h:h=0}
Vi (Bu = o)
argmin {W'Wy + $h'Hoh} = —Hy 'Wy ,if Bo >0

{h:h=—0}

Andrews (2000) shows that the asymptotic distribution of \/n (BBOOt - Bn), where BBOOt = max (g3, 0)
is the standard nonparametric bootstrap estimator using the resampled sample mean ¥, will not
coincide with the asymptotic distribution of y/n (Bn — ﬁo> when By = 0. We now show that the
proximal bootstrap estimator will consistently estimate the asymptotic distribution of 4/n (Bn — 50)
both when By = 0 and when 5y > 0, but is not drifting towards 0. Even though the proximal boot-
strap is unable to consistently replicate the asymptotic distribution for drifting parameters, we are
still able to use test-inversion to construct a uniformly asymptotically valid confidence set, as will
be discussed in Section 2.2.

In this example, the sample objective is differentiable, so In (B) is simply the sample Jacobian.

1(Bo) = —E[y: — Bol
In (Bo) = —% 2 (yi — Bo) = —Un + Po

Vi (I (B0) = 1(B0)) = v/ (P = P) g~ N (0, Var (3))



Our initial estimator is typically 3, = Bn, but it can also be some other y/n-consistent estimator

such as max (%ﬂ ZZ 21 Yi, 0) . One way to construct our proximal bootstrap estimator is by using

the multinomial bootstrap for the Jacobian:

Z (y;k _/Bn) = _g:: + Bn

where P = %Z?:l Whidx,, and Wy, is a multinomial random vector (independent of the data) with
probabilities (1/n,...,1/n).

Alternatively, we can use the wild bootstrap to estimate the Jacobian:

B0 -G =23 (£-1) (-8

ni=1 é-’n
1 ¢ & ) 2 %Z?ﬂfi
=M () B [ Y
né(& “5( & >
0
:_(P:_Pn)yi

where P¥ = 137 | (&/,) 6x,, and & are non-negative i.i.d. random variables (independent of the
data) with finite third moments and &, = 1 37 | &.

For both the multinomial and wild bootstrap, y/n (l}‘; (Bo) — In ([30)> vé%» N (0,Var(y;)) = Wy
and +/n (ifl (6n) — I, (ﬁn)> VW%) Wo, and additionally, 4/n <Zn (Bo) =1 (Bo)> v~ Wy. Thus we can
use existing bootstrap procedures to estimate the distribution of the Jacobian. To estimate the
distribution of the constrained estimator, we need to consider the fact that the constraint may be
binding. For this example, the proximal bootstrap estimator is a scaled Newton step from an initial
v/n-consistent estimator, subject to a non-negativity constraint. The sequence «, ensures that Bn’s
asymptotic distribution does not enter into the asymptotic distribution of B;’;, which in this example

is given by

B = argmin Lo (12 Bn) — 1 (32)) (9 3) + 3 19l |

B8=0

10



= arg min {an\/ﬁ(?jn — n) (5 - Bn) + % (ﬁ - BH)Q}

B=0

= max (Bn + an\/ﬁ (?7;: - gn) ’O)

B —bBn

is same as the
Qn

Note that since \/nay, — o0, ’B"T_nﬁo 20 and the asymptotic distribution of

asymptotic distribution of B;LKT;BO, which equals the asymptotic distribution of v/n <Bn — B()) under

2
Hn

pointwise asymptotics:

BimBo _ prguin {ﬁ()t (o) =1 (5)) (2 ) 4 5| 2P e

« o 2
n {h:B—OJthO} n
an

(679

— argmin {ﬁ(i;‘; (Bn) — In (Bn)>'h+%h’ﬁnh+0; (1)}

{nin=—2ot

argmin {W'Wo + h' Hoh} = max{—Ho_lwo,O} ,if Bgp =0
V\Iﬁ’) {h:h=0}
w

argmin {W'Wy + $h'Hoh} = —Hy 'Wy , if By >0

{h:h=—0}

where Hy =1 and Wy ~ N (0, Var (y;)) for this example. Note that a,, — 0 also serves a selection
device so that when the constraint Sy > 0 is active, it enters into the asymptotic distribution,
but when it is inactive (and [y is not drifting towards zero), it has no impact on the asymptotic

distribution.

If we didn’t have y/na,, — o0, then % v Z will not be op(1) and Z will enter into the

2
H,

argmin {h'Wo + Z'Wo + 3 (h+ Z) Ho (h + 2)} = max {—H; "Wy — 2,0} , if Bo =0
P ) {mh=0)
A

proximal bootstrap’s asymptotic distribution:

/BO_Bn+h

Qo

B gin 4 ()1 () () o

n {h:%+h>o} An

argmin {WWo + Z'Wo + 5 (h+ 2)' Ho(h+ 2)} = —Hy 'Wy — Z , if Bo >0
{h:h=—0}

2.1.2 Assumptions

We now list some technical assumptions and discuss them afterwards.

11



Assumption 1. (i) B c R? is compact, C = B is closed, and d is fized.
(i1) B satisfies Qu (Bn) < inEQn (8) + 0y (1).

(iii) Bo is the unique value of argmin @ (53).
peC

(iv) Q (B) is twice continuously differentiable at By, and sup On B)—Q (5)‘ =op(1).
BEB

Assumption 2. (i) There exists a function g : X — R indexed by a parameter 3 € R? such that
Jor any B € RY, /i (I (8) = 1(8)) = Vi (Pu = P) g (- 8) +0p(1) and /n (£5 (8) — 1 (8) ) =
Vi (Pi = Pn) g (. 8) +0p(1), where lim Plg (-, 50) [*1([g (-, Bo) | > e/n) = 0 for each e > 0.

(i1) Gr={g(,8) —g (-, Bo) : |8 — Poll < R} is a Donsker class for some R > 0 and P|g(-,3) —
9(,B0) |* = 0 for B — Bo.

9(75)79(760)
L+v/n|B—Bol

Assumption 3. lim limsup suthP{ sup
g(

A—00 n—0w  {=A ’7/3)€g5n

>t}:0f07"any(5n—>0.

Assumption 4. Suppose Linear Independence Constraint Qualification (LICQ) holds at By : the

gradients of the active constraints Fp; = afééﬁ) ’,B 5 forj e EVI*, whereI* = {j e T: f; (Bo) = 0},
=P0

are linearly independent.

Assumption 5. Suppose f; : B +— R for all j € EUZL are twice continuously differentiable functions.
Let \o; be the unique Lagrange multipliers that satisfy Xo; fj (Bo) = 0 for allj € EVL , Ag; = 0 for all
j€&VL, and VL (fo, M) = 1 (o) +2jeeur AojFoj = 0, where L(Bo, do) = Q (B)+ 2jeeuz Moi fi (B)
and Fy; = %ﬁ]ﬁzﬁo. Define L (8) = Qu (8) + Syeeoz Noifs (B), and Goj = ZHD| . Then
for any 6, — 0, and B;, = {h e R? . % < (5n},

TL/jn (50 + %) — nﬁn (50) — h/\/ﬁin (50) — %h/Hoh — Zjeé’ul’ )\Oj (\/ﬁFéjh + %h/Gojh>
su
netsy, L+ A

= op(1)

Assumption 1 is a standard assumption for showing consistency of Bn for By. Assumption

2 allows us to apply Theorem 2.6 of Kosorok (2007) and show that +/n (in (Bo) — 1 (50)) and

12



Vn (Z;‘; (Bo) — In (ﬂ0)> have the same asymptotic distribution. In the case of the wild bootstrap

Pr = %Z?:l (fi /Sn) dx,, we need to ensure that the weights & have mean equal to variance.

We use Assumption 3 to show bootstrap equicontinuity which will imply /n (lA,"; (Bn) — 1, (Bn)>
and \/n <[§ (Bo) — I (60)) have the same asymptotic distribution. Assumption 2(ii) will imply
stochastic equicontinuity, which in combination with the envelope function integrability condition

in Assumption 3 will imply bootstrap equicontinuity (see Lemma 4.2 of Wellner and Zhan (1996)).

g(,ﬁ)*g(,ﬁo)

1++/n]B8—Boll < k for some constant x > 0

A sufficient condition for Assumption 3 is that sup
g('7ﬁ)€g5n

and any 6, — 0.

For the Andrews (2000) example (example 1), Assumptions 2 and 3 are satisfied. Note that we
showed earlier that v/ (I (8) = 1(8)) = v/ (Pa = P) g (-, 8) + 0p(1) and v/ (15 (8) ~ I (8)) =
Vi (Py = Pn)g (-, 8) + op(1), where g (-,5) = —(yi — f). Since g(-,8) =g (-, 60) = — (4 = 5) +
(i~ Bo) = B~ Bo, Grn = {g(~B) —g(~Bo) : |8~ Pol < R} for any R > 0 is a fixed function

class and therefore also a Donsker class, and P|g (-, 8) — g (-, 50)|* — 0 as 8 — Bo. Additionally,

9(-,8)—9(-Bo)

[t
9(-B)egs, | HYmIE=Fol

2 and 3 are satisfied for examples 2 and 3.

< 1 so Assumption 3 is satisfied. In the Appendix, we verify that Assumptions

Assumption 4 imposes that the constraints satisfy Linear Independence Constraint Qualification
(LICQ), which says that the gradients of the active constraints are linearly independent. LICQ is the
weakest possible constraint qualification that ensures the set of optimal Lagrange multipliers that
satisfy the first order Karush-Kuhn-Tucker (KKT) conditions is a singleton (Wachsmuth (2013)).
We note that LICQ will be violated when some active constraint gradients are linear combinations
of other active constraint gradients. In particular, LICQ will be violated when some of the active
constraint gradients are zero. Examples of when LICQ is violated appear in e.g. Kaido et al. (2021)
and Nocedal and Wright (2006). It is fine to relax LICQ to Mangasarian-Fromovitz constraint
qualification (MFCQ) as long as we impose the additional condition that there are unique optimal
Lagrange multipliers. MFCQ is weaker than LICQ because it does not require the gradients of the
equality constraints to be linearly independent. Both MFCQ and LICQ are clearly satisfied for
our examples 1-2 because there can be at most one constraint active at fy. For example 3, MFCQ
and LICQ will be satisfied if the constraint gradients corresponding to the active constraints at 5y

(those j for which + >3 | Pij (60) = bj) are linearly independent.

13



Assumption 5 requires that the sample Lagrangian evaluated at the population Lagrange mul-
tipliers has a uniform local quadratic approximation in 4/n neighborhoods of y. This assumption
is similar to the stochastic differentiability assumption in Pollard (1985) and is needed to derive
the asymptotic distribution of y/n (Bn — ﬂo). The importance of using the Lagrangian instead of
the objective function is that it allows for By to not be a solution of the unconstrained population
optimization problem; in other words, we allow for the possibility that [ (5y) # 0. Note that since
the derivative of the population Lagrangian satisfies VL (8o, o) = 1(Bo) + Xjeeoz AojFoj = 0
by the KKT conditions, Assumption 5 can also be written as follows: for any 6, — 0, and

n

Bgnz{heRd:@@n},

nLy (Bo+ L) = nla (B) = W'y (Tn (Bo) = L(B0)) = S0 Hoh — 3 ¥jee g Aosh'Gojh
sup

= op 1
heBs,, 1+ Hh”? (1)

When [ (8y) = 0 and LICQ is satisfied, A\g; = 0 for all j € £ UZ. A more in-depth discussion of why

Aoj = 0 appears in Remark 1. Assumption 5 can then be rewritten as follows: for any ¢,, — 0,

nQu (8o + 25 ) = nQu (B0) — v/l (Bo) — 41 Hoh

sup =op(1)
heBs,, 1+ A
Assumption 5 is satisfied in Example 1 because the objective Q,, (B) = ﬁ vy (v — 6)2 is quadratic

and the constraint 8 > 0 is linear. In particular, nl, (ﬁo + %) —nLl, (Bo) = nQn (50 + %) —
nQn (Bo) — Xov/nh = N'y/nl, (Bo) + $H/ Hoh + Aov/nh = h/n (in (Bo) — 1 (50)) + 5’ Hoh, where
we have used the KKT condition I (8y) — Ag = 0. To check that Assumption 5 is satisfied in Ex-
ample 2, we can use Proposition 1 of Chernozhukov and Hong (2003) who show that the uniform
local quadratic approximation of the objective in a neighborhood of Fy follows from compact-
ness of the parameter space, continuity of the population Jacobian and Hessian, and the moments
{m(-,B) : |8 — Bo| < R} being a Donsker class for any R > 0. The constraint § > 0 is linear and
can be dealt with using the same KKT condition [ (8y) — Ao = 0 as in Example 1. For Example 3,
we can use Lemma 2 of Chernozhukov and Hong (2003) which says that the uniform local quadratic
approximation of the objective in a neighborhood of By will hold when Q,, (8) is twice continuously

differentiable with a second derivative matrix that is uniformly consistent for the population hessian
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Hjy in a neighborhood of fy. The constraints in this example are estimated, and we will require
the second derivatives of the estimated sample constraints to be uniformly consistent for the second
derivatives of the population constraints.

In the following theorem, we show that when the inequality constraints f; (8y) for j € Z are not
drifting towards zero and when there are no strongly active constraints, the proximal bootstrap is
able to consistently replicate the non-standard asymptotic distribution of constrained estimators for

which the standard bootstrap is inconsistent. We denote 3, as the initial y/n-consistent estimator

for By, G’nj = a;gégf) s for all j, and {S\nj forjefuT } are a set of optimal Lagrange multipliers

obtained from the optimization problem used to compute 3,,.

Theorem 1. Suppose Assumptions 1 - 5 are satisfied in addition to the following:
(i) V2L (Bo. M) = Ho + Yseez MjGoj is positive definite on M (A) = {h L Fjh=0,)€ 5},
.. = p = p 1 p
(i) Hy, — Hy, jreltl‘,‘%)XI‘an — Goj’ =0, and jreréztxz‘)\nj — /\oj‘ = 0.
(iii) I_T_ N)={jeT*: Aoj > 0} =9, where IT* ={j e T : fj (Bo) = 0}.

Suppose f; (Bo) for j € L is fized ( not changing with the sample size n ). For any sequence o, such

that c, — 0 and /noy, — oo, let B,’;‘ = arg min/l;: (8), where fl;‘; (8) and C* are defined in equation
BeC*

1. Then, y/n (Bn - 5()) o T and B’ﬂ:a;f“ v%)%» J, where

1 1
J = argmin { h'Wy + Sh'Hoh + = > Ao;h'Gojh
heX 2 2 ]eg

Y ={h:Fyjh=0 for je & Fy;h <0 for jeI*}

Wo ~ N (0,P (g (-, 80) = Pg (- 50)) (9 (- Bo) = Pg (-, 50))’)-

In condition (i), we do not require the Lagrangian’s hessian V2L (B0, \g) to be positive def-
inite on R? because By is typically a saddle-point of £ (B, Ag). Condition (ii) says that the
sample analogs of the hessians and Lagrange multipliers are consistent for their population lim-
its. Condition (iii) rules out the strongly active inequality constraints at [y because the prox-

imal bootstrap cannot distinguish between strongly versus weakly active inequality constraints

15



(weakly active inequality constraints are those j € Z* such that Ag; = 0). If both strong and
weakly active inequality constraints are present, then the constraint set in J should be X =
{h t Fojh =0 for j € E VI (No), Fy;h <0 for j e I ()\0)}. The rate conditions on «,, will ensure
that the nonactive inequality constraints will not be included in ¥; however, among the active in-
equality constraints, the proximal bootstrap is not able to determine which of them have positive
Lagrange multipliers and turn them into equality constraints inside 3. We think that ruling out
strongly active inequality constraints at §j is a plausible assumption because we are effectively rul-
ing out misspecified inequality constraints. In Example 1, the constraint 5 = 0 will be misspecified
at Bo if Fly;] < 0 and we are interested in conducting inference on fy = arg minE [(yZ - 5)2].
>
The proximal bootstrap cannot handle this misspecified inequality constraint ieZause Ag is posi-
tive. Notice that the proximal bootstrap can allow for all types of equality constraints, including

misspecified ones, because all of them remain as equality constraints inside 3.

Remark 1. If [ (5p) = 0, meaning that the population unconstrained minimum is the same as the
constrained minimum, then J reduces down to

1
J = arg min {h/W() + h’th}
hes 2

¥ = {h: Fy;h=0for je& Fy;h <0 for jeI*}

This is because by the KKT conditions, \o; satisfies [ (8p) +Zje$u1' XojFo; = 0,s0if 1 (By) = 0, then
Zj65UI AojFo; = 0. By LICQ), the active constraint gradients Fy; for j € £ U Z* are all nonzero,
and furthermore, the optimal Lagrange multipliers for the nonactive inequality constraints j € Z\Z*
are zero by the complementary slackness conditions Ao;f; (6o) = 0 for all j € £ UZ. Therefore,
Aoj = 0 for all j € £ UT is a solution to ZjeSUI AojFoj = 0. Since the set of Lagrange multipliers
that satisfy the KKT conditions is a singleton under LICQ, Ag; = 0 for all j € £ U T are the unique
optimal Lagrange multipliers, which implies ZjeSuI Xojh Gojh = 0.

In this case, we can redefine the proximal bootstrap estimator as Bz = arg minZ;L" (B), where
BeC*

23(8) = anv/m (B (Bu) — in (Ba)) (8= Bu) + 518~ Bl @)
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From results in Shapiro (1988) and Shapiro (1989), when [ () = 0 and LICQ is satisfied, the

Tangent cone T¢ (By) = limsupc;ﬁ0 is equal to X2 = {h F(’)Jh =0 for je €&, Fojh 0 for j e I*}
710
so J can be written as arg min {h’ Wo + %h' Hoh}, which coincides with the asymptotic distribution
heTe(Bo)
given in Geyer (1994). Additionally, LICQ implies C' is Chernoff Regular at 5y, and this cone K

will be the Tangent cone T¢ (8y). The constraint set C' is Chernoff Regular at 3y if C' is well-
approximated by a cone K at f(y, meaning that in}f{ 1(B8 = Bo) —w| = o(|8 = Bol) for all 5 € C,
we
and én(fJ [(8— Bo) —w| = o(|w]) for all w € K (see Theorem 2.1 of Geyer (1994) for more details).
€

Remark 2. If there are only equality constraints, then the asymptotic distribution becomes J =

axg min { W'Wo + 30" (Ho + Yjee jGoy ) b for ¥ = {h: Fih = 0 for j € £}. Using standard ar-
heX
guments in Amemiya (1985) Section 1.4.1 or Newey and McFadden (1994) Section 9.1, J =

MojGoj. If Woy is multivariate

~By* <I — Fy (FéBo_lFo) FoBy )Wo, where By = Ho + Yjce

normal, then the asymptotic distribution will be multivariate normal.

If 1(By) = 0 or if the constraints are linear, then » . o AgjGo; = 0 and By = Hp, so J =

jeE
~H! (I — By (FyHy ' Fo) ™" FyH, ) Wo.

2.2  Uniformity

In the case of drifting inequality constraints f;(8g) = c¢/n” for some p > 0 and ¢ < 0, the
proximal bootstrap will typically not consistently replicate the estimator’s asymptotic distribu-
tion; however we can still obtain a uniformly asymptotically valid confidence set for By using test-
inversion. Throughout this section, we will assume the constraints are not necessary for iden-

tification of [y, meaning [ (fBy) = 0. We will benchmark the distribution of the test statistic
. . 1an* (B)

n <Qn (Bo) — inf Q, (50 + h>) against the empirical distribution of —Z= , where Z *(B) =

hGB(;n \/ﬁ Otn

any/n (i; (Bn) — in (Bn)>/ (B — Bn) —i—% HB - B”Hi?n’ Bs, = {h eRY: H—% < (5n} is a shrinking neigh-
inf Z*(B)
BeB

borhood, and d,, — 0 satisfies \/nd, —  for x € (0,00]. Let ¢f_,, be the 1 —a quantile of —=—

We will show that Cf_, = {B in (Qn (8) — mf Qn <ﬁ + )) < ¢l a} is a uniformly asymptot-

ically valid nominal 1 — « confidence set for Bg = [ (P).

In the theorem below, J,, (-, P) denotes the CDF of n <Qn (Bo) — inf Qn <ﬁo + })) under P,
hEBgn n

and J (-, P) denotes the CDF of its limiting distribution under P. Similarly, J3 (-, P) denotes the
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inf 2} ()
conditional CDF of —% under P, and J* (-, P) denotes the CDF of its limiting distribution

under P.

Theorem 2. Let P be a class of distributions for which 1 (By) = 0, Assumptions 1 - 5 hold uniformly

in P € P and condition (ii) of Theorem 1 is satisfied uniformly in P € P, and {J (-, P) : P € P} and

{J* (-, P) : P e P} are equicontinuous at J,; ' (1 —a, P). Then lim ioréf]ign;;P (BoeCi,) = 1—aq,
n— (S

* _ . A s A h_ A% _ d . |hl _
where CF_, = {ﬁ.n(@n(ﬁ) e (5+ ﬁ)> <c1_a}, B, {heR .ﬁ@n}, §n — 0

inf 2} (8)
satisfies \/nd, — K for k € (0,0], and &_,, is the 1 — « quantile of —BGBQQ for any oy, satisfying

an, — 0 and \/noy,, — ©.

Remark 3. If we would like to construct a nominal 1 — « confidence set for a subvector vy = a’fp,

where a is a known vector, we could use projection: CT fjgj = [ in*f a'B, sup a/B|. The uniform
BeCT_ o Beck

asymptotic validity of these projection intervals follows directly from the uniform asymptotic validity

of CF_,,.

Andrews (2000) Example Revisited Suppose in the Andrews (2000) example the parameter
is drifting at some 7, rate: [y = ¢/7, for some constant ¢ > 0. When ¢ > 0, {(fy) = 0 and
the inequality constraint 8 > 0 is weakly active in the limit as 7, — 0. To conduct uniformly
valid inference, we can use Cf_, = {B 'n <Qn (B) — hie%iQ” (B + \%)) < éi‘_a}, where ¢f_, is

inf 7% (8) . _ _
the 1 — « quantile of —%, and Z% (B) = any/n(Un — %) (B—Bn) + 3 (8- ﬁn)Q. We can

A . A h . .
show that n (Qn (Bo) — hé%gnQ” (50 + \/ﬁ>> v~ — inf g (h), where B, = {heR?: |h| < r} for

heB,
nfZ3(8) p _ , L
Vnon, — k € (0,00], and —=— % ~mming (h), where q(h) = h'Wo + 5h'Hoh, Hy = 1 and
n S

Wy ~ N (0,Var (y;)).

2.3 Choice of

In order to determine the optimal value of «,, one possibility is to use a double bootstrap algorithm
similar to the one in Chakraborty et al. (2013). Starting from the smallest value in a grid of a,,
draw Bj bootstrap samples and compute initial y/n-consistent estimates Bflbl) for by = 1,..., By.

To obtain these initial y/n-consistent estimates, we could use the proximal bootstrap or other
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consistent procedures such as subsampling, but we cannot use the standard bootstrap which can
be inconsistent when parameters are not in the interior. We can use these 57(161) to estimate the
Jacobians IV <_T(lb1)> and Hessians A and GS)];) and all j € £ UZ. Conditional on each of
these bootstrap samples by = 1,..., By, draw By bootstrap samples and compute j(b2) (77(1171)) -
lA?(@bl) ( (b1)> forbo = 1,..., Bs. Pick some nominal frequency 1—7. Compute the empirical frequency
with which ¢\ = { B:n < ) (8) — Jnf Q) (,8 + \%)) < éi‘f} covers f3,, where &__ is the

A(v102)
EAYT"?) (9)

1 — 7 quantile of —BET and

Z0182) (8) = any/n ([y(le) (67(:71)) — 1) <5 bl))) (ﬁ Bl ) + = Hﬁ A o)

bl) (3)

If the current value of «,, achieves coverage at or above 1 — 7, then it picks that value as the optimal

. Otherwise, increment «,, to the next highest value in the grid and repeat the steps above.
The justification for why this procedure works is similar to the arguments in Hall and Martin

(1988) for using bootstrap iteration to reduce coverage error for confidence intervals. We are trying

5(b1

to estimate the coverage frequency of Cj_,, by constructing confidence sets C;* usmg the resampled
data. We need B; and B> to be large enough so that we can estimate the coverage frequency well

enough.

2.4 Estimated Constraints

We can also apply the proximal bootstrap to constrained estimators with a finite number of /n-
consistently estimated inequality and/or equality constraints that are twice continuously differen-

tiable over a compact parameter space B < R,

~

Bn = argmin Q, (8), C={BeB: f,; () =0forje&, fnj(B) <O forjeTI}
peC

We will define the population analog of C € B tobe Co = {f € B : fo; (8) =0 for j € £, fo; (B) <0 for j € I},
where sup | fn; (8) — foj (B)] = op(1) for all j € £ UZ. We are interested in conducting inference on
BeB

Bo = argmin@ (), which is assumed to be unique. @ (5) is twice continuously differentiable at 5y
BeCo

and sup | Q. (8) — Q (B)| = op(1).

BeB
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* —
Let fr; (B) be the bootstrap analog of fy; (3) and let Ey (B) = af'é";ﬁ). For any 3, such that

Vit (B — o) = Op(1), let Frj = Fuj (Ba), Fiy = Fi; (Ba), Gy = “42a?) oy, forall j, and let

S\nj be a set of optimal Lagrange multipliers for 8,. These Lagrange multipliers can be obtained

directly as outputs from the optimization algorithm’s function call for computing 3,. We modify

our proximal bootstrap to account for the sampling variation in the constraint Jacobians:

A1(8) = anv/in (i5 (5a) ~ 1 (Bu) ) (5= Bu) + 518~ Bl
+ Z S\nj <06n\/ﬁ (F:] — Fnj)/ (/8 - Bn) + % “B - Bn’én]>

jeEVT (4)
C* = {ﬁ eB: fnj (Bn) + Fqlm] (5 _Bn) "‘Oén\/H (f:;] (Bn) - fnj (Bn)) =0for je¢g,

fnj (Bn) + F’r/LJ (/B _Bn) + O‘n\/ﬁ (f’:?,kj (Bn) - fnj (Bn)) <0 fOl"j EI}

We will modify Assumption 1 to account for the difference between the sample versus the population

constraints.

Assumption 1. (i) B < R? is compact, C < B is closed, and d is fixed.
(ii) B, satisfies Q, (Bn) < éﬂé@n (B) + op (1).
€

(iii) o is the unique value of argmin @ (5).
BeCo

(iv) Q (B) is twice continuously differentiable at 5y, and sup Qn (B8) —Q(B)] =op(1).
BeB

(V) fnj : B — R and fy; : B — R are twice continuously differentiable functions that satisfy

2}111; | fnj (B) — foj (B)] = op(1) for all je & UT.
€
We also modify Assumption 5 to account for estimated constraints.

Assumption 5. Let \g; be the unique Lagrange multipliers that satisfy Xo;fo; (5o) = 0 for all
jeEUT ,0< Agj <o forall je& uZ, and VL(By, Ao) =1 (Fo) + Zjeé'ul’ XojFoj = 0. Define

~ ~ . 2 .
L0 () = Qu(B) + Syesor Moifog (9). Fog (B0) = P52 and Goj = TP . For any
=P0 =P0
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5, — 0, andB(;n:{heRd:%gén},

nLy (Bo+ 25 ) = nLa (Bo) = W'yl (Bo) = $h Hoh = ¥jce iz Yoy (VAFng (o) b+ $1/Gosh)
su
heBs, L[]

=op(1)

Note that since VL (8o, Ao) =1 (Bo) + Xjesr AojFoj = 0, Assumption 5’ can also be written as

follows: for any d,, — 0, and Bs, = {h e RY: % < (5n},

nln (Bo + ﬁ) —nLn (Bo) — h'v/n (fn (Bo) —1 (ﬁo)) — $h' Hoh = X ;ce 7 Moj (V7 (Faj (Bo) — Foj)" h + §h'Gojh)
sup

=op(1
heBs,, 1+ |h|? ™)

Assumption 5 will hold in Example 3 if uniform local quadratic expansions exist for Qn (8) and
the constraints f,; (8) = 2 3", P;; (8) — bj. Since both Qn (B) and fnj (B) are twice continuously
differentiable, the uniform local quadratic expansions will hold if the second derivative matrices of
On (B) and fy; (8) are uniformly consistent for the population hessians Hy and Go; when S lies in
a neighborhood of fy.

We next impose that the bootstrapped constraint Jacobians converge weakly in probability to

the same limiting distribution as the unbootstrapped constraint Jacobians.

Assumption 6. (i) \/n (in (Bo) —1 (50)> +2jeeoz AojvVI (Fj (Bo) — Foj) > Wot2lice oz 2o Voj,

a tight random vector.
) S ~ . P
(ii) v/ (1% (B0) = I (80) ) + Xgee oz Msv/m (B (Bo) = Frs (50) ) v Wo + Bcez Yo Vo

(iit) oD (l)\/ﬁ(Fﬁ (B) = Fu (B) — Fyy (Bo) + Fu (o)) = 0p(1).
A sufficient condition for y/n (fn (Bo) —1 (60)> +2jesor A0ivV 1 (Fnj (Bo) — Foj) v Wo+2ice 7 Ao Voj
Vi (I (B0~ 1(80) | [ W
vV (F (o) — Fo) Vo
Similarly, a sufficient condition for \/n (ZZ (Bo) — In (ﬁ0)> +2jesuT Aojv/n (F;fj (Bo) — Fr; (ﬁo)> vi}%»Wo—i—

\/ﬁ (l;: (50) - ln (BO)> V\]E’;’) WO . When Fn (B) = Pnﬂ'(WB) and F;: (’8) -

VI (EE(Bo) — Fu (B0)) | 7\ W

is , where Fyy = (Fpj for je EUT)and Vo = (Vp; for je E L T).

2jecuz AojVoj is



P*r(-, 3) are sample averages, these joint weak convergence statements can be verified under a joint

Lindeberg condition.

In the next theorem, we show that when the population inequality constraints fo; (8y) for j € Z
are not drifting towards zero, the proximal bootstrap is able to consistently replicate the non-
standard asymptotic distribution of constrained estimators for which the standard bootstrap is

inconsistent.

Theorem 3. Suppose Assumptions 1', 2 -/, &, and 6 are satisfied in addition to the following:
(i) V2L (Bo. M) = Ho + Yseez MjGoj is positive definite on M (A) = {h L Fjh =05 € 5},
(ii) H, 2 H,, jrertl‘,'%XI‘an — Goj’ 20, and j@%ﬁuﬂj — /\oj‘ 2.
(iii) Iy, (Mo) ={j €L} : Aoj > 0} = &, where Iy = {j € L : fn; (o) = 0}, and
IF (M) ={jeZ*: Aoj >0} =, where I* = {j € T : fo; (Bo) = 0}.
Suppose fo; (o) for j € T is fized ( not changing with n ). Then, for any sequence oy, such that

@ = 0 and v/ = 0, Vit (By = o) o T and B Lo 7

1 1
J = argmin{ B'Wo + —h'Hoh + ) Aoj | h'Vo; + =h'Gosh
heXl 2 ng 2

E:{h:Uoj—I—Féjh:OfOTng,Uoj—I-F(/)thOfOTjGI*}

Note that uniformity results in Theorem 2 still hold in the case of estimated constraints, as long

as [ (Bo) = 0.

3 Monte Carlo Simulations

3.1 Two-sided Boundary Constraint

We consider a simple location model with i.i.d data:

iid.
yi=Bo+e €6 ~ N(0,1)
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We would like to compute the maximum likelihood estimator subject to the constraint that the
parameter lies between 0 and Z,, = %Z?:l x;, where x; iy (5,1) and z; L y;.

n
A~

Bn = arg mini Z (yi — B)?

0<pB<z, 41N i

Note that we can express our estimator as a function of §,, treating z,, as given.

~

Brn = max (min (Y, Tn) ,0) = ¢ (¥n)

We will examine the empirical coverage and average interval length of the proximal boot-

strap confidence set Cf_, = {B 'n (Qn (8) — hierég On (6 + \%)) < é’l"_a}, where ¢f_, is the
inf 7 (5) )

. o N _ _
l -« quantile of _BEBQ% and Z:Z (5) = O‘n\/ﬁ <l;kz (611) - ln (Bn)) (ﬁ - ﬁn) + % ”ﬁ - ﬁn‘ﬁgn»
for B, = Bn, ZA;'; (Bn) — 1, (En) = §p — ¥F and H, = 1. The true parameter 3y takes on 7 dif-

ferent values: By € {1,n_l/ﬁ,n_1/4,n_1/3,n_l/Q,n_l,O}. We consider four different sample sizes
n € {100, 500, 1000, 5000} and use 1000 bootstrap iterations and 2000 Monte Carlo simulations. We

chose o, = n—1/4

after performing the double bootstrap procedure described in Section 2.3 using
n = 5000, By = Bs = 5000, and By = 0. The empirical coverage frequencies over a grid of a,, €
{n=13, n VA n= V6 = UT n =18 =19 =110} were {0.9496, 0.9538, 0.9460, 0.9536, 0.9508, 0.9526, 0.9496 .

1/4 was the smallest value which achieved coverage at or above the nominal level of 0.95.

op =N
We also tried using all the other values of oy, and found that the coverage was the same up to
three decimal places across the different values of «,,. We did not constrain h when computing
h'érégnQn (5 + %), which effectively sets d,, to 4/nd, — .

We will compare the empirical coverage frequency of the proximal bootstrap to alternative meth-

ods. Fang and Santos (2019)’s equal-tailed two-sided interval is [qﬁ (y) — ﬁél_a/g, o (Gn) — ﬁéa/g],

where ¢, is the ath quantile of ¢/ (v/n (3% — §n)), §* is the nonparametric bootstrap analog of g,
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and

-

h if Ky, < A/NYn/0 and /1 (Gn — ZTn) /6 < —Kp,
max (h,0)  if |\/nyn/d| < kn

min (h, Z,) if |v/n(Gn — Tn) /0| < kp,

0 if \/nyn/6 < —Kp O \/1(Jp — Tp) /G > Kn

\

We use Fang and Santos (2019)’s recommended choice of x, = ® (1 —4,) for some 4, | 0
(see their Example 2.1 on page 391-392). We tried three different types of confidence intervals
(two-sided equal-tailed, one-sided lower, and one-sided upper) and four different values of 6, €
{n_l,n_l/z,n_l/3,n_1/6}, and none of them produced uniformly valid coverage for all drifting
parameter sequences.

Hsieh et al. (2022) propose using

-1
PD o _ . : / el 2 -
CSTL (]‘ Oé) {ﬁ . )\7820)\11%210,)\28:0”9 (y’ﬂa )‘h >‘27 S) (GVG ) g (y7ﬂa >‘1a )‘27 S) < X2 (1 O[)}

— LS (g — B) — AL+ Ae -1 0 Un B— A1+ A2
g(ynBaAly)‘Q): " =1 = —+
Tp—B—s 0 1 Tn —B—s

-1 0
G =

0 1
. Var(y) 0 | e X (i ) 0

0 Var(x) 0 S (- 7)?

Table 1 compares the empirical coverage frequencies and average interval lengths (in parentheses)
of the proximal bootstrap simultaneous confidence set to Hsieh et al. (2022)’s confidence set, Fang
and Santos (2019)’s equal-tailed two-sided intervals, subsampling (using |y/n] as the subsample
size) and standard nonparametric bootstrap two-sided equal-tailed confidence intervals. For n large
enough, the proximal bootstrap coverage frequencies are close to 95% for all drifting parameters.
Hsieh et al. (2022)’s coverage is more conservative than the proximal bootstrap for all parameters,

and the average interval lengths for Hsieh et al. (2022) are longer. The coverage of Fang and Santos
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(2019), subsampling, and the standard nonparametric bootstrap can be far below 95%, especially
for By = 1/n where the coverage drops to around 50%.
3.2 Boundary Constrained Nonsmooth GMM

We consider a simple location model with i.i.d data:
yi = Bo +e€, €~ N(0,1)

For 7 (-, 8) = [1 (y; < B) — 7,4; — ], let the population and sample moments be

m(8) =[Py <B)—05By; — B,  7n(B)= [izl(yi <) —0-5,%2111 -8
=1 =1

Our GMM estimator has a non-negativity constraint:

A~

b = angin {Q (9) = 3 (6) 7, (9)}

8=0

We will examine the empirical coverage and average interval length of the proximal bootstrap

confidence set Cf_, = {6 'n (Qn (B) — inf Qn (B—i— h)) < é’l“_a}, where ¢&f_, is the 1 — «
heBs,, Vvn
inf 2% ()

quantile of —BEBQQ and Zﬁ (B) = any/n (ZZ (Bn) — 1, (Bn))/ (,8 - Bn) + % ||B — B”H?In’ for H,, =

n

GG+ Ly (Bn)s In (Bn) = Ghftn (Bn), 1 (Bn) = G 7% (Bn), and

o | S (- Ba) | | AeS (- B) | | ke S (- 6)
n = ’ = y bin =

-1 -1 0

K (2) = K (x/h), K (2) = (2n) Y? exp(—22/2), K}, (z) = K’ (z/h) and K’ (z) = — (27) /2 z exp(—22/2).
We use the Silverman’s rule of thumb bandwidth k = 1.06n1/5.

We consider possibly drifting sequences of parameters 5y € {O, n~tn Y2 pm3 pm1/A 16 2}.
We consider four different sample sizes n € {100,500, 1000, 5000} and we use 1000 bootstrap iter-
ations and 2000 Monte Carlo simulations. Table 2 shows the empirical coverage frequencies and
average interval lengths (in parentheses) of nominal 95% confidence intervals constructed using

the proximal bootstrap, subsampling, and the standard nonparametric bootstrap. To the best of
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Table 1: Empirical Coverage Frequencies and Average Interval Lengths

Bo
n = 100
Proximal Bootstrap
Hsieh et al. (2022)
Fang and Santos (2019)
Subsampling

Nonparametric Bootstrap

n = 500
Proximal Bootstrap

Hsieh et al. (2022)
Fang and Santos (2019)
Subsampling
Nonparametric Bootstrap

n = 1000
Proximal Bootstrap

Hsieh et al. (2022)
Fang and Santos (2019)
Subsampling
Nonparametric Bootstrap

n = 5000
Proximal Bootstrap

Hsieh et al. (2022)
Fang and Santos (2019)
Subsampling

Nonparametric Bootstrap

0

0.944
(0.379)
0.993
(0.478)
0.975
(0.028)
0.980
(0.028)
0.972
(0.028)

0.952
(0.165)
0.990
(0.209)
0.975
(0.028)
0.980
(0.028)
0.972
(0.028)

0.954
(0.114)
0.994
(0.145)
0.975
(0.028)
0.980
(0.028)
0.972
(0.028)

0.948
(0.045)
0.990
(0.059)
0.975
(0.028)
0.980
(0.028)
0.972
(0.028)

n—l

0.944
(0.380)
0.984
(0.478)
0.470
(0.028)
0.620
(0.028)
0.609
(0.027)

0.941
(0.165)
0.987
(0.209)
0.470
(0.028)
0.620
(0.028)
0.609
(0.027)

0.946
(0.114)
0.988
(0.145)
0.470
(0.028)
0.620
(0.028)
0.609
(0.027)

0.951
(0.045)
0.985
(0.059)
0.470
(0.028)
0.620
(0.028)
0.609
(0.027)

n—1/2

0.947
(0.379)
0.983
(0.478)
0.586
(0.043)
0.534
(0.029)
0.679
(0.041)

0.949
(0.165)
0.987
(0.209)
0.586
(0.043)
0.534
(0.029)
0.679
(0.041)

0.947
(0.114)
0.983
(0.145)
0.586
(0.043)
0.534
(0.029)
0.679
(0.041)

0.947
(0.045)
0.991
(0.059)
0.586
(0.043)
0.534
(0.029)
0.679
(0.041)
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n-1/3

0.940
(0.379)
0.985
(0.479)
0.953
(0.055)
0.663
(0.035)
0.948
(0.055)

0.957
(0.165)
0.984
(0.209)
0.953
(0.055)
0.663
(0.035)
0.948
(0.055)

0.953
(0.114)
0.984
(0.145)
0.953
(0.055)
0.663
(0.035)
0.948
(0.055)

0.950
(0.045)
0.985
(0.059)
0.953
(0.055)
0.663
(0.035)
0.948
(0.055)

n—1/4

0.950
(0.377)
0.989
(0.477)
0.954
(0.055)
0.777
(0.042)
0.946
(0.055)

0.945
(0.165)
0.990
(0.209)
0.954
(0.055)
0.777
(0.042)
0.946
(0.055)

0.953
(0.114)
0.987
(0.145)
0.954
(0.055)
0.777
(0.042)
0.946
(0.055)

0.945
(0.046)
0.982
(0.059)
0.954
(0.055)
0.777
(0.042)
0.946
(0.055)

n-1/6

0.951
(0.380)
0.980
(0.478)
0.939
(0.055)
0.944
(0.055)
0.955
(0.055)

0.960
(0.165)
0.985
(0.209)
0.939
(0.055)
0.944
(0.055)
0.955
(0.055)

0.945
(0.114)
0.989
(0.145)
0.939
(0.055)
0.944
(0.055)
0.955
(0.055)

0.951
(0.045)
0.990
(0.059)
0.939
(0.055)
0.944
(0.055)
0.955
(0.055)

0.943
(0.379)
0.981
(0.479)
0.952
(0.055)
0.947
(0.055)
0.953
(0.055)

0.952
(0.165)
0.987
(0.209)
0.952
(0.055)
0.947
(0.055)
0.953
(0.055)

0.950
(0.114)
0.989
(0.145)
0.952
(0.055)
0.947
(0.055)
0.953
(0.055)

0.958
(0.046)
0.987
(0.059)
0.952
(0.055)
0.947
(0.055)
0.953
(0.055)



our knowledge, Hsieh et al. (2022)’s method does not apply for this example because it is not a
quadratic programming problem. We are also unable to use Fang and Santos (2019) because there
is no closed form solution to the optimization problem. For choosing «,, we apply the double
bootstrap method described in Section 2.3 using n = 5000, By = By = 5000, 8y = 0 over the

n n n n

-1/3, n

~1/4 . —1/6 ,—1/7 —1/8 —1/9
) ) ) ) 9y

grid ay, € {n n=Y 10}. The empirical coverage frequencies were
{0.9512,0.9502, 0.9506,0.9478,0.9432, 0.9368,0.9338}. «,, = n~ /3 was the smallest value which
achieved coverage at or above the nominal level of 0.95. We also tried using all the other values
of a,, and found that the coverage was the same up to three decimal places across the different
values of a,,. We did not constrain h when computing h(ierégn Qn (5 + %), which effectively sets d,,
to y/nd, — .

The coverage of the proximal bootstrap is close to the nominal level for all values of 3y while the
coverage of subsampling and the standard nonparametric bootstrap are far below the nominal level

1

1/2 ,n Y4 n_l/ﬁ}. The coverage is worst when Gy = n™ ",

for drifting values of gy € {n_l,n_ —1/3

, T
where it can drop to around 50%. The average interval lengths of the proximal bootstrap are

somewhat larger than the other methods.

3.3 Conditional Logit Model with Estimated Inequality Constraints

We generate data according to y;; = 1 (yZ*] > yn vk # j), where the utility of individual ¢ = 1..n

from picking choice j = 1...J is given by

1 1 05 ... 05
. 2 0.5 1 0.5
Yi; = Bowij + €ij, for x; ~ N ;
J 0.5 05 .. 1

and €;; i Type 1 Extreme Value. We set By = 0.1. The constrained MLE estimator maximizes
the log-likelihood subject to the constraints that the share of individuals who pick each choice
cannot exceed the supply of that choice. These inequality constraints can be viewed as capacity

constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium demand
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Table 2: Empirical Coverage Frequencies and Average Interval Lengths

Bo
n = 100
Proximal Bootstrap
Subsampling

Nonparametric Bootstrap

n = 500
Proximal Bootstrap

Subsampling
Nonparametric Bootstrap

n = 1000
Proximal Bootstrap

Subsampling
Nonparametric Bootstrap

n = 5000

Proximal Bootstrap
Subsampling

Nonparametric Bootstrap

0

0.946
(0.380)
0.969
(0.211)
0.969
(0.236)

0.953
(0.165)
0.974
(0.092)
0.971
(0.106)

0.945
(0.115)
0.981
(0.065)
0.969
(0.076)

0.953
(0.046)
0.973
(0.028)
0.975
(0.034)

n—l

0.946
(0.380)
0.496
(0.213)
0.518
(0.240)

0.952
(0.165)
0.490
(0.093)
0.490
(0.107)

0.944
(0.115)
0.519
(0.065)
0.497
(0.076)

0.952
(0.046)
0.558
(0.028)
0.601
(0.034)

n—1/2

0.946
(0.381)
0.587
(0.232)
0.671
(0.294)

0.953
(0.166)
0.539
(0.099)
0.666
(0.133)

0.944
(0.115)
0.562
(0.069)
0.681
(0.095)

0.952
(0.046)
0.522
(0.029)
0.685
(0.042)
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n-1/3

0.947
(0.381)
0.686
(0.266)
0.844
(0.359)

0.954
(0.166)
0.646
(0.115)
0.885
(0.169)

0.945
(0.115)
0.686
(0.080)
0.917
(0.122)

0.953
(0.046)
0.648
(0.035)
0.953
(0.055)

n—1/4

0.947
(0.381)
0.761
(0.297)
0.916
(0.383)

0.953
(0.166)
0.773
(0.132)
0.941
(0.175)

0.944
(0.115)
0.797
(0.093)
0.940
(0.124)

0.953
(0.046)
0.785
(0.042)
0.954
(0.055)

n-1/6

0.947
(0.381)
0.847
(0.341)
0.947
(0.390)

0.953
(0.166)
0.897
(0.162)
0.944
(0.175)

0.944
(0.115)
0.923
(0.118)
0.943
(0.124)

0.953
(0.046)
0.944
(0.055)
0.952
(0.055)

0.947
(0.381)
0.939
(0.390)
0.947
(0.388)

0.953
(0.166)
0.952
(0.175)
0.941
(0.175)

0.944
(0.115)
0.962
(0.124)
0.943
(0.124)

0.953
(0.046)
0.959
(0.055)
0.954
(0.055)



for each housing unit should not exceed the supply of that housing unit. For Pj; (8) = %,

~

J
1
Bn = arg mBaX InL (B —J Z yij In Py (8

HM:

1 _
- Z Py (B) <bj forall j =1...J
n -

108 exp (BoZiz)
105 2

where Bj i=1 S exp(Fosit) for Z;; drawn independently from the same distribution as w;;.

We examine the empirical coverage and average length of the proximal bootstrap confidence

set Cf_, = {5 ‘n (Qn (B) — mf Qn (54— )> & a}, where ¢f_, is the 1 — a quantile of

éan*(B)

n

for Z*( ) = an\/ﬁ (Z;kz (Bn) - Zn (Bn)) (ﬁ - Bn) + % Hﬁ - BnHIan and Bn = Bw We use

analytic expressions for the components in the proximal bootstrap objective function:

. olnL (B 1 &
ln (6) = _naiﬂ = 7 Z Z Yij — ’Lj (B)) Tij
i=1j5=1
CEWLB) 1N '
H, (5) = (92(95/ = 7 Z Z zg (-Tz] ERI le) (xij - EiDzl (B) xil)
i=1j=1 l

We consider n € {100,500, 1000, 5000}, J = 20, oy, € {n~Y/3 n=Y4 n=1/6 =18 n=1/103 "B = 1000
bootstrap iterations, and R = 2000 Monte Carlo simulations. Empirical coverage frequencies for the
proximal bootstrap confidence set, subsampling equal-tailed interval, and standard nonparametric
bootstrap equal-tailed interval, as well as average interval lengths are reported in Table 3. The
proximal bootstrap coverage frequencies and average interval lengths are the same up to three
decimal places across the different values of «a,,. The proximal bootstrap coverage frequencies are
very close to the nominal level of 95% for sufficiently large values of n. Both subsampling and the
standard nonparametric bootstrap undercover for all values of n, with the standard nonparametric

bootstrap having worse coverage than subsampling.
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Table 3: Empirical Coverage Frequencies and Average Interval Lengths

n 100 500 1000 5000
ap =n"13 0936 0951 0949  0.951
(0.073)  (0.032) (0.022) (0.009)
ap =n"1/4 0.936 0951  0.949  0.951
(0.073)  (0.032) (0.022) (0.009)
Qy, =n1/0 0936 0951  0.949  0.951
(0.073) (0.032) (0.022) (0.009)
ay, =n"1/8 0.936 0951  0.949  0.951
(0.073)  (0.032) (0.022) (0.009)
ay = n~ 10 0.936 0951  0.949  0.951
(0.073)  (0.032) (0.022) (0.009)
Subsampling 0.927 0937 0939  0.933

(0.002) (0.001) (0.000) (0.000)
Nonparametric Bootstrap  0.917 0.928 0.916 0.903
(0.002) (0.001) (0.001) (0.000)

4 Conclusion

We have demonstrated how to use a computationally efficient bootstrap procedure to conduct
asymptotically valid inference for y/n-consistent constrained optimization estimators with nonstan-
dard asymptotic distributions. Our proximal bootstrap estimator can be expressed as the solution
to a quadratic programming problem and relies on a scaling sequence that converges to zero at a
slower than /n rate. We have illustrated its empirical performance in boundary constrained MLE

and GMM problems and a conditional logit model with capacity constraints.

5 Appendix

5.1 Proofs of Theorems
5.1.1 Proof of Theorem 1

Using the arguments in Theorem 2.1 of Shapiro (1988) and Lemma 3.1 of Shapiro (1989), when 3,
lies in a neighborhood of Sy, By, is almost surely a minimizer of £, (B) = Qn (B) + Zjeguz Xoj fi (B)
over C'(X\g) = {Be€B: f;(B)=0for je&UT* (N), f;(B) <0 forjeIi(\o)}, where T* (N\g) =
G eT My >0}, T3 (Ao) = {j € T : Aoy = 0}, and T* = {j € T : f; () = 0}.

Consistency of Bn for By follows from Assumption 1 and Corollary 3.2.3 in van der Vaart and

30



Wellner (1996). We can show that consistency implies y/n-consistency using a modified version of
the first part of the proof of Theorem 5 on page 141 of Pollard (1984) to allow for constraints. We
need to replace his population objective F'(-) with the population Lagrangian £ (89, A\o) = Q (80) +
Yjecuz Mojifj (Bo). The first order KKT condition VL (8o, o) =1 (Bo) + Xjee 7 AojFo; = 0 implies
the local quadratic expansion £ (3, Ao) = £ (8o, Xo) + 38 — BOHVQLWO o) O (18 = Bo[?) for B in a
small neighborhood of 5y. This expansion in combination with the local quadratic approximation
of the Lagrangian in Assumption 5 will imply a modified version of Pollard (1984)’s equation (6),
where F,(+) is replaced by £, (-) and the empirical process E,A is replaced by 1/n ( (Bo) — 1 (Bo )
We assumed in condition (iii) that Z7 (A\g) = @, which means Z* = Z§ (o), and C () =

{BeB: fj(B)=0forje&, f;(B) <0 for jeI*}.

Denote the feasible direction set by

fn—{h:fj<ﬁo+\;%>—Oforjeé’,fj(ﬁo—i—\;%)<OforjeI*}

Denote the linearized feasible direction set by

= {h:v/nf; (Bo) + Fysh = 0 for j € €, v/nf; (Bo) + Fy;h <0 for j € T*}

LICQ implies the linearized feasible direction set is sufficient to capture the geometry of the con-
straints near By so that \/n (Bn - ﬂo) is asymptotically equivalent to the minimizer of the La-

grangian over X,:

Vit (B~ o) = angin {nzn (50 ; \j%) i, <50>} T op(1)

= al"hgegiin {nQn (50 + \%) —nQn (Bo) + jE;JI Aojn <fj (50 + \hf) fi (50))} +op(1)

s arg min {h Wo + h Hoh + = 2 Xojh Gojh} -J
heXl ]Eg

where the convergence result in the last line follows from the following arguments. First note that
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B

Assumption 5 implies that for any 6, — 0, and Bs, = { heRd: 1M < (5n},

nLo (B + Ji) = nL (B0) = W/ (1 (B0) = 1(B0)) — 3h'Hoh — § Sjce.z dogh'Gogh
su
heBs, L+ [

=op(1)

Recall y/n (Zn (Bo) — 1 (60)) wo Wy and Agj = 0 for all j € Z\Z} (Ag), where we have assumed
Z% (M) = @. Since pointwise convergence implies uniform convergence over compact sets K < R?

for convex functions of h, we have that uniformly in h € Bs, ,

~

nQn (50 + \;%) —nQn (Bo) + Y, Aojn <fj (50 + \%) —fi (50))

jeEVT

N 1 1
= h/\/ﬁ (ln (50) —1 (,80)) + ih/HOh + 5 Z )\ojh/Gojh + Op(l)
JjeEUT

1 1
o W Wo + S Hoh + 5 > ok Gosh
je€

as a process indexed by h in the space of bounded functions on compact sets % (K) for any compact

K < R<.

Now consider the constraints. Since \/nf; (80) + Fy;h 2, —wo for j € I\T*, the nonactive

inequality constraints do not affect the asymptotic distribution. Also, v/nfj (8o) = 0 for all j €

€ u I*. Condition (i) is a second order sufficient condition and guarantees that the argmin of

Wy + %h’Hoh + %Zjeg Xojh'Gojh over ¥ is unique. Then by the argmin continuous mapping

theorem (Theorem 1 of Knight (1999)), arg minG,, (h) —._q arg minGg (), where
h h

G () = 10 (50 n jﬁ) 106+ 3 dun (fj (60 v %) _ (%)) Fool (g %)

1 1
Go (h) = h'Wo + Sh'Hoh + o > ;' Gojh + 01 (h ¢ )
je&

¥ ={h: Fyh=0for je& Fyh <0 for jeI*}

Now we show consistency of the proximal bootstrap. a, — 0implies an\/ﬁf_]n (i; (Bn) — in (Bn)> =

0;(1). Using convexity of the proximal bootstrap objective function, compactness of C* — 5y, and
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the fact that 8, € C*,

N 1 ) i )
ﬁ: —fo = argmin){Q‘u+ﬁo *Bn+04n\/ﬁH,;1 (l:;

uE(C*—ﬁo H,
1 _ _
“1‘5 Z /\nj Hu + BO - Bn‘ém}
jeEVT
) 1 5 12 1 5 312
= Slu+Bo—Bn|z + 3 Anj |lu+ Bo— Bulz  +o05(1
iy (el o3 3 el <o)

= B — Bo + 0p(1) = 0p(1)

Note that since C* is already a linearized constraint set, the linearized feasible direction set is

simply

Sn=A{nh: fi (Bn) + Fp; (Bo = Bn + anh) = 0 for j € &,

£ (Bn) + Fr/Lj (Bo — B + ah) <0 for j e I}

= {h : L (ﬁn) + F,;jh + Frlzj (50 — 6”) =0 for je&,
(679 Qp
45 (Bn) (%) + F,h+ F; <60 — 6n> <0 for j GI}
(679 Qp
Using the local parameter h € CZ;ﬁ Y we can derive the asymptotic distribution of the proximal
bootstrap.
v ' o o ) ) )
B0~ argmin f i (i3 (52) = o () (o = B+ auh) + 5 160 = B+t
Qn hex 2 "
1 < = 2
+§ Z )\nj ”/80 - /Bn + O‘nh{ém_}
JjeEUT
5 5 2
7: 2 7 2 ! - Mn 1 - FMn
:argmin{\/ﬁ(l:; (Bn) =l (Bu)) (M +h> +‘ﬂo B }
hesk an 2| an i,

ﬁO_Bn

Qp

nj

>~

+% > +h

JjeEUT

2
G

- argmm{hw (82(Ba) ~ b (B)) + W a4 5 S xnjhf@njmo;a(l)}

hesy jeEuT
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P . / 1 / 1 /
< arg min {h Wo + ' Hoh + 2j€Z;Aojh Gojh} =J

where the last line follows from the following arguments. First, note that under the envelope
integrability assumption 3, Lemma 4.2 in Wellner and Zhan (1996) implies that for any compact
K c R,

IVr (P = Pa) (9 (-, Bn) — 9 (. B0)) | = 0 (1 + v/ |Bn — Bol) = 05(1)

This bootstrap equicontinuity result implies y/n (Z,"; (Bn) — 1 (Bn)) and \/n (Z}L (Bo) — ln (ﬁo)) have
the same asymptotic distribution. Additionally, since H,, EA Hy, an N G for all 7, 'Hcl‘,'aXI ‘5\”]- — /\Oj‘ X
JeEEL

0, and and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K < R,
/ 7% (D 7 (2 1 ! 13 1 3 ! A
W (B2 (Ba) =1 (Ba) ) + 30 Huh 5 Y Auh' G
JjeEVT
= h/\/ﬁ (ZA;; (Bn) — Zn (Bn)) + %hlﬂoh + % Z )\thlGojh + Op(l)
jeEuT

1 1
Vé%* hWWo + ih/Hoh +3 Z Aojh' Gojh
jeEVT
/ 1 / 1 /
= W'Wo + Sh'Hoh + §2A0jh Gojh
je€

as a process indexed by h in the space of bounded functions on compact sets /% (K') for any compact

K c R<.

For the proximal bootstrap constraint set, note that Mﬁ» — oo for j € Z\Z* while

V(£ (Bn)—£;(50))
Vnag

for all j € £ UZ. Then, by a modification of the bootstrap argmin continuous mapping lemma

Qn

= op(1) for j € £ UT*. Additionally, 712;‘ (%) = op(1) and F,; = Fy; +op(1)

14.2 in Hong and Li (2020) that replaces weak convergence with epi-convergence, arg mintL (h) &
h

e—d
arg minGg (h) for

&3 (0) = W (i3 (Ba) — b (Bu) ) + W Huh 5 3 Augh'Gugh + 01 (h ¢ 53)
JjeEVT
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1 1
Go (h) = W'Wo + Sh'Hoh + - > Xojh'Gojh + 01 (h ¢ X)
je&

Here, f»d denotes epi-convergence of the conditional law of (@;‘; to Gg, which can be equivalently
stated as suprepr, |Ewf (G;‘;) — Ef(Go)| 2 0 and Ewf <G;“1)* — Ewf (sz)* 250 for all
f € BLy, where BL; is the class of Lipschitz norm 1 functions with respect to the metric of
epi-convergence defined as d (G:’fb,Go) = [, max {‘depi gx (V) — depi G (v)’ SIS p} exp (—p) dp
, where d¢o (v) = inf{|Jv —u|:ue C} for a non-empty closed subset of R%! and epi G (h) =

{(h,a) : G (h) < a} is the epigraph of G : R? — R.

5.1.2 Proof of Theorem 2

Consider any sequence {P,, € P : n > 1} that determines 5, = §(P,) and the laws of all random
variables. If LICQ is satisfied and I (f8p) = 0, then Ag; = 0 for all j € £ U T so that Assumption 5

implies that uniformly over h € B;s,,

nQn (/Bn + \?ﬁ) - nQn (Bn) = h/\/ﬁ <Zn (Bn) —1 (Bn)> + %h/HOh + OPn(l)

1
e h/W() + §h,H0h

as a process indexed by h in the space of bounded functions on compact sets ¢* (K) for any
compact K < R% These results in combination with the continuous mapping results in Lemma

10.11 of Kosorok (2007) imply that for ¢ (h) = k'Wy + $h'Hoh,

@ (@00 - inf Qu (00 -))
=— inf n <Qn (571 + h) —Qn (5n)> +op,(1)

heBs,, \n
= —hé%gn {\/ﬁ <in (ﬁn) —1 (ﬁn)>, h+ ;h/Hoh} + Opn(l)
g ()
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where B, = {h e R : |h| < s} for /nd, — £k € (0,0]. We already showed in the proof of Theorem
1 that

2 On 2 0l) i (52 (Ba) — b (Bu) ) + S b+ o, (1)

n

Py 1,
o WWo + =W H
h'Wy Qh oh

Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply

inf Z*
inf 2y (B)
S

inf  Z* (B, + anh)

he B—fBn
an

heB=fn
an

= — inf {\/ﬁ (Z:; (Bn) = ln (Bn))/h + ;h’th} +op,(1)

P .
L infa(h
W}&ﬂ“

Therefore, limsupsupsup |J,, (z, P) — J (z, P)| = 0, and since {J (-, P) : P € P} is equicontin-
n—o0 PePzxeR
uous at J, ' (1 —a, P), we have for any P, and e small enough, J,, (zn, P,) — J (zn, P,) = o(1)
where z, = J,'(1—a—¢ P,). Similarly, limsupsupP (sup ‘Jjn (x, P) — J* (z, P)‘ > e> =0
n—o PeP zeR

for all € > 0, and since {J* (-, P): P € P} is equicontinuous at .J, ' (1 — a, P), for any P, and ¢
small enough, J* (x,,P,) — J* (¢, P,) = op, (1). Note that — inf h) < —inf g (h
g, T3, (2 Pa) = J* (on, Pa) = op, (1) o () < —infa(h)

for any realizations of the random variables in the limiting distributions. Then, for all € > 0
and n large enough, there exists § > 0 such that P, (Jgn (T, Pn) — I (zn, Pn) > e) < 4. If
Iy (Xn, Pn) — Jn (2n, Pn) < €, then J1(1l—a—-¢€P,) < J;‘;l (1—a,P,). Take {e,},r_; and

{5n}f:1 to be positive sequences such that €, — 0 and §,, — 0. Then, using arguments similar to

those in Lemma A.1 (vi) of Romano and Shaikh (2012), for all e > 0 and n large enough,

P (1 (@8 = inf @u (5 ) ) < 2 - o)
= P, (n (Qn (Bn) — hé%EnQn (Bn + \;%
= Pn <n (Qn(ﬂn) _hiG%EnQn <5n+ \;%)) < ng (1 _O‘_eapn) N J;n (xmpn) _Jn(xnvpn) < 6)

>> SJ;;I(I—Q7PTL)(\J;” (xmpn)_Jn(ﬁnaPn) <€
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>Pn (TL (Qn(ﬁn)hé%ic?n (ﬂn+\;%)> < Jn_l (10[6,Pn)> *Pn (J;:n (xnapn)*Jn (xnapn) > E)

>1l—-a—€e—9

Since € and & can be arbitrarily small, liminfP, ( n ( Qn (Bn) — inf Qn (ﬁn + L) <c¢l_, | =
n—o heBs,, Vvn @
_ C Teniaf A o A h < aF
1 —a. For p 117521£f]13r617f)13 <n <Qn (Bn) hé%EnQn <6n + ﬁ)) < cl_a>, we can find a sequence

e A . A h Ask . ~
{P, € P} such that p = IITILILIg.}an (n <Qn (Bn) hé%EnQ” <ﬂn + \/ﬁ)> < 01a>- Find a subse

quence ny, of n for which (,, converges, with its limit denoted 8. The same arguments above applied

. .. A . A h A
to such a subsequence imply l}ern_l)&ank (nk (Qn (Bny) — helgaik Qn (ﬁnk + W)) < c’f_a> > 1—q.

Since {P,,, O, } is a subsequence of {P,, 8},

p= hmig}fpnk ng Qn (ﬁnk) . Lrglf Qn (Bnk + \/iLTk)> < éik_a> =1-a.
k

ng— €Bs,,

5.1.3 Proof of Theorem 3

Using similar arguments to Theorem 2.1 of Shapiro (1988) and Lemma 3.1 of Shapiro (1989),
when 3, lies in a neighborhood of By, B, is almost surely the minimizer of £, () = Qn (8) +
Yjesuz A0jfnj (B) over C (Xog) = {BeB: fnj(B)=0for je & UL, (Xo), fnj (B) <O for jeTk,(Xo)},
where T2, (o) = {j € T : Moy > O}, T g (ho) = {j € T3 doj = 0}, and T3 = {j € T+ fu (o) = 0},

We assumed in condition (iii) that Zj . (Ao) = &, which means I} = I} (\), and C (Ag) =
(BEB: fu; (B) = 0 for j € &, fu; (B) <0 for j e T2},

Denote the feasible direction set by

fnz{h:fnj<ﬂo+\;%)=Oforj€5,fnj<60+\;%><0forjeI;';}

Denote the linearized feasible direction set by

Sn = {h:v/nfaj (Bo) + Fuj (B0) h =0 for j € E,v/nfnj (Bo) + Fnj (B0)' h <0 for j e Tt}

LICQ implies the linearized feasible direction set is sufficient to capture the geometry of the con-

straints near [y so that \/n (Bn - 50) is asymptotically equivalent to the minimizer of the La-
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grangian over X,:

Vn <Bn - 50) = argmin {nin (30 + h) —nLl, (»30)} +op(1)

heX, \/H
= al"hgegiin {nQn (50 + \%) —nQn (Bo) + je;JI Aojn <fnj <50 + \%) — fnj (50)) } + op(1)

1 1
v arg min h/W() + *h/Hoh + 2 )\Oj <h/V0j + h/Gojh> =7
hes 2 o 2

where the convergence result follows from the following arguments. First note that Assumption 5

implies that for any d,, — 0, and Bs, = {h eR?: L\% < 6n},

nln (/J’o + %) —nLn (Bo) — W'v/n (in (Bo) =1 (/3’0)> — gh'Hoh = 3 ez Moj (Vn (Fnj (Bo) — Fo;)" h+ 5h/'Go;h)

sup 5
1+ |A]

heBs,,

=op(1)

Therefore, uniformly in h € Bs,,,

nQn (Bo + \%) —nQn (B0) + D, Aon (fnj (50 + \j%) — Jrj (50))

jeEVT
. 1 1
= h’\/ﬁ <ln (BO) —1 (ﬁo)) + ih/HOh + Z >\0j (\/ﬁ (Fnj (50) — Foj),h + 2h,G0jh> + Op(l)
jeEVT
Recall v/n (in (Bo) —1 (50)) + 2jesoz Aojvn (Fnj (Bo) — Foj) > Wo + Xice 7 Ao Vo, and Agj = 0
for all j € Z\Z7% (\o), where we have assumed Z7 (A\g) = @. and A\g; = 0 for all j € Z\Z7 (\o).
Since the last line is a convex function of h, pointwise convergence implies uniform convergence over

compact sets K < R? (Pollard (1991)). Therefore,

h/\/ﬁ (Zn (ﬂo) —1 (ﬁo)) + %h/H()h + Z )\()j <\/ﬁ (Fn]‘ (ﬂo) — Foj), h+ ;h/Gojh> + Op(l)

JeEUT

1 1
o W' Wo + Sh'Hoh + DT A <h’voj + 2h’ngh>
JjeEVT

1 1
= W'Wo + sh Hoh + ) Xoj (h’voj + h'Gth>
2 = 2

as a process indexed by h in the space of bounded functions on compact sets £/ (K') for any compact
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K c R

Now consider the constraints. /nfn; (80) + Fnj (Bo) b %> —oo for j € T\T*, so the nonactive
inequality constraints do not affect the asymptotic distribution. Additionally, v/nfy; (8o) v~ Up;,
jointly, for all j € £ U T*, and F,; (o) = Fo; + op(1). Condition (i) is a second order sufficient
condition and guarantees that the argmin of A'Wy + %h’Hoh + Zjeé‘ Aoj (h/Voj + %h’Gth) over

Y. is unique. Then by the argmin continuous mapping theorem (Theorem 1 of Knight (1999)),

arg minG,, (k) —._q4 arg minGg (h), where
h h

G () =@ (B0+ =) =@ o)+ 33 Mo (i (Bo+ =) = oy () ) + oL (¢ 3

JjeEUT

Go (h) = W'Wy + hH0h+Z/\0] <hVOJ—|— hGojh>+ool(h¢E)
je€

¥ = {h: Uy + Fyjh =0 for j € & Uy; + Fy;h <0 for j € T*}
Note that since C* is already a linearized constraint set, the linearized feasible direction set is simply

{h fnj( )“‘Fl (BO_Bn“‘an )“‘an\F(nJ(ﬁn) fnj(Bn)):Oforjeg
fnj(Bn)+Fr/zj(60_Bn+an)+an\/>( ( ) fn](ﬁn))<0forjez}

_ {h i Bo) o (5 (Ba) = g (Ba)) + Foy (ﬁo - ﬁn) Oforjeé,

Qp Qn

fnj (Bn)

Qp

Qpn

+ ELh 5 (B2) — o (52) + oy (2 <o forjeI}

Using the local parameter h € %;ﬁo, we can derive the asymptotic distribution of the proximal
bootstrap.
B* - BO = / = 1 — 2
= arg min O‘n\r ( (5n) - l (Bn)) (/30 - /Bn + anh) +3 H/BO - /Bn + anh”H
o hes 2 "

+ Z (anf Fnj)/ (50 - Bn + anh) + % Hﬁo — B + O‘”h”énj) }

jeEVT

_ argmm{m(i:; (5o) =1 () (B e n) 4 5 Bt

hex# On

7%
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2

)

60_671

Qp

+h

+ Y A (ﬁ(ﬁ;“j—ﬁn-)’ (ﬁoojﬁ" +h> +;‘
jeEVT n

= arg min {h'\/ﬁ ([; (Bn) — In (Bn)) + %h/th

hex¥

_ _ _ 1
+ Z )\nj (h,\/ﬁ (F;j — Fn]> + Qh,Gn]h>} + O;(l)
jeEuT
1 1
V\IE» arg min {h/WO + ih/HOh + Z )\Oj <hlV0j + 2h/G0jh> } =J

w hex Jeg

where the last line follows from the following arguments. First, note that since H,, > Ho, Ghrj TN Goj
for all 7, and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K < R,

W (B (Bn) =1 (Ba)) + i Y A <h’x/ﬁ (Fj = Fug) + ;h/Gm’h>

2 JjeEVT
b (5 (B) — 1 (Bu)) + SWHOR+ Y Ay <wﬁ (F% — Fu) + ;h’Gojh) +op(1)
JjeELT

Next, note that Assumption 3, max |An; — Aoj 2o0,and  sup  n(FF(B) — Fn(B) — E*(Bo) + F (Bo)) =
jeet 18~Boll<o(1)

o3 (1) imply v/ (I3 (Bn) = b (Ba) ) + Lyeeoz Mg v (B = Fug) 5o Wo + Xjee z MojVos because

5 (Ba) =l (Ba) )+ Mgy (B — Frg)

jeEuT

o

= i (i (80) = 1 (B0) ) + v/ (B2 (Bu) = b (B) = (I (50) = b (60) ) )
+ 7 Aopn (B (Bo) = Fuj (B0) + Y, (A — Aog) v/ (Byfy = Fg)

jeEVT JjeEVT
+ Z /\Oj\/ﬁ (F:] — Fnj — (F:] (Bo) — Fnj (50)))
jeEUL
— v/ (05 (Bo) = n (B0)) + 3 Ao/ (B (Bo) = Fus (50) + 0p(1)
jeEVT

5 ~ P
and we assumed /n (l;kz (Bo) = In (50)) +2jesuz Mojvn (Fﬁj (Bo) — Fnj (ﬂo)) WW0+Zjeguz Aoj Voj-
t4l ~ D 3 P . < = p
Additionally, jr(%%%‘an —Goj’ = 0 and jreltls’%XI‘)\"j —)\oj‘ = 0 imply that ZjeEUI)‘NJan =

ZjeguI XojGoj. By convexity of the bootstrap Lagrangian in h, pointwise convergence implies
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uniform convergence over compact sets K < R?; therefore,

W\/n (Z;: (Bn) — In (Bn)) + %h’Hoh + > Ay <h’\/ﬁ (Fik; — Foj) + ;h’Gojh)

jeEuT

Py 1, / 1,
h'Wo + 2h Hyh +j€(§u )\()j (h VOJ + 2h G()Jh>

='Wy + h Hoh + ) Xoj <h Voj + h Gojh>
je&

as a process indexed by h in the space of bounded functions on compact sets % (K) for any compact

K cR%

Note that 2" ('8"> —oo for j € Z\Z* while f”jogf") _ Vldng (5%2;1”03' (b)) _ /nldns (\B;)anfm(ﬁo))
ﬁ(f"jié%L;fOJ(ﬁo)) = op(1) for j € EUT*. Additionally, F}; (%) =op(1) and F,j = Fyj+op(1)
forall j € £UT. Since v/n (f5 (Bo) = fn (Bo)) W Upand  sup  +/n(f7(8) = fu (B) = f7 (Bo) + fn (B0)) =

18—Boll<o(1)
o5 (1), it follows that y/n (f;l“ (Bn) — fn (Bn)) W Up. Then, by the bootstrap argmin continuous

mapping lemma 14.2 in Hong and Li (2020) (after replacing weak convergence with epi-convergence),

arg minG* (h) £>d arg minGyg (h) for
h € h

G (h) = v (B (Bu) — b (Ba) ) + ' Fluh
+ > Anj (hf( — Foj) + h’Gmh> + ool (h ¢ ©F)

jeEuT

1 1
Go (h) = KW, + 5h’Hoh + > Ay <h’voj + 2h’G0jh> + ool (h¢X)
JEEUTH (o)

ZZ{h:Uoj—l-Féjh=Oforjeg,Uoj—l-FéjhéOfOl“jEI*}

5.2 Verification of Assumptions

We first verify that Assumptions 2 and 3 are satisfied for the boundary constrained GMM ex-
ample (example 2). In this example, Iy (Bn) = G;Lﬁ'n (Bn), lA;“L (Bn) = G* Tk (ﬁn) n (B) =
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[0 1y <B8)—0.5, 15" g — 8] 75 (8) = [0, 1 (g < B) — 0.5, 137 ¥ — 8], and

e X K (u7 = ) ] o [ £(80) ]

-1 -1

Gy =

nhzz 1Kh( 571) ] O

n
-1

where f (-) is the density of y and K} (z) = K (z/h) for some kernel function K () and bandwidth
h. We can express v/n (15 (Ba) = In (Br) ) as

Vi (05 (Ba) = 0 (Ba) ) = v (G272 (Bu) = G (B))
= GV (75 (B) = 7n (Ba) + (G2 = G) Vi (77 (B) — #5 (5o))
~ (Gn = @) Vi (o (Bu) = e (80)) + (G2 = G) Vi (32 (Bo) = Fu (Bo)
+ (G = Gn) Vi o (B) = (80)

= G'Vn (P} = Po)7 (-, 80) + G'vn (P — Po) (m (-, Bn) — 7 (-, B0)) + 0p(1)

where we have used /n (7 (B) — 77, (B0)) = Op(1), v/12 (7tn (Bn) — 7tn (Bo)) = Op(1), v/n (7 (Bo) — 7 (B0)) =
0,(1), /1 (7n (Bo) — 7 (Bo)) = Op(1), G% — G = 0,(1), and G — G = 0,(1). We can express
G (w (- 8n) =7 (-,80)) = f(Bo) (1 (yi < Bn) —1(yi <Po)) + (Bn—Bo) = g(Bn) — g o) for
9(B) = f(Bo) (1(yi < B) —7) — (yi — B). Note that Gr = {g(-,8) —g(-,80) : [6—Bol < R} is a
Donsker class for some R > 0 because {1(y; < 8):|8— o] < R} and {1 (y; < Bo)} are bounded
Donsker classes, f (3p) is bounded between 0 and 1, and 8 — Sy is bounded between —R and R on
Gr. Using the Donsker preservation properties for sums and products of bounded Donsker classes,

Gr is a Donsker class. Additionally, Plg (-,5) — ¢ (-,50)|2 — 0 as 8 — By because

Plg(-,8) =g (- Bo)l’

<F(Bo)’ E1(y; < B) —1(yi < Bo)l* + 18— Bol* + 2E (1 (y; < B) — 1 (yi < Bo)| 18 — Bl
= (B)* B (i < B) = 1(yi < Bo)l + 18— Bol® + 2|1 (i < B) — 1 (i < Bo)| 18 — Bl
</ (Bo)* (E|1(Bo < i < B)| + E[1(8 < yi < Bo)|) + 218 — Bl
=f<ﬂo>2<P<ﬁo<yz~<5>+P(ﬁ<yi<ﬁo>>+2|ﬁ—ﬁo|
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The envelope integrability condition in Assumption 3 is satisfied because f (o) (1 (yZ < Bn) —1(y; < ﬂo))

. S 1. . 9(-:8)—g(-,B80)
is bounded between -1 and 1, which implies  sup ’1 T /rTA—Bol

9(-B)€Gs,
G'\n (P —P,) (7 (-, 8y) =7 (-, B0)) = op(1), and y/n (Z;"L (Bn) — I (Bn)> converges to the same
asymptotic distribution as \/n ( (Bo) =1 (50))

We can also check Assumptions 2 and 3 are satisfied for the conditional logit example (exam-

< 1 for any n > 1. Therefore,

ple 3) under additional assumptions. In that example, I, (3) = Ly ijl (yij — Pij (B)) xij =

Pag (- 8) and 5 (8) = 24 S0y 53y (v = P (B)) = Pig (- 8) for g (- 8) = 5 Xy (s — Py (8)) i
and P;; (8) = %, where J « nisfixed. If £ |xij|4 < o0, we can show that P |g (-, 8) — g (-, Bo)|* —

0 as 8 — [y because

Plg(~8)—g(B ZE\PU (Bo) — Pij (B)|? |ais |

]71

J
%szmg (B0) - Py (B)|" Bl

2
If £ <supJZJ 1 | Py (D) w4 ) <0, Gr=1{9(B)—9g(,Po): 18— Bo| < R} is a Donsker class for

some R > 0 becanse g (- 8) = g (o)l = |5 51 (P (Bo) = P (8) | < sup S, 18— Bol

is Lipschitz with a square-integrable Lipschitz constant. The envelope integrability condition will be

Pi/j (0) x4

satisfied if the envelope function for Gg is uniformly integrable or if the x;; are uniformly bounded.
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