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We demonstrate how to use the proximal bootstrap to conduct asymptotically valid inference
for 4/n-consistent estimators defined as the solution to a constrained optimization problem with
a possibly nonsmooth and nonconvex sample objective function and a constraint set defined by
smooth equalities and/or inequalities that can be either non-random or estimated from the data
at the y/n rate. The proximal bootstrap estimator is typically much faster to compute than
the standard bootstrap because it can be written as the solution to a quadratic programming
problem. Monte Carlo simulations illustrate the correct coverage of the proximal bootstrap
in a boundary constrained nonsmooth GMM model, a conditional logit model with estimated
capacity constraints, and a mathematical programming with equilibrium constraints (MPEC)
formulation of the Rust (1987) Bus Engine Replacement model proposed in Su and Judd (2012).
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1 Introduction

This paper considers using the proximal bootstrap estimator proposed in Li (2021) to conduct
asymptotically valid inference for a large class of y/n-consistent estimators with possibly non-
standard asymptotic distributions for which standard bootstrap procedures fail. The application
which we will focus on in this paper is estimators defined by the solution to a constrained opti-

mization problem with a possibly nonsmooth and nonconvex sample objective function and either
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estimated or non-random smooth inequality and/or equality constraints. A well-known example of a
constrained estimator with a nonstandard distribution is the constrained MLE estimator where the
true parameter lies on the boundary of the constraint set (Andrews (1999),Andrews (2000),Andrews
(2002)).

Motivated by the optimization literature and recent contributions in computationally efficient
bootstrap procedures (e.g. Forneron and Ng (2019)), our proximal bootstrap estimator can be
expressed as the solution to a convex optimization problem and efficiently computed starting from
an initial consistent estimator using built-in and freely available software. The proximal bootstrap
can consistently estimate the non-standard asymptotic distribution of constrained estimators when
the parameters are not drifting towards the boundary. When the parameters are drifting towards
the boundary at an unknown rate, the proximal bootstrap typically cannot consistently replicate
the estimator’s distribution. However, we are still able to conduct uniformly conservatively valid
inference on the entire parameter vector using a confidence set constructed by inverting the optimal
value function. We can also conduct uniformly conservatively valid inference on subvectors of the
parameter vector using two-sided intervals obtained through projection. The proximal bootstrap
relies on a scaling sequence (labeled v, in this paper) that converges to zero at a slower than 1/n rate,
similar to the €, in the numerical bootstrap Hong and Li (2020). However, we want to emphasize
that the proximal bootstrap is a different procedure than the numerical bootstrap because it solves
a different optimization problem. The proximal bootstrap works only for y/n-consistent estimators
but is more computationally efficient than the numerical bootstrap.

Another novel part of this paper is that we provide a general asymptotic distribution for estima-
tors defined by the solution to a constrained optimization problem with equality and/or inequality
constraints which can be estimated from the data, while Hong and Li (2020) looked only at esti-
mators with non-random constraints that do not depend on the data. The asymptotic distribution
of constrained estimators with estimated constraints is derived using ideas from the optimization
literature and encompasses as special cases the results in Geyer (1994), Andrews (1999),Andrews
(2000), and Andrews (2002) for constrained estimators with non-random constraint sets and true
parameters possibly lying on the boundaries of the constraint sets.

Our paper was inspired by ideas in the optimization literature on sequential quadratic pro-

gramming, where a local quadratic approximation is used to approximate the objective function



on each iteration. The proximal bootstrap estimator is in effect applying such a local quadratic
approximation, but centered around an initial 4/n-consistent estimate of the parameters. Because
we want the estimation error from this initial estimate to be negligible in the proximal bootstrap
approximation of our estimator’s asymptotic distribution, we need to use a scaling sequence «,, that
satisfies oy, — 0 and y/na,, — 0. For estimators with estimated constraint sets, a, will also serve
as a selection device so that the active constraints are included in the asymptotic distribution while
the nonactive, non-drifting constraints are not.

We were inspired to write this paper after reading a series of papers by Alexander Shapiro:
Shapiro (1988), Shapiro (1989), Shapiro (1990), Shapiro (1991), Shapiro (1993), Shapiro (2000),
and also by Keith Knight: Knight (2001), Knight (2006), and Knight (2010). While several of
these papers derive the non-standard asymptotic distributions of various constrained estimators,
we did not see them propose a practical inference procedure as we do. Examples of econometrics
papers on constrained estimation include Moon and Schorfheide (2009), Kaido and Santos (2014),
Kaido (2016), Gafarov (2016), Chen et al. (2018), Hsieh et al. (2022), Kaido et al. (2019), Kaido
et al. (2021), Horowitz and Lee (2019), and Fang and Seo (2021). While many of these papers
are concerned with either conducting inference on the optimal value of the constrained optimiza-
tion problem or testing whether the parameter of interest satisfies the constraints, we are mainly
interested in conducting inference on the optimal solution assuming that the constraints are valid.
Perhaps the closest paper to ours is Hsieh et al. (2022) who also consider inference for the opti-
mal solution, but they focus on linear programming (LP) and convex quadratic programming (QP)
problems with linear constraints. In contrast to Hsieh et al. (2022), we allow for nonconvex and
nonlinear objective and constraint functions, but we do not allow for non-unique solutions. Our
inference procedure is also different from theirs because we use resampling while they exploit the
fact that the primal-dual formulation of the KKT conditions can be written as a set of moment
inequalities and then apply test inversion.

The outline of our paper is as follows. Section 2 contains the main theoretical results, starting
with Subsection 2.1 which contains the notation followed by Subsection 2.2 which briefly reviews the
concept of proximal mappings from the optimization literature. Subsection 2.3 shows consistency of
the proximal bootstrap for finite-dimensional constrained estimators with non-random constraints,

and Subsection 2.4 shows consistency for estimated constraints. In both the non-random con-



straints case and the estimated constraints case, the proximal bootstrap can consistently replicate
the asymptotic distribution when parameters are on the boundary of the constraint set, but not when
parameters are drifting towards the boundary. Nevertheless, as demonstrated in Subsection 2.5, we
can still use the proximal bootstrap to conduct asymptotically uniformly conservatively valid infer-
ence by inverting the optimal value function. Section 3 contains Monte Carlo simulation evidence
demonstrating the validity of confidence intervals constructed using the proximal bootstrap for a
boundary constrained nonsmooth GMM model, a conditional logit model with estimated capacity
constraints, and the mathematical programming with equilibrium constraints (MPEC) formulation
of the Rust (1987) Bus Engine Replacement model proposed in Su and Judd (2012). Section 4
concludes. Section 5 is the Appendix which contains proofs of the theorems and some auxiliary

results.

2 Proximal Bootstrap

2.1 Notation

Consider a random sample X7, Xo, ..., X, of independent draws from a probability measure P on a
sample space X. Define the empirical measure P, = % > dx,, where d; is the measure that assigns
mass 1 at x and zero everywhere else. Denote the bootstrap empirical measure by P, which can refer
to the multinomial, wild, or other exchangeable bootstraps. Weak convergence is defined in the sense
of Kosorok (2007): Z, v~ Z in the metric space (D, d) if and only if supse g, |E* f(Zn) —Ef(Z)] —
0 where BL; is the space of functions f : D — R with Lipschitz norm bounded by 1. Conditional
weak convergence is also defined in the sense of Kosorok (2007): Z, VS\I% Z in the metric space (D, d)
if and only if sup sepr, |Ewf(Zn) — Ef(Z)| -2 0 and Ew f(Zy)* — Ew f(Zy)« —— 0 for all f € BLy,
where BLq is the space of functions f : D — R with Lipschitz norm bounded by 1, Ew denotes
expectation with respect to the bootstrap weights W conditional on the data, and f(Z,)* and f(Z,,)«
denote measurable majorants and minorants with respect to the joint data (including the weights
W). Let X} = 0% (1) if the law of X¥ is governed by P, and if P, (|X}5| > €) = op (1) for all € > 0.
Also define M = O% (1) (hence also Op (1)) if limy,,—o limsup,,_,, P (P, (M,; > m) >¢€) — 0,

n

Ve > 0.



2.2 Proximal Mappings

Given an Euclidean space D and a function r : D — R, the proximal mapping of r is the operator

given by

1
proz, (z) = arg min {r B)+ =18 — z|§} for any z € D
BeD 2

Given a function r : D — R and a symmetric positive definite matrix H, the scaled proximal

mapping of r is the operator given by, for |5 — ZHIQLI =(B- z), H(B—z2),

1
proxy, (z) = arg min {r (B) + 5 18— Z%{} for any z € D
peD

When r is a proper closed and convex function then prox, (z) is a singleton for any z € D (Theorem
6.3 Beck (2017)). The same can be said for proxy, (z) (Lee et al. (2014)). Although it is rarely
the case that the scaled proximal map has a closed form solution, the solution can be efficiently
computed using various proximal algorithms (see e.g. Lee et al. (2012), Lee et al. (2014), Parikh
et al. (2014), Tran-Dinh et al. (2015), Ghanbari and Scheinberg (2016), Rodomanov and Kropotov
(2016), Byrd et al. (2016)).

2.3 Constrained Estimators with Non-random Constraints

It is well known (see e.g. Andrews (2000)) that the standard bootstrap is inconsistent when the true
parameters (y lie on the boundary of the constraint set C. Andrews (1999) derives the asymptotic
distribution of constrained extremum estimators where the rescaled constraint set y/n (C' — fp) can
be approximated by a convex cone. Geyer (1994) considers a more general case where the cone
does not need to be convex. We first consider constrained estimators with non-random constraints
5n = ar% IélinQn (8), where C' < B is a non-random, closed constraint set that is a subset of the
E
compact parameter space B < R?, where d is fixed, and Qn (B) is a possibly non-smooth, nonconvex
function that converges uniformly to a function @ (5) that is twice continuously differentiable at
Bo = ar% IginQ (8). We assume both B, and By are unique, which rules out partially identified
E

models.

We will show that the proximal bootstrap can consistently estimate the distribution of \/n (Bn — Bo)



both when [y lies in the interior and on the boundary of C, but not when it is drifting to-
wards the boundary. Nevertheless, we will show in Section 2.5 that the proximal bootstrap can
be used to form a uniformly conservatively valid confidence set for either the whole parameter
vector or subvectors of the parameter vector. Because the more general results in Section 2.5
cover the case of non-random constraints as a special case, we will defer discussion of drifting
sequences in the case of non-random constraints until Section 2.5. Geyer (1994) shows that if
Q (B) achieves its minimum over C' at some point fy where it has a local quadratic approxima-
tion Q (8) = Q (Bo) + § (8 — Bo)' Ho (8 — o) + o (|8 — fol*). where Ho = ZD| is postive
definite, then ﬁ(ﬁn —50> v J = argmin {h’Wo + %h’Hoh}, where Wy is a Gaussian and

hETC (,80)
C—Bo

Tc (Bo) = limsup=—= is the tangent cone of C' at fy. For closed sets C' that are Chernoff Regular
710

at By, the limit exists and Te (Bp) = li%%.
T

T

Note that the assumption that @ (8) has a local quadratic approximation at [y of the form

Q(B) = QBo) +4 (8~ fo) Ho (8~ Bo) +0 (18 — ol ) effectively assumes £ (50) = “42| =0
=P0

(this is noted on the top of page 2000 of Geyer (1994)). In other words, the constraints are not

necessary for identification of fy. We will relax this assumption in Section 2.4 to allow for [ (8y) # 0.

When [ (8y) = 0, one way that we can define the proximal bootstrap estimator is for some «a,, — 0

and a,\/n — 0,

~

By = prozg, gy (Bo = can/mt (I (Ba) =l (Bn) ) )
~argin {201 (5 €) + an (12 (82) ~ 1 (3.)) (5= Bu) + 315~ Bl |

BeRd
= axgain f o (15 () ~ 12 (32)) (9 ) + 5 19 Al |
Here, (3, is an initial \/n-consistent estimator of 8. For example, we can use 3, = Bn. The sequence
o, ensures that 3,’s estimation error does not enter into the proximal bootstrap approximation of
Bn’s asymptotic distribution. In (Bn) is a consistent estimate of [ (Sy) using Bn, and lA;‘; (Bn) is a
bootstrap (e.g. multinomial, wild) analog of I, (Bn). If Qn (B) is differentiable, I, (Bn) can simply
be the Jacobian of Q, (B) evaluated at B,. More generally, to handle non-differentiable Q,, (B8),
Zn (Bn) is a subgradient of Qn (8) at Bn H, is a consistent, symmetric, positive definite estimate

of the population Hessian H using Bn



If C is a convex set, then this formulation of the proximal bootstrap solves a convex optimiza-
tion problem. If C' is not convex, we can linearize the constraints to make the problem convex
assuming that a constraint qualification is satisfied which ensures the linearized constraints suf-

ficiently capture the geometry of the constraints around the solution. Let the constraint set be

C={BeB:f;(B)=0forje& f;(8) <0 forjeI} Thenfor F; =

alternative proximal bootstrap estimator using a linearized constraint set as

_, we can define an

‘:n

i = s Lt (1.5 (3) 5 ) + 315 Al |

BeC*
C*={BeB: fj (Bn) + Fj (B—Bn) =0for je& f; (Bn) + Fj (B—Bn) <0 for j eI}

Because this version of the proximal bootstrap with a linearized constraint set C* is a special case
of the more general result in Subsection 2.4’s Theorem 2, we do not prove it in this section. We will
only consider the version with the nonlinearized constraint set C' and show that 'B;Z;f” consistently
estimates the asymptotic distribution of y/n (Bn — ﬁo) when the parameters are not drifting towards
the boundary and [ (8y) = 0. Before we present the theorem, we list a few assumptions needed for
the theorem to hold.
The first assumption is needed to show consistency of Bn for Bg.

Assumption 1. (i) B c R? is compact and d is fived. (i) B = argminQ,, (8) is uniformly tight

peCcB

and unique. '

(iii) Bo = argmin Q (B) is unique.
pBeC
(iv) Q (B) is a lower semicontinuous function that is twice continuously differentiable at By, and

sup |On, (B8) —Q(B)| = op(1) for every compact subset K of C.
BeK

The next assumption states that Qn (8) admits a uniform local quadratic approximation around
y/n neighborhoods of y. This assumption does not require Qn (B) to be differentiable at 3y since
I (8) does not need to be the Jacobian of Qn (8). This assumption is similar to the stochastic

differentiability assumption in Pollard (1985) and is needed to derive the asymptotic distribution

of \/ﬁ (Bn - /30)

!Uniform tightness means for every e > 0, there exists a compact K c C with P (Bn e K ) > 1 — ¢ for every n.



Assumption 2. There exists a symmetric, positive definite Hy and \/n (fn (Bo) —1 (ﬂ0)> = Op(1)
such that for any 6, — 0,
nQn (o + 25 ) = nQn (B0) = W'/ (In (80) — 1 (B0) ) — §1'Hoh
vn 2

sup 3 =op(1)
Al <y/ndn L+ ||R|

The role of the shrinking sequence ¢, is localize the quadratic approximation around Sy. A
similar assumption can be found in Gallant et al. (2022

).
The next assumption is needed to show that /n (Zn (Bo) —1 (ﬁ0)> and \/n (i; (Bo) — In (@’0)>

have the same asymptotic distribution.

Assumption 3. There exists a function g : X — R? indezed by a parameter B € R% such that
for any € RY, v/ (1 (B) = L(8)) = v/ (Pu—P)g(,B) + op(1) and v/ (I5(8) =1 (8)) =
VA (PE = P) g (- B) + 0p(1), where tim Plg (-.50) |21 (lg (- fo) | > ey/i) = 0 for cach ¢ > 0.

The next assumption is needed to show stochastic equicontinuity and bootstrap equicontinuity
results which will be used to show /n (i,”; (Bn) — I (Bn)> and y/n (i;‘: (Bo) = In (50)> have the same

asymptotic distribution.

Assumption 4. (i) Gr = {g9(-,8) —g(-,00) : |8 — Bo| < R} is a Donsker class for some R > 0

and Pllg (-, 8) — g (, o) |[* = 0 for B — fo.

9(75)79(750)
L++v/n|B—Bol

T noo i2A 9(-,B)eGs,

(i1) /\lim lim supsupt® P { sup > t} =0 for any 6, — 0.

(i) will imply stochastic equicontinuity, which in combination with the envelope function inte-

grability condition in (ii) will imply bootstrap equicontinuity. A sufficient condition for (ii) is that

9(,8)—9(-,80)
SUP | T T 5=501
o(-8)eGs,, 1++/n[|B—Po

Our first theorem shows that the proximal bootstrap can consistently estimate the non-standard

< k for some constant x > 0 and any §,, — 0.

distribution of constrained estimators with non-random constraint sets when the parameters are not
drifting towards the boundary. Of particular importance is the sequence o, which converges to zero
at a slower than 4/n rate. The purpose of the slower than 4/n rate is to offset the estimation error

from the initial \/n-consistent estimator Bn.



Theorem 1. Suppose Assumptions 1-4 are satisfied, C < R? is a non-random closed set that is

Chernoff Regular at fy = arg minQ (8), and Q (8) = Q (o) +4 (8 = fo) Ho (8 = fo)+o (18 — ol

peC
where Hy > 0. For any B, such that \/n (Bn — ﬁo) = Op(1) and H, L Hy, let

6t = argmin {5 9) = i (55 (52) 6 (3)) (5= Bu) + 5 19— Bl |

peC

For any au, such that o, — 0 and y/no,, — 0, \/n (,@n — ﬂo) v T and B’Z;f" v% J, where J =

arg min {h'Wo + 3h'Hoh}, Tc (o) = 171?010250, and Wo ~ N (0, P (g (. o) = Pg (-, 0)) (9 (-, Bo) = Pg (-, Bo))").

heTc(Bo)

Remark 1. We can also show that the optimal value’s asymptotic distribution can be consistently
estimated by the proximal bootstrap when the parameters are not drifting towards the boundary. In
: S A S _ 1/ 17 Aﬁ(ﬁﬁ)*Ai(ﬁn) P

particular, n (Qn <ﬁn> — Qn (BO)) wo q (), where g (h) = "Wy + 58" Hoh, and === w
. . . o o, AX(BE)-A%(Bn)

q (J). This result follows from Theorem 4.4 in Geyer (1994) in combination with —=—"——"—> =

a - N Y D) P "
Vi (B (B) = (Ba)) (5520) + 5 | P22+ 0p(1) B a(D).

n

Qn

H,
Remark 2. We can remove the assumption that C' is a closed set by assuming instead that J =
arg min {h’Wg + %h’ Hoh} is almost surely unique. This can happen for example if we strengthen
heTe(Bo)

the condition on C to Clarke Regularity at Sy (see Geyer (1994) page 1997 or Rockafellar et al.
(1998) Definition 6.4 page 199 for a definition), which implies that T () is a convex cone. Every

convex set is Clarke Regular, but Clarke Regularity is weaker than assuming convexity of C. See

example 3 in Geyer (1994) for an example of a set that is Clarke Regular but not convex.

Remark 3. A special case is when [y = argmin@ (3) lies in the interior of C'. Then as noted
in several papers (e.g. Andrews (1999), Andfz\?vs (2002), Chen et al. (2018)), Tc (By) = R and
J is multivariate normal. Another special case of C is when there are only equality constraints:
C = {BeR?: f(B) =0} where f(B) are constraints that do not depend on the data. It is well

known from Amemiya (1985) and Newey and McFadden (1994) that J is multivariate normal.

Remark 4. If [ (8y) # 0, then it is important to include the Lagrange multiplier weighted constraint



Hessians when defining the proximal bootstrap objective function:

Br = axgmin anv/n (1% (Ba) ~ I (Bn)) (8~ Bu) + ; 18— Ball, + é > A 8= Bulz,,

peC je€uT

where C = {BeB: f; () =0for je &, f;j (B) <O for je I}, Gpj > 2*£;(B) .

forall je £ UZ,
- - Bo
and ), are a set of optimal Lagrange multipliers for 3,. The reason for including the extra term
will be described in Section 2.4, where we provide a more general asymptotic distribution for when

there are estimated constraints and [ (5p) may be nonzero.

2.4 Constrained Estimators with Estimated Constraints

Now we consider constrained estimators with a finite number of \/n-consistently estimated inequality
and/or equality constraints that are twice continuously differentiable over a compact parameter

space B < R%.

~

/Bn:argmin(?n(ﬁ)a CZ{,BEIB%:fnj(B)IOfOI‘ng,fn]‘(,B)<OfOI‘jGI}
peC

We will define the population analog of C tobe Cy = {f € B : fy; (8) = 0 for j € &, fo; (8) <0 for j € T},
where sup | fn; (8) — foj (B)] = op(1) for all j € £ UZ. We are interested in conducting inference on
BeB

Bo = argmin@ (), which is assumed to be unique. @ (5) is twice continuously differentiable at 5y
BeCy

and sup Qn (B) = Q(B)| = op(1).

For simplicity, we will impose that the population constraints satisfy Linear Independence Con-
straint Qualification (LICQ), which says that the gradients of the active constraints are linearly
independent. LICQ is the weakest possible constraint qualification that ensures the set of optimal
Lagrange multipliers that satisfy the first order KKT conditions is a singleton (Wachsmuth (2013)).
We note that LICQ will be violated when some active constraint gradients are linear combinations
of other active constraint gradients. In particular, LICQ will be violated when some of the active
constraint gradients are zero. Examples of when LICQ is violated appear in e.g. Kaido et al. (2021)
and Nocedal and Wright (2006). It is fine to relax LICQ to Mangasarian-Fromovitz constraint

qualification (MFCQ) as long as we impose the additional condition that there are unique optimal

Lagrange multipliers. MFCQ is weaker than LICQ because it does not require that the gradients

10



of the equality constraints are linearly independent.

Assumption 5. Suppose Linear Independence Constraint Qualification (LICQ) holds at By : the

gradients of the active constraints Fy; = af%(,ﬁ) s forj e EVT*, whereT* = {j e I : fo; (Bo) = 0},
=0

are linearly independent.

Instead of Assumption 2, we now require that the Lagrangian has a uniform local quadratic
approximation in 4/n neighborhoods of ;. The importance of using the Lagrangian instead of
the objective function is that it allows for the pseudo-true parameters to not be a solution of the

unconstrained population optimization problem; in other words, we allow for the possibility that

L (Bo) # 0.

Assumption 6. Suppose fp; : B — R and fo; : B — R are twice continuously differentiable

functions that satisfy sup | fnj (8) — fo; (8)] = op(1) forall j € EUI. Define Ay to be a set of optimal
BeB

Lagrange multipliers for Bn. Define Ly (8) = Qn (8) + 2ijeenz Anifng (B), Fnj (Bo) = af’gé’g)

2 fo;
and Goj = aéoégﬁ,) 5

For any 4, — 0,

B=ho’
. Suppose Hy and By = H0+Zje€uI MojGoj are symmetric, positive definite.
0

nlo (Bo+ L) = nla (Bo) = W'/l (B0) = 30 Hoh = Yjee iz hos (VitFn (Bo) b+ S/ Gosh)
sup 5
s, 1]

=op(1)
where X\o;j are the unique Lagrange multipliers that satisfy Aojfoj (Bo) = 0 for all j € € VT,
0< )\Oj <o foralljeE VI, and VL (Bo,)\o) =] (Bo) + ZjESuI )\OjFOj = 0.

Note that since VL (89, Ao) =1(Bo) + Xjeer AojFoj = 0, Assumption 6 can also be written as
follows: for any 4, — 0,

nln (o + 2 ) = nln (B0) = v/ (I (Bo) = 1(B0)) = W Hoh = ¥jee iz Daj (VA (Fng (Bo) = Fog)' b+ $1/Gosh)
11 25 R
I s,

=op(1)

When [ (5p) = 0 and max. |An; — Aojl 2, 0, which follows from £3,, being consistent for By, Assump-
jeEu

11



tion 6 will imply Assumption 2 because \g; = 0 for all j € £ UZ. A more in-depth discussion of
why Ao; = 0 appears in Remark 6. However, if [ (8y) # 0, Assumption 6 will not necessarily imply
Assumption 2 because some \g; may not be zero.

In principle, we do not require that there exists a set of unique optimal Lagrange multipliers
Anj for Bn, although in practice it is usually the case that \,; are unique. This is because the active
constraint gradients in the sample are almost surely linearly independent when LICQ is satisfied in
the population and the sample constraints converge uniformly to the population constraints.

Next, we define the proximal bootstrap estimator. Let ;‘;j (8) be the bootstrap analog of
fnj (B) and let Ey (B) = af’zjﬁ(ﬁ). For any 3, such that \/n (Bn - ,80) =0p(1), let F,; = F,; (Bn),

Fg‘j = Fg‘j (Bn), G’nj LA 621;075;/6) 43 for all 7, and let S\n]- be a set of optimal Lagrange multipliers

—Fn

for (,. These Lagrange multipliers can be obtained directly as outputs from the optimization

algorithm’s function call for computing f3,,. Define A;’; = arg minfl:; (8), for
peC*

A3(8) = o (B () 1 (Ba)) (B B) + 5 18— Bul,
_ _ o, _ 1 _
+ Z >\nj (Oén\/ﬁ (F‘;:7 - Fnj) (ﬁ - Bn) + 92 ”B - Bn|2GnJ>

jeEVT
C* = {,8 eB: fn; (Bn) + Fr/zj (5 _Bn) + Oén\/ﬁ( :;j (/Bn) — fnj (Bn)) =0for je€&,
Jnj (Bn) + E}; (B = Bn) + anv/n (fri; (Bn) = fnj (Bn)) <0 for j eI}

(1)

Note that the proximal bootstrap estimator is the solution to a quadratic programming problem,
which is a convex problem if H,, + . jesuT ;\njénj is positive definite. This quadratic programming
problem can be substantially faster to solve than the original constrained problem used to compute
.. Therefore, our proximal bootstrap estimator has a computational advantage over the standard
bootstrap in cases where the standard bootstrap is consistent (e.g. see the MPEC Rust (1987)
example in the Monte Carlo simulations). We do not require that there exists a set of unique
optimal Lagrange multipliers an for f3,,, although in practice it is usually the case that S\nj are
unique for 3, = ﬁn because of our assumptions of LICQ and uniform convergence of the sample
constraints to the population constraints.

In the next theorem, we show that when the population inequality constraints fo; (8y) for j € Z

are not drifting towards zero, the proximal bootstrap is able to consistently replicate the non-

12



standard asymptotic distribution of constrained estimators for which the standard bootstrap is
inconsistent. The key for proximal bootstrap consistency lies in the scaling sequence «, which
converges to zero at a slower than y/n rate. Here, «, serves the dual purpose of offsetting the
estimation error from (3, and also selecting the active constraints to be included in the asymptotic

distribution while dropping the nonactive constraints.

Theorem 2. Suppose Assumption 1 (after setting Sy = argmin@ (f)) and Assumptions 3 - 0 are
BeCo

satisfied in addition to the following:
(i) Suppose B — Bo 5 0.
(ii) Suppose Bﬁ — By = op(1).
(iii) Suppose V2L (Bo, No) = Ho + Zjeé'uI XojGoj is positive definite.

(iv) Suppose \/n(fn (Bo) — fo(Bo)) v Uy, a tight random wvector, and /n (fn (Bo) — 1 (B0)> +
Zjeguz Aojv/n (Fnj (Bo) — Foj) v Wo + Zjegul- AojVoj, a tight random vector.

(v) Suppose Vi (13 (Bo) = fu (50)) i U, 1 [ = Mo 0,

V(B (B0) = (8)) + Sjeeor Noav/ (Fy (B0) = Fuj (Bo) ) o Wo + Yjee iz Mg Vo,

sup  /n(fy (B) = fu (B) = fz (Bo) + fn (o)) = 0b(1), and
18=Boll<o(1)

sup  /n (F (8) = Fn (8) = Fy (Bo) + Fn (Bo)) = op(1)-
8—Boll<o(1)

(vi) Hy, 2 H,, jg%%))%‘énj — Goj’ 20, and H,, + Zjeé’ul' ;\nj@nj is symmetric, positive definite.

Suppose fo; (Bo) for j € I does not depend on n. Then, for any sequence o, such that o, — 0 and
Vnay, — o, ﬁ(@n —/30> v J and Bﬁa;f" % J, where for T (o) = {j € T* : Aoj > 0} and
Z5 (Ao) = {j € % : Agj = 0},

1 1
J = argmin § 'Wo + 5 h' Hoh + DI Ay (h’voj + 2h’G0jh)
hexs JEEUTF (M)

% = {h:Ugj + Fy;h =0 for j € EVIY (o), Uyj + Fyjh <0 for j e I3 (Xo)}

13



A sufficient condition for y/n (fn (Bo) —1 (60)> +2jeeuz Aoj v/ (Fj (Bo) — Foj) > Wo+2ice 1 Ao Vo,

Vi (in (B0) = 1 (80) ) W

v , where Vo = (Vo; for j € £ UZ). Similarly, a sufficient

V1 (Fy (Bo) — Fo) Vo

condition for /n (ZA;’; (Bo) — ( )) + Z]Eguz )\oj\f< i (Bo) — Fuj (ﬁo)) "{E”WO + Zjegul' Ao; Voj
\/ﬁ (l;kz (BO) - ln (/BO)) V\]ﬁ,) WO  When Fn (6) _ Pnﬂ'(,ﬁ) and F;: (,6) _ P::W(WB) are
VI(EE (Bo) = F(50) | 7\ W

sample averages, these joint weak convergence statements can be verified using a joint Lindeberg

1S

is
condition. For each ¢ > 0,

n—0o0

T , Bo) . g (-, Bo) vt —o.

Theorem 2 tells us that both two-sided and one-sided confidence intervals constructed using
the proximal bootstrap critical values will be asymptotically exact when the population inequality
constraints fo; (6p) are not drifting towards zero. Later, in Section 2.5, we will consider the case
of drifting constraints and show how to construct a uniform confidence set for either the whole
parameter vector or subvectors. Before we discuss drifting sequences, we make some remarks on

special cases of the general asymptotic distribution in Theorem 2.

Remark 5. The optimal value’s asymptotic distribution can also be consistently estimated by the
L, (,80>) s
Ax(B%)-A%(Bn) P
a2 W

q(J). The first result follows from Assumption 6 and the continuous mapping theorem, and

the second result follows from w =./n (Z* (Bn) — 1, (Bn)>/ (Bﬁ—ﬂt)) + 2 BE—po |?

an Qn Qn

ZjESUI S‘Hj (\/ﬁ (F:] - Fnj) (ﬁnanﬁo) + 2 ) + Op(l) Vél’;* q (j)

proximal bootstrap under pointwise, non-drifting asymptotics. Specifically, n (/jn Bn)
q(J), where g (h) = W'Wy + $h'Hoh + Zjesulj(/\o) Xoj (W'Voj + $h'Gojh), and (%

_l’_
H,

BE—Bo Bo

Qn

Crnj

Remark 6. If [ () = 0, which is implied by Q (8) = Q (80)+3 (8 — Bo)' Ho (8 — Bo)+o (Hﬁ - 50\\2),

then J reduces down to

1
J = argmin {h'WO + h’Hoh}
hex 2

14



Zz{h:Uoj+F6jh=OforjeE,Uoj+Féjh<0forj€Ig()\g)}

This is because by the KKT conditions, \o; satisfies [ (8p) +Zje€ul' XojFo; = 0,s0if [ (By) = 0, then
Zjeé'uz MojFo; = 0. By LICQ, the active constraint gradients Fy; for j € £ U Z* are all nonzero,
and furthermore, the optimal Lagrange multipliers for the nonactive inequality constraints j € Z\Z*
are zero by the complementary slackness conditions Ag; fo; (Bo) = 0 for all j € £ U Z. Therefore,
Aoj = 0 for all j € £ U T is a solution to ZjeEUI MojFo; = 0. Since the set of Lagrange multipliers
that satisfy the KKT conditions is a singleton under LICQ, A\g; = 0 for all j € £ U T are the unique
optimal Lagrange multipliers, which implies Zjeé‘uI Aoj (h'Voj + %h’Gth) =0, Z% (No) = @, and
* = Tf (Mo).

In this case, it is easy to extend our theory to the case where the number of constraints is
growing with n, assuming that the dimension of 3 is fixed. We redefine the proximal bootstrap

estimator as 3* = argminA* (3), where
BeC*

A2(8) = anv (i5 () ~ 1 (Ba)) (8- Ba) + 518~ Bl
C* = {BEB: fug (Bu) + by (5 Bu) + anv/t (735 (Ba) — Jus (Bn)) =0 for je &,
fnj (Bn) + F7,U (ﬁ - Bn) + an\/ﬁ( :j (Bn) - fnj (Bn)) < 0 for j EIn}

Remark 7. If there are only equality constraints, then the asymptotic distribution becomes J =
arg min {h’Wg + %h/ (Ho + Zjeg )\ojGOj> h} for ¥ = {h : Uoj + F(’)jh =0forje S}. Using stan-
da};iizarguments in Amemiya (1985) section 1.4.1 or Newey and McFadden (1994) section 9.1 (which
are repeated in Lemma 5.1 in the Appendix), J = —B;* (I — Fy (FéBalFo)_l FéBal) Wy —
By 'R, (FéBO_ lFo)f1 Up. If Wy and Uy are multivariate normal, then the asymptotic distribution
will be multivariate normal.

If 1(Bp) = 0 or if the constraints are linear, then ) . - AojGo; = 0 and By = Hp, so J =

je€
—H? (I — By (FyHy ' Fo) ™" FéHo_l) Wo — Hy ' Fy (FyHy " Fo) ™ Us.

Remark 8. If strict complementarity holds, meaning Ag; > 0 whenever fy; (8p) = 0, then 7% =

15



Z% (Xo) and the asymptotic distribution reduces down to

1 1
J = argmin { KWy + ih’Hoh + Z Aoj (h’Voj + 2h’G0jh)
hexs JEEUTH (No)

for ¥ = {h 1 Upj + F(’)jh =0forjeEUI} ()\0)}. Just like in the previous remark, we can express
J = -5y (I — Iy (FéBo_lFO)_lFéBJl) (WO + DjeeuT (M) AOjVOj> — By'Fy (FyBy ' Fo) ™ o,
where By = Hy + Zjesqu(Ao) MojGoj. If Wy, Vo, and Up are multivariate normal, then J will
also be multivariate normal.

If 1 (Bp) = 0, then Zje&'ul'* Aoj (h’Voj + %h’Gojh) = 0 and Z% (\g) = &, so J reduces down to

J = argmin {l'Wo + 30 Hoh}, for = {: Up; + Fjyh = 0 for j e £},
he¥

Remark 9. If there are only inequality constraints, we can also obtain a closed form expression for
J. Because ¥ = {h : Unj + Fy;h = 0 for j € ¢ (Mo) , Uoj + Fjh < O for j e I ()\0)} in this case,

it follows from Lemma 5.2 in the Appendix that

T =max{ —By" (I Fou (Fe By ' For) " Fpe Bg) [ Wo v D) MgV
jEIi(Ao)

_ _ -1 _
—By'Fos (Fye By ' For )™ Upe, =Byt [ o+ D0 AoV
jEI_t()\o)
where Fy+ is the matrix of Fy; for j € Z7 (Ag), U+ is the vector of Upy; for j € Z% (Xg), and
If there are no strongly active (binding) inequality constraints, meaning Z7 (A\g) = @, then
Zjte‘_(Ao) MojGoj = 0, and Hy = By, so the asymptotic distribution reduces down to J = —H0_1W0,

which will be multivariate normal if W is multivariate normal.

Remark 10. In the case of non-random constraints f, () = fo(8) that do not depend on the

data, if [ (5p) may not be zero, the proximal bootstrap estimator is

B = angmin o/t (i3 (5) 0 (5a)) (8= Ba) + 5 18— Bully, + 5 20 A8 Bul,

peC je€uT
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C’*E{ﬁEB:foj(Bn)—FFéj(ﬁ—Bn) :0f0rj€5,foj(5n)+Féj(ﬁ—5n)<OforjeI}

I£ 1(80) = 0, which is implied by Q (8) = Q (B0) + % (8 = 5)' Ho (8 = Bo) +0 (I8 = Bol ), then

the proximal bootstrap estimator can be defined as

B;“L = argmin a,\/n (A; (Bn) - lAn (Bn))/ (ﬁ - Bn) + % HB - B”H%Tn

BeC*

C*E{ﬁEB:ij(Bn)+Féj(ﬁ_5n):Oforjegaij(Bn)+F6j(6_5n) QOfOTjEI}

The asymptotic distribution when [ (8y) may not be zero can be derived as follows:

nQ, (60 ¥ jﬁ) 1@ (Bo) + 3 Augn (ij (/30 ¥ \fﬁ) ~ fo; <ﬁo>>

jeEVT

= h'v/n (Zn (Bo) =1 (50)) + %h/Hoh + Z Aoj (\/ﬁ(FOj — Foj) h+ ;h,Gth> +op(1)

jeEuT

. 1 1
= W/ (i (B0) = 1(80)) + 5h Hoh +5 Y] Aojh'Gosh + op(1)
JjeEVT

1 1
v W Wo + Sh Hoh + 5 > Aol Gosh

jeEVT

Furthermore since v/nfy; (Bo) = v/nfo; (Bo) = 0 for all j € £ U Z*,

1 1
J =argmin{ K'Wo + W' Hoh + = > Ao;h'Gojh
hex 2 2 jeEuT

¥ = {h: Fy;h=0for je&UI} (), Fyh <0 for jeIy (M)}
When [ (5y) = 0, since A\g; = 0 for all j e £ UT,

1
J = arg min {h'Wo + h'th}
hex 2

¥ = {h: Fy;h =0 for je & Fy;h <0 for jeI*}

Since LICQ is satisfied (which implies the Tangent cone T (fy) is equal to the linearized feasible
set X), J is equivalent to the asymptotic distribution in Theorem 1. A special case of this is the

constrained maximum likelihood example in Andrews (2000). He imposes a nonnegativity constraint
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i = 0 for a normal mean model (with variance 1) and shows that the asymptotic distribution of
the maximum likelihood estimator is J = max {Z,0} (where Z ~ N(0,1)) if the true mean equals

0. We can obtain this asymptotic distribution by setting Fy = —1, Hy = 1, and Wy = Z.

Remark 11. Alternatively, we can define the proximal bootstrap estimator as /3’;‘; = arg minfl;"l (8),
BeC*
where

Az (8) = o (i ()~ (Bn)) (8= Bu) + 516 Bul,
+ Z Anj (an\/ﬁ (Fy; — Foj) (B = Bn) + % 18- Bnﬁ;n])

jeEVT
Ccr = {B €B: fn; (B) + anvn (f:;] (Bn) — fnj (Bn)) =0forje&,
fnj (B) + cnv/n (fri; (Bn) — fnj (Bn)) <0 for j € T}

The feasible direction set is

Fn = {h t fng (Bo + anh) + Oén\/ﬁ( :j (Bn) — fnj (Bn)) =0 for je&,
fnj (Bo + anh) + any/n (f::j (Bn) — fnj (Bn)) <O0for jeT}

and the linearized feasible direction set is, for some 3 in between 3, and fo,

Mo = {h:J%J'OJ(B())+F"j <B>/h+\/ﬁ(f;j (Bn) = fnj (Bn)) = 0 for j €€,

i 80y (8) 0t Vi (13 () = s () < 0 o s 7

Qp

Note that since f’”ai(fo) + Fpj (B)lh + \/ﬁ< :j (Bn) — fnj (Bn)> 2w for j € I\TZ*, the nonactive

inequality constraints do not affect the asymptotic distribution, under the assumption of no drifting

constraints. Since F,; (B) RN Fyj forall je £ VT, Ing(Bo) _ /nfns(B0)—fo5 (Bo)) _ op(1) for all j €

Qn N
P .. . = =
EUT* /i (135 (B0) = fug (o)) 2o Uty jointly, for all j € EUT*, and v/ (£ (Bn) = fus (Ba) ) v
Upj, jointly, for all j € £ U Z*, it follows that ool (h ¢ X) £>d wl(h¢X).
o
Therefore, this nonlinearized bootstrap estimator has the same asymptotic distribution as the

linearized version in Theorem 2.
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Remark 12. The choice of a, is a difficult problem. One possibility is to use a double bootstrap
algorithm similar to the one in Chakraborty et al. (2013). Starting from the smallest value in a
grid of ay,, draw By bootstrap samples and compute bootstrap estimates B,(l*’bl) for by = 1...By.
Conditional on each of these bootstrap samples b1 = 1...B;, draw Bs bootstrap samples and compute

bootstrap estimates ﬁ wb1b2) for by = 1...B. Pick some nominal frequency 1 — 7. Define &f_. to

5(%,b1,b2) ﬁ(* b1)

be the 1 — 7 quantile of Bn . Compute the empirical frequency with which equal-tailed

(o729

A%k
. 5(%,b 2 (b er 5 .
intervals { 7(1* Y _ 1ﬁ/2a ﬁt* Y- \//52 } cover (3,. If the current value of «,, achieves coverage at

or above 1 — 7, then it picks that value as the optimal «,. Otherwise, increment «a,, to the next
highest value in the grid and repeat the steps above. In the absence of drifting constraints, this
procedure should find the optimal value of «,, that asymptotically achieves coverage closest to the

nominal level.

2.5 Uniformity

In the case of inequality constraints that are drifting towards the boundary, the proximal bootstrap
will typically not consistently replicate the estimator’s asymptotic distribution; however we can still

obtain a uniformly conservatively asymptotically valid confidence set for 5y. We use the fact that

( o (Bo) — L (Bn)) e ming (h), where g (h) = —h'Wot 5h Hoh -3 e s (3g) Moj (= Vo + LW Gosh),
*

and M e }{n{lznq (h), where A* (B) is defined in equation 1. We will show that Q* < Q
€
s o e A% (Bn)—Ax(Bx) .
for all drifting sequences, which implies that the asymptotic distribution of —~———-—"* uniformly

n

first order stochastically dominates the asymptotic distribution of n (ﬁn (Bo) — Ly, <3n>> . We show

liminf inf P ( ( L (Bo) — (ﬁn>> e a) > 1—a, which implies Cf_,, = {ﬁ in <[ﬁn (B) — (ﬁn)) & a}

n—o PeP

will be a uniformly conservatively valid nominal 1 — « confidence set for Sy = Sy (P). The next

theorem formalizes these arguments by drawing on insights from Chen et al. (2018).

Theorem 3. Let P be a class of distributions for which Assumptions 1 and 3- 6 and Conditions (i)-
(vi) of Theorem 2 are satisfied. For each P € P, let J,, (-, P) denote the CDF of n (ﬁn (Bo) — Ln (371))

under P, and assume limsupsupsup |J,, (z, P) — J (z, P)| = 0, where the limiting distributions

n—o0 PePzxeR
{J (-, P): PeP} are equicontinuous at their 1 — o quantiles. Let J} (-, P) denote the conditional

CDF fw under P, and assume for all e > 0, lim supsup P <sup ’J x, P)— J* (z, P)‘ > e> =

n n—o PeP zeR
0, where the limiting distributions {J* (-, P) : P € P} are equicontinuous at their 1 — o quantiles.
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Then, for any sequence cu, such that o, — 0 and \/na,, — o0, lim inf}i)nf P (ﬂo (P)eCi_ a) =>1-—

a, where Cf_,, = {ﬁ in (ﬁn (B) — (ﬁn)> ¢ a} and ¢f_,, is the 1—a quantile ofM.

Qp

Remark 13. If we would like to construct a nominal 1 — « confidence set for vg = a'5y, where

a is a known unit vector, we can use projection: C1I; Pm] = [ inf a/B, sup a’B|. The uniform
BGC BeC

asymptotic validity of these projection intervals follows from the unlform asymptotic validity of

i

—es

Remark 14. In the case of A\g; = 0 for all j € £ UZ, which occurs when [ (fy) = 0, we can replace
L, by Qn The simultaneous confidence set becomes Cf_,, = { B:n (Qn (B) — Qn (Bn» & a}
where ¢f_, is the 1—« quantile of w and A;’,‘L (B) = any/n <f,’§ (Bn) —1, (Bn)> (6 — Bn)—i-
56~ Bal,

Remark 15. We illustrate the intuition for this result by looking at an example with non-random
constraints, some of which are drifting at the y/n rate to zero. Suppose we have equality constraints
£, active inequality constraints 7% = {j € T : f; (fy) = 0}, and non-active inequality constraints that
are drifting towards the boundary at a 4/n rate: I}% ={jeZ: f;(Bo) = ¢/y/n}, for some c < 0. We
allow for other rates of drift in Theorem 3, but we do not present them here for simplicity. Suppose

1 (Bo) = 0 (we do not require this in Theorem 3). Then, n (Qn (Bo) — Qn (Bn)> o %ﬁgr)lq (h) and
AL ARG By wming (h), where 4% (8) = oy (5 () — b (Ba)) (8= Bu) + 18— Bl

and q (h) = —W'Wy + %h’Hoh. For Fy; = 0]”57[(313)‘5 5
=P0

O = {h: —Fih =0 for je &, ~Fih <0 for je T U T, }

Q= {h:—Fih =0for je & ~Fjh <0 for j e T, ~Fj;h < —c for j € T}, |

Since Q* < Q and ¢ (h) = —h'Wo+ 3h'Hoh is a strictly convex function of h when Hy > 0, }Ilnsi)nq (h)

A\

first order stochastically dominates I}?iélq (h). Then, Iim inf inf P (n (Qn (Bo) — On (571)) & a)
€
1 — o, which implies Cf_,, = {5 in (Qn (8) — On (Bn)) & a} will be a uniformly conservatively

valid nominal 1 — « confidence set for (.

Remark 16. In order to determine the optimal value of «, when there are drifting constraints,
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we can change the procedure in Remark 12 to instead compute the empirical frequency with which
Ag () )< ()

{B n (/3” (B) — Ly, <A7(l*,b1))) < é’l“_T} covers f3,, where ¢ __is the 1—7 quantile of

ag

and A:‘L (B) is defined in equation 1. When [ (3p) = 0, we can use {B n (Qn (B) — Qn (Ag*’bl))> < éT,T}
and A% (8) = any/m (1% (Ba) —In (Ba) ) (8~ Bu) + 18— Bu]

2
oy
3 Monte Carlo Simulations

3.1 Boundary Constrained Maximum Likelihood

We consider a two sample location model with i.i.d data:

y1i = Po1 + €1 €1i |4
7 ? , g z.fz\./d. N(O,IQ)

y2; = Boz + €2 €2i

We would like to impose a non-positivity constraint on Sp; and a non-negativity constraint on

Bo2:
n n

By, = [fnl = argmin S (Z (y1i — 51)2 + Z (y2i — 52)2>

Bna B1<0,82=0 2n i=1 i=1

We use Matlab’s built-in fmincon solver to compute the original estimator 3,, = Bn and also the
proximal bootstrap estimator ﬁA;'; = ar% rgin {an\/ﬁ (ZZ (Bn) — 1, (Bn)>, (,3 — Bn) + % H/B - Bn”fffn }7
E
where H, = I and Iy, (Bn) = [~ (Jin — Bn1) = (G20 — Bn2)] for Gin = 137y and oy =
% 2?:1 Y2i-
The goal of this simulation is to examine the coverage properties of the proximal bootstrap

projection confidence intervals CI{D_TZj = [ inf a', sup a'B |, where a is either (1,0) or (0,1),
Becl*(x Becikia

and Cf_, = {5 'n (Qn (B) — Qn (Bn)) < é’l“_a}, where ¢}__, is the 1 —a quantile of w

. N FEONY ~ _ "
and A% (B) = apy/n <l:‘L (5n) — 1, (Bn)> (B — Bn) + %HB — ﬁ”“i’] . The true parameters By and
Bo1 = —Po2 are drifting towards zero at five different rates: [yo € {n_l/ﬁ,n_1/4,n_1/3, n_l/Z,n_l}.

We consider three different sample sizes n € {100,500, 1000} and seven different «,’s for each

-1/2.1 ,,—-1/25 ,—-1/3 . —1/4 ,—1/6 . —1/8
b b b ) b )

n: a, € {n n n n n n n~v/ 10}. Empirical coverage frequencies and

average interval lengths (in parentheses) of nominal 95% confidence intervals for fy; are reported

in Table 1 and those for Sy are reported in Table 2. We use 5000 bootstrap iterations and 2000
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Monte Carlo simulations. The coverage frequencies are very close to 95% for all rates of drift except

1

for n=", in which case the coverage is around 99% for the smaller values of a,, and around 98% for

the larger values of a,,. The fact that smaller values of «,, can lead to overcoverage is also evident

for the n—1/2 drift rate.

Table 1: Proximal 8y; Projection Interval Empirical Coverage Frequencies

an, n—1/2.1 n—1/2.5 n—1/3 n—1/4 n—1/6 n—l/S n—l/lO

Bop=-n"' n=100 0988 098 0984 0981 0981  0.980  0.980
(0.450) (0.444) (0.441) (0.438) (0.437) (0.436) (0.436)

n=>500 0992 0989 0987 098 0985 0984  0.984

(0.198) (0.195) (0.194) (0.193) (0.193) (0.192) (0.192)

n=1000 0988 098 0984 0983 0982 0982  0.982

(0.137) (0.135) (0.134) (0.133) (0.133) (0.133) (0.133)

Bor=-n"Y2 =100 0988 0987 0984 0980 0977 0976  0.976
(0.444) (0.434) (0.426) (0.418) (0.413) (0.412) (0.411)

n=>500 098 0980 0978 0974 0970  0.970  0.970

(0.193) (0.187) (0.183) (0.180) (0.179) (0.178) (0.178)

n=1000 0974 0970 0965 0959 0.957 0.956  0.956

(0.134) (0.129) (0.126) (0.124) (0.123) (0.123) (0.123)

Bor=-n"Y3 n=100 0978 0977 0974 0970 0964 0963  0.963
(0.465) (0.455) (0.443) (0.427) (0.416) (0.413) (0.411)

n=>500 0978 0976 0971 0966 0959  0.958  0.957

(0.206) (0.201) (0.193) (0.183) (0.179) (0.178) (0.177)

n=1000 0.966 0962 00956 0.948 0.941 0939  0.939

(0.144)  (0.140) (0.133) (0.126) (0.123) (0.122) (0.122)

Bop=-n"Y4 n=100 0982 0981 0979 0976 0969 0965  0.963
(0.475)  (0.470) (0.461) (0.443) (0.426) (0.420) (0.417)

n=>500 0981 0981 0978 0973 0960 0959  0.959

(0.209) (0.208) (0.204) (0.193) (0.183) (0.180) (0.179)

n=1000 0978 0978 0975 0.963 0950 0945  0.945

(0.144) (0.144) (0.142) (0.133) (0.126) (0.124) (0.124)

Bor=—-n"Y6 =100 098 0985 0985 0980 0976 0974  0.972
(0.477)  (0.477) (0.474) (0.462) (0.443) (0.433) (0.428)

n=>500 0983 0983 0983 0981 0974 0970  0.969

(0.209) (0.209) (0.209) (0.205) (0.193) (0.187) (0.184)

n=1000 0976 0976 0976 0975 0962 0955  0.951

(0.145) (0.145) (0.145) (0.143) (0.133) (0.129) (0.127)

In contrast to the moderately conservative coverage of the proximal bootstrap confidence sets,
standard bootstrap confidence intervals produce severe undercoverage for several rates of drift.
Table 3 shows the empirical coverage frequencies and average interval lengths (in parentheses) of

standard multinomial bootstrap two-sided equal-tailed confidence intervals, using 5000 bootstrap
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Table 2: Proximal [y2 Projection Interval Empirical Coverage Frequencies

o, n-l21 125 173 n—1/4 n—1/6 n-18  ;—1/10

Boz=n"1 n=100 0.993 0990 0986  0.983  0.982 0982  0.982
(0.449) (0.444) (0.441) (0.438) (0.436) (0.436) (0.436)

n=>500 0.980 0987 0984 0.981  0.981  0.980  0.980

(0.198) (0.195) (0.194) (0.193) (0.193) (0.192) (0.192)

n=1000 0.990 0.989 0986 0.984  0.984 0984  0.983

(0.137) (0.135) (0.134) (0.133) (0.133) (0.133) (0.133)

Boe=n"Y2 n=100 0.990 0.988  0.984 0.981  0.977  0.977  0.976
(0.444) (0.434) (0.425) (0.418) (0.414) (0.412) (0.411)

n=>500 0979 0977 0974 0.969 0.966 0965  0.964

(0.193) (0.187) (0.183) (0.180) (0.179) (0.178) (0.178)

n=1000 0.970 0.967 0965 0.960 0.958  0.958  0.958

(0.134)  (0.129) (0.126) (0.124) (0.123) (0.123) (0.123)

Boo=n"13 =100 0977 0974 0972 0.967 0.963  0.960  0.960
(0.465) (0.455) (0.443) (0.427) (0.416) (0.413) (0.411)

n=>500 0970 0966 0964 0.958  0.952  0.950  0.949

(0.206) (0.201) (0.193) (0.183) (0.179) (0.178) (0.177)

n=1000 0.967 0.964 0957 0.953  0.947  0.947  0.946

(0.144) (0.140) (0.133) (0.126) (0.123) (0.122) (0.122)

Boz=n"Y4* n=100 0.982 0981 0978 0.973  0.968  0.965  0.964
(0.475)  (0.470) (0.461) (0.443) (0.426) (0.420) (0.417)

n=>500 0974 0973 0970 0.964 0.956 0953  0.952

(0.209) (0.208) (0.204) (0.193) (0.183) (0.180) (0.179)

n=1000 0.976 0975 0974 0961  0.952  0.948  0.945

(0.145) (0.144) (0.142) (0.134) (0.126) (0.124) (0.124)

Boa=n"Y6 pn =100 0.98  0.984 0984 0981  0.973  0.969  0.969
(0.477)  (0.477) (0.474) (0.462) (0.443) (0.433) (0.428)

n=>500 0975 0975 0975 0.973  0.966  0.963  0.960

(0.209)  (0.209) (0.209) (0.205) (0.193) (0.187) (0.184)

n=1000 0.976 0976 0976 0975 0.964  0.956  0.953

(0.145)  (0.145) (0.145) (0.143) (0.134) (0.129) (0.127)

iterations and 2000 Monte Carlo simulations. Especially for the quicker rates of drift, the coverage
can be far below 95%. We also examined one-sided intervals and they were also not able to get
close to 95% coverage for both parameters. The average interval lengths of the proximal bootstrap
projection intervals are wider than the standard bootstrap intervals, but the difference becomes less

pronounced as the sample size increases.
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Table 3: Standard Bootstrap Equal-tailed Empirical Coverage Frequencies

n 100 500 1000 5000 10000
Bo=+n"1 0493 0494 0.521  0.582  0.684
(0.204)  (0.090) (0.063) (0.027) (0.020)
0.495  0.491  0.490  0.608  0.694
(0.205)  (0.090) (0.063) (0.028) (0.020)
Bo=+n"12 0659 0.674 0.672 0.653  0.665
(0.286) (0.129) (0.091) (0.040) (0.029)
0.664  0.672  0.651  0.673  0.673
(0.285) (0.129) (0.091) (0.041) (0.029)
Bo=+n"Y3 0835 0900 0909  0.948  0.943
(0.359) (0.170) (0.122) (0.055) (0.039)
0.827 0912 0917  0.953  0.953
(0.358)  (0.170) (0.122) (0.055) (0.039)
Bo=4+n"Y%4 0911 0946 0949  0.950  0.943
(0.384) (0.175) (0.124) (0.055) (0.039)
0.909  0.957  0.947  0.956  0.954
(0.383) (0.175) (0.124) (0.055) (0.039)
Bo=+n"16 0951 0946 0950 0.949  0.943
(0.389) (0.175) (0.124) (0.055) (0.039)
0.942 0956  0.947  0.955  0.954
(0.389) (0.175) (0.124) (0.055) (0.039)

3.2 Boundary Constrained Nonsmooth GMM
We consider a simple location model with i.i.d data:

yi=Po+e€, €~N(01), [=0

For 7 (-, 8) = [1 (y; < B) — 7;9; — B]', let the population and sample moments be

m(8) =[P (yi < B) =05 By — ', 7 (B) = [izl(yi < B) —0.5;%23/1' -
=1 =1

Our GMM estimator has a non-negativity constraint:

B = argmin {0 (9) = 370 () )}

B8=0

We use Matlab’s built-in fmincon solver to compute 3, = Bn and also

it = angmin i (1 () =0 () (9= Fu) + 318 = Bl | where 7, = GG L,
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— Ay —

In (Bn) = Glhitn (Bn), I (Bn) = GE#2 (Bn), and

G = i i1 Kn (Z/z‘ - Bn) e i i1 Kn (yZ* - Bn) - —= > K}, (yi — Bn) |

-1 -1 0
K (2) = K (x/h), K (x) = (2n) Y? exp(—22/2), K}, (z) = K’ (z/h) and K’ (z) = — (27) "/ z exp(—22/2).
We use the Silverman’s rule of thumb bandwidth k = 1.06n~/5.
We consider five different sample sizes n € {100, 500, 1000, 5000, 10000} and three different ay,’s
for each n: « € {n*1/3,n*1/4,n*1/6,nil/s,nfl/lo}. We use 5000 bootstrap iterations and 2000

Monte Carlo simulations. Empirical coverage frequencies and average interval lengths for two-sided

~ A% ~ A%k
equal-tailed nominal 95% proximal bootstrap confidence intervals [ﬁn - c(i%s,ﬁn - 60\%5], where
is the 7rth-percentile of ﬁi;ﬂn, are reported in Table 4. There is slight overcoverage but the

n

A%
CT

intervals are not particularly wide. For this example, there is practically no difference in coverage

for the different values of «,.

Table 4: Proximal Bootstrap Equal-Tailed Coverage Frequencies and Interval Lengths, 5y = 0

n 100 500 1000 5000 10000
an=n"13 0969 0975 0971 0972  0.968
(0.216)  (0.095) (0.067) (0.029) (0.021)
an=n"Y4 0969 0975 0971 0972  0.968
(0.210)  (0.092) (0.065) (0.029) (0.020)
an=n"16 0969 0975 0971 0972  0.968
(0.206) (0.091) (0.064) (0.028) (0.020)
an=n"Y% 0969 0975 0971  0.972  0.968
(0.204) (0.090) (0.063) (0.028) (0.020)
an=n"Y10 0969 0975 0971 0972  0.968
(0.203)  (0.090) (0.063) (0.028) (0.020)

We now compare the proximal bootstrap with the centered standard bootstrap estimator B;’;* =

AN/ .
arg min (fr;’; (B) — 7 (ﬂn)> (frj; (B) — (571)) Empirical coverage frequencies for equal-tailed
peC
nominal 95% confidence intervals and average interval lengths are reported in Table 5. Interestingly,

the coverage frequencies are similar, although the intervals are wider.
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Table 5: Standard Bootstrap Equal-Tailed Coverage Frequencies and Interval Lengths, 8y = 0

n 100 500 1000 5000 10000
0.968 0976 0974 0974  0.967
(0.236) (0.107) (0.076) (0.034) (0.024)

3.3 Conditional Logit Model with Estimated Inequality Constraints

We generate data according to y;; = 1 (y;“] > yh Vk # j), where the utility of individual i = 1...n

from picking choice j = 1...J is given by

1 1 05 .. 05
. 2 05 1 0.5
Yij = ﬂoxij + €5, for x; ~ N s
J 05 05 ... 1

and €;; iid- Type 1 Extreme Value. We set By = 0.1. The constrained MLE estimator maximizes
the log-likelihood subject to the constraints that the share of individuals who pick each choice
cannot exceed the supply of that choice. These inequality constraints can be viewed as capacity

constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium demand

exp(Bzi;)

for each housing unit should not exceed the supply of that housing unit. For P;; = S exp(Ba)

Bn = argmax InL (8 —Z Zyw In P;;
B 1=175=1

1 & -
7237 <bjforallj=1..J
n =

where Bj = 106 211 061 % for z;; drawn independently from the same distribution as x;;. We

use Matlab’s built-in fmincon solver to compute 3, = B, and also 3* = arg minA* (3), where
BeC*

. N RN _ 1 _
A3 (8) = anvn (13 (Ba) =1 (Bn)) (8= Bu) + 58— Bulf,
_ - _ 1 _
b 30 o (anyi (Bl = F) (8- B0) + 5 18- Al )
JjeEUT

C* = {fnj (Bn) + E1j (B = Bn) + anv/n (fr; (Bn) — fnj (Bn)) <0 for j e T}
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We use analytic expressions for the components in the proximal bootstrap objective function and

constraints:
NUPLTIC R b A
n (95 nJ o i %] i
PWLB) 1 &L '
1 <« 0P, I, dnPy 1 ¢
Fnj (5) . Z 2 = 2 i = Z —Pz] (xz] - szlle>
n i=1 aﬂ =1 a’B n =1 !
/
1 & %P 1 & 0P;; 1 & oP;
Gn = - 4= - 7, Pzz - Pl =)
J(/B) nl;&B&B’ nz=1 aﬁ (‘Tj Zl: lxl) n; le: 8,3 il
/
1
= n;PZ] (xw lepilxil> <x1] gjpzlle)
1 n
- ﬁ Z ZPZjPil (mil - szml'zm) T
=1 1 m
Because [ (f8y) = 0 in this model, we can in principle also use an alternative formulation of

. o N _ _
the proximal bootstrap with A% (8) = ap/n (l;‘; (Bn) — Iy (ﬁn)) (ﬁ — ﬁn) + % Hﬂ - 5””%{ . How-
ever we found that especially for the smaller sample sizes, including the term involving the La-

grange multipliers an helps with the coverage. We consider n € {100, 500,1000}, J = 20, and

-1/3 _—1/4 ,—1/6 , —1/8
) ) ) )

Qap € {n n n n n=1/ 10}. Empirical coverage frequencies for equal-tailed nominal
95% confidence intervals and average interval lengths are reported in table 6. We use B = 2000
bootstrap iterations and R = 1000 Monte Carlo simulations. While the proximal bootstrap intervals
undercover somewhat for smaller values of n and «,,, the coverage is very close to the nominal level
for n = 2000 and larger values of «,,. We also consider larger values of J. Proximal bootstrap em-
pirical coverage frequencies for equal-tailed nominal 95% confidence intervals and average interval
lengths are reported in table 7. The results are computed using B = 2000, R = 1000. The coverage
is slightly below the nominal level for n = 100 but very close to the nominal level for n = 500.
Standard bootstrap empirical coverage frequencies for equal-tailed nominal 95% confidence inter-
vals and average interval lengths are reported in table 8. The standard bootstrap undercovers, and

its coverage is less than that of the proximal bootstrap for all values of n. The standard bootstrap

intervals are also wider than the proximal bootstrap intervals for smaller values of n.
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Table 6: Proximal Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n = 100 n = 500 n = 1000 n = 2000

J =20 J =20 J =20 J =20
ap =n"13 0.917 0.923 0.946 0.929
(0.0016) (0.0007) (0.0005) (0.0004)
ap =n"1/4 0.924 0.935 0.952 0.946
(0.0016) (0.0007) (0.0005) (0.0004)
ap =n"1/6 0.922 0.939 0.952 0.951
(0.0016) (0.0007) (0.0005) (0.0004)
ay, =n1/8 0.922 0.927 0.945 0.953
(0.0015) (0.0007) (0.0005) (0.0004)
ay = n /10 0.918 0.920 0.944 0.952

(0.0015)  (0.0007)  (0.0005) (0.0004)

Table 7: Proximal Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n = 100 n = 500 n = 100 n = 500
J =50 J =50 J =100 J =100

a, =n"1/3 0.928 0.936 0.932 0.945
(0.0007) (0.0003) (0.0006) (0.0003)
ap =n"1/4 0.936 0.940 0.939 0.949
(0.0007) (0.0003) (0.0006) (0.0003)
ay =n"1/6 0.941 0.946 0.944 0.954
(0.0007) (0.0003) (0.0006) (0.0003)
ap =n"1/8 0.939 0.946 0.945 0.950
(0.0007) (0.0003) (0.0006) (0.0003)
ap = n~1/10 0.938 0.947 0.947 0.950

(0.0007)  (0.0003)  (0.0006)  (0.0003)

3.4 Rust (1987) Bus Engine Replacement Model

We apply our method to conduct inference for the Mathematical Programming with Equilibrium
Constraints (MPEC) formulation of the Rust (1987) Bus Engine Replacement model. Su and Judd
(2012) indicate that the MPEC estimator can be bootstrapped, although they do not provide an
analysis of the empirical coverage frequencies of bootstrap confidence intervals. We find that our
proximal bootstrap method performs equally good in terms of coverage and is more than twice as
fast as the standard bootstrap.

Using the code accompanying Su and Judd (2012), we generate data using the following param-
eters used in their paper: discount factor 8 = 0.975 which is assumed to be known by the researcher

and thus not estimated, replacement cost RC' = 11.7257, operating cost parameter 6; = 2.4569,
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Table 8: Standard Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n = 100 n = 500 n = 1000 n = 2000

J =20 J =20 J =20 J =20
B = 2000 0.922 0.911 0.919 0.909
R=1000  (0.0018)  (0.0008)  (0.0006) (0.0004)
B = 2000 0.926 0.907 0.910 0.910

R=12000  (0.0018)  (0.0008)  (0.0006) (0.0004)
n=100 n=>500 n=100 n = 500
J =50 J =50 J =100 J =100

B = 2000 0.922 0.928 0.911 0.940
R=1000  (0.0008)  (0.0004)  (0.0007) (0.0003)
B = 2000 0.929 0.926 0.921 0.934

R=2000  (0.0008)  (0.0004)  (0.0007) (0.0003)

and transition probabilities 05 = < 0.0937, 0.4475, 0.4459, 0.0127, 0.0002 ) The MPEC ob-

jective function is a log likelihood which is a function of both the structural parameters and the

T

choice-specific value functions EV (z,d) given the data ((ac%, di) 1

M .
) " where zj is the mileage of
1=

bus i in period ¢ and d} is an indicator for whether bus i’s engine is replaced in period t.

M T i i i
£(61, 65, RC, EV) — 1 Z Z log < exp [1/ (xt,dt,ﬁl,RC’) + BEV (Zlft,dt)] )

Saeqony exp [v (¢, &5 01, RC) + BEV (i}, d)]
1 &L o
7 2 2o (ps (il #d . djy,03))

The constraints are the fixed point equations defining the discretized choice-specific value functions

EV (z,d) for mileage constrained to lie on a grid X = {Z1, &9, ..., Tx }:

EV (&x,d) = Y log | > exp[v(2/,d;61,RC) + BEV («/,d)| |ps (2| &x, d, 03) (3)
! d’e{0,1}

Given the current state 2y, the next period mileage 2’ € {Zg, Tx+1, Tk+2, Tkt3, Tkia) CAN MOVE UD
at most 4 grid points if the engine is not replaced. If the engine is replaced, the mileage first resets

to &1 before transitioning to a different mileage. Su and Judd (2012)’s code chooses the mileage
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grid to be x = {1,2,3,...,175}. The utility function in their code is defined as

—0.00126, d=0

v(z,d;01,RC) =
_RC —0.0010; ,d=1

If the engine is replaced, the transition probabilities are ps(a’ = &14j| &k, 1,03) = 6035 If the
engine is not replaced, the transition probabilities are p3 (2’ = Zj4;| 2, 0,63) = 63;. The only
values of the choice-specific value functions we need to estimate are the ones corresponding to no
replacement EV = [EV (#1,0), EV (22,0),..., EV (ik,0)] because EV (Zy,1) = EV (Z1,0) for all
k, as pointed out in footnote 9 of Su and Judd (2012). Notice that because the mileage grid is
fixed, the constraints do not depend on the data ((SL‘%, df;);‘ll)jil. Define 6 = (01, 05, RC, EV)" and
C={fj(0)=0for je&, f;j(0) <O for j € I}, where f; (0) includes the EV fixed point equations
(3) as well as the constraints on the transition probabilities satisfying 0 < 3 < 1 and >}, 63; = 1.
Because our asymptotics are large M, fixed T, the rate of convergence of our estimator is v/M.
For some ay — 0 and vVMay — «, and a v/ M-consistent estimator 8, the proximal bootstrap
estimator is given by

. iy W a. i e
e@za%gecnimaM\/M(m(eM)—zn(eM)) (6= 0ar) + 5 10— a7,

C* ={fj (Ou) + F; (0 — Onr) = 0 for j € &, f; (Onr) + F} (6 — Onr) <O for je I}

We follow Su and Judd (2012) and use Knitro to compute 0y = O as well as 6%, although
in principle the built-in Matlab nonlinear optimization solvers should also find the solution given
enough time to search the parameter space. Because [ (6y) = 0 in this model, we do not need to
include the Lagrange multiplier term in the objective function.

Tables 9-11 show the empirical coverage frequencies and average interval lengths for two-sided
equal tailed nominal 95% proximal bootstrap confidence intervals computed using B = 1000
bootstrap iterations and R = 2000 Monte Carlo simulations. We consider 6 different values of
M e {500, 1000, 2000, 4000, 5000, 6000} and three different values of ays € {M Y3, M~/4, M—1/6}.
The number of time periods is T" = 120. Most of the parameters have coverage very close to the

nominal level for sufficiently large values of M, and the coverage is very similar for the three differ-
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ent values of aps. Due to time constraints on the server, we were unable to obtain results for the
standard bootstrap using the same values of M, B, and R, but the results should be similar given

that the standard bootstrap is consistent in this example.

Table 9: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for ay, = M~1/3
M 500 1000 2000 4000 5000 6000
61 0.925 0.946 0.949 0.942 0.948 0.949
(0.520) (0.373) (0.264) (0.187) (0.167) (0.152)
03  0.951 0.947 0.945 0.933 0.932 0.935
(0.005) (0.003) (0.002) (0.002) (0.001) (0.001)
031 0.955 0.944 0.951 0.948 0.94 0.947
(0.008) (0.006) (0.004) (0.003) (0.003) (0.002)
O30 0.949 0.952 0.944 0.942 0.942 0.952
(0.008) (0.006) (0.004) (0.003) (0.003) (0.002)
033  0.957 0.95 0.949 0.951 0.96 0.957
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
RC  0.927 0.95 0.949 0.946 0.946 0.947
(1.683) (1.204) (0.853) (0.604) (0.540) (0.492)

Table 10: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for ap; = M~1/4
M 500 1000 2000 4000 5000 6000
61 0.923 0.949 0.95 0.941 0.949 0.95
(0.520) (0.372) (0.264) (0.187) (0.167) (0.153)
030  0.952 0.948 0.94 0.935 0.934 0.937
(0.005) (0.003) (0.002) (0.002) (0.001) (0.001)
031 0.954 0.942 0.95 0.946 0.944 0.948
(0.008) (0.006) (0.004) (0.003) (0.003) (0.002)
032 0.952 0.95 0.941 0.943 0.939 0.948
(0.008) (0.006) (0.004) (0.003) (0.003) (0.002)
033 0.959 0.95 0.95 0.949 0.958 0.958
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)
RC 0.927 0.952 0.95 0.945 0.949 0.952
(1.683) (1.204) (0.853) (0.604) (0.540) (0.493)
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Table 11: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for apy = M~

M

RC

4 Conclusion

500
0.924
(0.520)
0.952
(0.005)
0.955
(0.008)
0.951
(0.008)
0.96
(0.002)
0.925
(1.666)

1000
0.947
(0.372)
0.95
(0.003)
0.942
(0.006)
0.951
(0.006)
0.951
(0.001)
0.951
(1.201)

2000
0.949
(0.264)
0.941
(0.002)
0.949
(0.004)
0.942
(0.004)
0.949
(0.001)
0.95
(0.852)

4000
0.943
(0.187)
0.933
(0.002)
0.949
(0.003)
0.944
(0.003)
0.951
(0.001)
0.947
(0.603)

5000
0.948
(0.167)
0.933
(0.001)
0.944
(0.003)
0.94
(0.003)
0.959
(0.001)
0.948
(0.540)

6000
0.95
(0.152)
0.94
(0.001)
0.953
(0.002)
0.946
(0.002)
0.954
(0.001)
0.944
(0.493)

1/6

We have demonstrated how to use a computationally efficient bootstrap procedure to conduct

asymptotically valid inference for y/n-consistent constrained optimization estimators with nonstan-

dard asymptotic distributions. Our proximal bootstrap estimator can be expressed as the solution

to a quadratic programming problem and relies on a scaling sequence that converges to zero at a

slower than 4/n rate. We have illustrated its applicability in a boundary constrained GMM problem,

a conditional logit model with capacity constraints, and a MPEC formulation of the Rust (1987)

model.

5 Appendix

5.1 Proofs of Theorems

5.1.1 Proof of Theorem 1

Assumption 1 implies that Bn L By =

argmin@ (3) (see e.g. Corollary 3.2.3 in van der Vaart
peC

and Wellner (1996)). Assumption 2, Q (8) = Q (%) + 3 (8~ o)/ Ho (8~ Bo) + o (18 = Bol),

and Bn 2 8 imply that the conditions of Lemma 4.3 in Geyer (1994) are satisfied, and therefore

Vit (Bn = ) = 0p(1).
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To derive its asymptotic distribution, use the centered and scaled parameter h = \/n (5 — So):
R . R h R
Vi (B = Bo) = argmin {nQn (Bo + ) —nQn (Bo)}
he/n(C—Ao) vn
~ 1
= argmin {h’\/ﬁ (ln (Bo) =1 (ﬁo)> + —h'Hoh + 0p(1>}
hey/n(C—o) 2
The second line is due to the uniform in & local quadratic expansion of nQ,, (50 + %) —nQ, (Bo),
which follows from Assumption 2.
Then Assumption 3 implies the Lindeberg Condition is satisfied and /n (P, — P) g (-, By) v~
Wy. Therefore,

~ h R
nQn <Bo + \/ﬁ> —nQy (Bo) > KWy + %hlﬂoh

as a process indexed by h in the space of bounded functions on compact sets /% (K) for any compact

K < R%. Since KWWy + %h’th has a continuous sample path, according to page 5 of Knight (1999),

nQn (BO + \j%) — TLQn (ﬁo) —u—d h/WO + %thoh

where —,,_ 4 denotes convergence in distribution with respect to the topology of uniform convergence

on compact sets. Chernoff Regularity implies that

w0l (h¢ v/n(C—po)) = ol (h¢ Tc (Bo))

where 5 denotes epigraphical convergence as defined in Geyer (1994), page 1997. Therefore, by
Theorem 4 of Knight (1999),

0Qu (B + =) = 1 (Go) 4 01 (0 V0 (C ) —oema Wi+ 1 o+ 01 (1 T ()

where —._ 4 denotes epi-convergence in distribution as defined on page 5 of Knight (1999). Then by
Theorem 1 of Knight (1999), whose conditions are satisfied because h'Wj + %h’ Hyh almost surely

has a unique minimizer over T (fy) due to C being a closed set (see Proposition 4.2 and Theorem

33



4.4 of Geyer (1994)),

Vi (Bo = o) = argmin {nQn (Bo " h) —1Qu (Bo) + 01 ( ¢ /i (C — Bo))}

heRd Vn
1
v arg min {h'Wo + -h'Hoh + o1 (h ¢ Tc (50))} =J
heRd 2

Now we show B;“ 2 By. Since o, — 0 implies oy \/nH,y, (ZZ (Bn) —1, (Bn)> = 05 (1),

Bz—ﬂ():argmin{2(u+ﬁo—ﬁn+anf (i (B = (B0)]

uE(Cfﬁo)

1 _ 1 _
— argmin {u/Hou ol Hy (Bo— Ba) + 5 0 - m;ﬁ} +o,(1)
UE(Cfﬁo)

= B — Bo + 0p(1) = 0p(1)

where the second line follows from the convexity in h of the proximal bootstrap objective function
and compactness of C' — .

Next, to derive the asymptotic distribution, since y/na,, — o0 and /n (Bn - 50) = Op(1),
BE—pn Bn Bo

Qn, anp

+ 0}5(1), where

B = Bo = argmin{ool <h¢ C=bo ) + an\f( (Bn) —l (Bn))/ (ﬂo — B + anh) + 1 Hﬁo — B + anh”%n}

Qn heRd an
—argmin{ool (he =) v (i @) - ) (B wn) BB }
Hn

Qn

heRd (67%% (677

= arg min {ool <h ¢ ¢- 60> + h'v/n (f; (Bn) — I (Bn)) + %h'ﬁnh + 0;(1)}

heRd n

Assumption 4 implies y/n ( (Bn) — I (7,1)) and \/n ( (Bo) — In (,80)> have the same asymptotic

distribution. Therefore,

Wn <Z;‘; (Bn) — In (Bn)) + %h’th \,{% W Wy + %h’Hoh
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A bootstrap in probability version of Theorem 4 of Knight (1999) can then be stated to show that

C - Bo

i (i ) =0 (5a)) 0 ot (g C20) 2 bWk G Hoh o1 (1 T (50)

() Nl

where e%d denotes epi-convergence of the conditional law of @:‘L to G, which can be equivalently
stated as suprepr, | Ewf (GZ) — Ef(Go)| 2 0 and Ewf (GfL)* — Ewf ((@7’5)* L5 0 for all
f € BLy, where BL; is the class of Lipschitz norm 1 functions with respect to the metric of
Qg 5 (0) = deps 6, (v)] + o] < p exp (—p) dp

, where d¢ (v) = inf{|v —u|:ue C} for a non-empty closed subset of R4*! and epi G (h) =

epi-convergence defined as d (G;’;Go) = fooo max{

{(h,a) : G (h) < a} is the epigraph of G : R? — R.
A modification of Theorem 1 of Knight (1999) to epi-convergence of conditional laws suggests

that

v A
Po=Fo = argminG} (h) + op(1) o argminGo (h) = J
O, heRd W heRrd

5.1.2 Proof of Theorem 2

We can show that consistency implies y/n-consistency using a modified version of the first part of
the proof of Theorem 5 on page 141 of Pollard (1984) to allow for estimated constraints. We need to
constrain Bn to lie in C' and replace his population objective F'(-) with the population Lagrangian
L (8o, Ao) = Q(Bo) + 2jesur Aojfoj (Bo). The first order KKT condition VL (8o, Ao) = 1(5o) +
Zjeé'ul' XojFo; = 0 and positive-definiteness of V2L (Bo, Mo) = Ho + Zjeé'uI Ao;jGoj imply the local
quadratic expansion £ (3, Ao) = L (8o, Xo)+ 3 |8—Bol %2, (Boro) 7O (|8 = Bo|?) for B in a small neigh-
borhood of By. This expansion in combination with the local quadratic approximation of the La-
grangain in Assumption 6 will imply Pollard (1984)’s equation (6), where F,,(-) is replaced by £, (-)
and the empirical process E, A is replaced by v/n ( (Bo) —1 (50)) +2eeoz Aojvn (Fnj (Bo) — Foj),
which is still Op(1) by the assumptions of our Theorem. Note that it is not necessary for Sy to be

in the interior of Cy to show y/n-consistency; it would be necessary if we were to show asymptotic
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normality.
Recall £, (8) = Qn (8) + Yjesur Anjfnj (B) is the sample Lagrangian evaluated at the optimal
Lagrange multipliers \,; for B,. It is well known that 3, = argminQ,, (8) can be equivalently

peC
expressed as 3, = argminL, (8) when the first order KKT conditions are satisfied. Shapiro (1990)

shows that it is impoiiint to use this Lagrangian formulation when deriving the asymptotic distri-
bution of Bn because it captures the sampling variation in the objective as well as the estimated
constraints.

Additionally, LICQ implies that the linearization of the constraint set is sufficient to capture the
geometry of the constraints near 3y (Nocedal and Wright (2006) chapter 12). We can then use this
linearized constraint set to derive the asymptotic distribution of /n (Bn — 50)- Denote the feasible

direction set by

h

fnz{h:fnj<50+\/ﬁ>=Oforj€€,fnj<ﬁo—|— h><0forjel}

e

For some mean value [3’ such that F},; (B) N Fpyj, denote the linearized feasible direction set by

Y = {h:\/ﬁfnj (BO)_"FM (B),h:()forjeg>\/ﬁfnj (Bo) + Fnj <B>/h<0 forjeI}

Minimizing the Lagrangian over JF,, is equivalent to minimizing the Lagrangian over X,:

Jn <5n . 50> = argmin {nﬁn (50 + \%) —nl (50)}

- sggin ol {30+ 75) =nnto0)

= arh%giin {nQn <50 + \;%) —nQy (Bo) + je;JI Anjn (fnj </30 + %) — Jnj (ﬂo)) }

1 1
v argmin § KWy + =h'Hoh + E Aoj (h’Vbj + h’ngh) =J

hex. 2 . 4 2
jegUIJr()\())

where the last line follows from the following arguments. First note that Assumption 6 implies that
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for any §,, — 0,

nln (ﬂo + %) —nLn (Bo) — h'y/n ([n (Bo) —1 (ﬁo)) — gh Hoh =Y ce .z Moj (V1 (Fuj (Bo) — Foj)' b+ 5h'Gojh)

sup
1+ ||h|?

LA}
T SOn

= or(1)

Therefore, uniformly in h,

nQn <5o + \;%) —nQn (B0) + D Anjn (fnj (ﬁo + \%) — Jnj (50))

jeEVT
A 1 1
= h/\/ﬁ (ln (ﬁo) —1 (ﬁo)) + ih/HOh + Z )\Oj <\/ﬁ (Fnj (ﬁo) — Foj),h + 2h,G0jh> + Op(l)
jeEVT
Recall vt (1 (80) =1 (80) ) + Yjeerz Ao v/ (Fu (B0) = Foy) v Wo + Yjee 7 Ao Vs, and Do; = 0
for all j € Z\Z7¥ (Ao). Since the last line is a convex function of h, pointwise convergence implies

uniform convergence over compact sets K = R? (Pollard (1991)). Therefore,

h'\/n (in (Bo) —1 (50)) + %hlﬂoh + Z Aoj (\/ﬁ(Fnj (Bo) — Foj)" h + ;h/Gth) +op(1)

JjeEUT

1 1
VNS h/WO + §h,H0h + 2 )\Oj <h/‘/0j + 2h,G0jh>
jeEuT

1 1
= W'Wo + Sh'Hoh + D Ay <h’voj + 2h’G0jh>
JEEUTH (No)

as a process indexed by h in the space of bounded functions on compact sets /% (K') for any compact
K c R%

~\/
Now consider the constraints. Since y/nfn; (50) + Fn; (B) h% —oofor je Z\Z*, the nonactive
inequality constraints do not affect the asymptotic distribution. Since \/nf,; (Bo) v~ Uy, jointly,

forall j € £ VT, Fy; (B) = Fy+ op(1), and finite dimensional convergence in distribution implies

epi-convergence in distribution for convex functions,
0l (h ¢ Bn) —e—q 01 (h ¢ {h: Uy + Fyh =0 for j € &, Uy; + Fyjh <0 for j € T*})

Because we have assumed LICQ at 5y, Theorem 2.1 of Shapiro (1988) implies that minimizing over

{h 2 Uoj + Féjh =0 for j € &,Up; + Féjh <0forje I*} will produce the same set of solutions as
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minimizing over 3 = {h : Uoj + Fgih = 0 for j € £ U IF (No),Uy; + Fy;h < 0 for j e I§ ()\0)}.
Condition (iii) is a second order sufficient condition and guarantees that the argmin in J
is unique. Then by the argmin continuous mapping theorem (Theorem 1 of Knight (1999)),

arg minG,, (h) —._g4 arg minGy (h), where
h h

Gn (h) = nQy (50 + \;%) —nQn (Bo) + je;)I)\njn <fnj (ﬁo + \;%) — fnj (50)) + ool (h ¢ 3,)
Go (h) = h,W() + %hlﬂoh + Z )\Qj (h,VOj + ;h/Gojh> + o0l (h ¢ Z)

jegqu ()\())

Now we show consistency of the proximal bootstrap B;ﬁj 2 Bo. a, — 0implies ay,+/nH, (ZA:: (Bn) — 1, (ﬁ_n)> =
0y (1) and ap/n (F;J — Fnj> = o05(1) for all j € £ U Z. Using convexity of the proximal bootstrap

objective function and compactness of C* — Sy,

B: —Bo = argmin) {; Hu + 80— Bn + an\/ﬁﬁn_l (iz (/@n) - lA” (Bn))‘

ue(C*—B

+ Y Ay (an\/ﬁ (B — Fog) (u+ Bo— Bn) + % |u+ Bo — Bn|2@m,> }

jeEVT

. 1 _
argmm) {22/ (Ho + Z )\ojGoj> u+u (Ho + Z )\OjGoj) (Bo— Bn)

ue(C*—o jeguT jeevT

1 _ 1 _
Pyl Al 3wl Ak, | o

jeEVL

= Bn—Bo + op(1) = 0p(1)

Next we derive the asymptotic distribution of the proximal bootstrap. Note that since C* is

already a linearized constraint set, the linearized feasible direction set is simply
Z:, = {h : fnj (Bn) + FA] (BO - Bn + anh) + an\/ﬁ (f: (Bn) - fnj (Bn)) = 0 for JE &
fnj (Bn) + FTIU (BO - Bn + anh) + an\/ﬁ( :j (Bn) - fnj (Bn)) < 0 for ] € I}

_ {h i B o (5 (Ba) = g (Ba)) + oy <50 - ﬁ”) _Oforjed,

Qp Qn

Qp

Qpn

# ELh e (5 (B) — o (B2) + Foy (2P) <0 ez}

38



Fuj (Bn)

Note that ~ o for j € T\T* while fnja(fn) _ \/ﬁ(fnj(\ﬁ/%l—fw(@o)) _ \/ﬁ(fnj(é%)a—fnj(ﬁo)) n
\/ﬁ(f"j(ﬁ%)aﬂfo](ﬁo)) = op(1) for j € £ U T*. Additionally, F; <%) = op(1), F, = Fy + op(1),

\/ﬁ< i (Bo) = fnj (ﬁo)) % Uoj, jointly, for all j € £ U Z*, and \/ﬁ< i (Bn) = fnj (Bn)> s

Uoj, jointly, for all j € £ U Z* because " ;ﬁp ( )\/ﬁ(f;’: (B) = fa (B) = f¥ (Bo) + fn (Bo)) = 0p(1).
—Bol<o(1
Therefore,

ol (h ¢ XF) £>doo1 (h ¢ {h:Uoj + Fy;h =0 for j € £ Uy; + Fy;h <0 for j € T*})
e
Next, we can center and scale the bootstrap estimator to get

ﬁ; — Bo = argmln{anf< (/Bn) _l (/Bn))/ (ﬂO _Bn + anh) + % HBO _’Bn * anh”fqn

Qn hesk

3 (an\/ﬁ (F2 = Fuj) (Bo = Bn + anh) + % |80 — Ba + anhHém> }

JjeEVT
Hn}

2 2 2
+ ), /\nj<\/ﬁ(Fﬁj—Fnj)'(W+h>+;‘°;+h ) >}

jeEUT Gnj

Qn

— arg min {\/ﬁ (7% (Ba) ~n (Bn)>/ <50 oy h) 2 ‘

hesk On

_ argmin {h’\/ﬁ (2 (Ba) —fu (Bu)) + SH'H

hex¥

_ _ _ 1 -
+ Z Anj (h’\/ﬁ(Fg‘j—Fnj)+2h’anh>+o};(1)}

jeEuT

1

&’i}» arg min { h'W + h’Hoh + D Ay (hfvoj + 2h’G0jh> - J
hex. JEEUTH (o)

where the last line follows from the following arguments. First, note that since H,, > Ho, G’nj RN Goj

for all 7, and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K < R,

N (1 B) o 3+ R+ 3 (W (5~ Fo) 4 0 Gh)

jeEVT

i (B () ~ 1 (B)) + SWHoh+ 3 Ay (wa (Fr — Fy) + ;h’Gojh> +op(1)

JjeEVT

39



Next, note that Assumption 4, max |An; — Agj| 20,and  sup  n(FF(B) — Fn(B) — F*(Bo) + F, (Bo)) =
jeevz |80l <o(1)

op(1) imply v/ (I (Bn) =l (Bn) ) + Sjeeoz Aniv/i (Fiy = Fog ) 2o Wo + Xjeez Mo Voj because

Vi (08 (Ba) = 1o (3a)) + 3 Dui/n (B = Fu)

jeEVT
— v/ (B Bo) = (B0) ) + v/ (B2 (Ba) — T (Ba) — (£ (Bo) = I (50) ) )
+ 0 Aopvn (FE (Bo) = Fug (B0)) + D (Anj = Xog) v/ (Fiiy — Fug)

jeEuT jeeuT
+ Z Aojv/n (F;‘j - Fnj - (F:] (Bo) — Fnj (50)))
jeEVT
— v/ (05 (Bo) = n (B0) ) + 35 Ao/ (B (Bo) — Fus (B0)) + 0p(1)
jeEUT

and we assumed v/ (£ (B0) — I (80) ) +Sjee0z Aogv/ (F (Bo) = o (B0)) 2o Wot X ez Yos Vo

Additionally, max |Gn; — Go;| & 0 and
itionally, e [Gnj — Gos| = 0 and mas

Zjesuz MojGoj. By convexity of the bootstrap Lagrangian in h, pointwise convergence implies

uniform convergence over compact sets K < R?; therefore,

W/n (Z;‘; (Bn) = ln (Bn)) + %h’Hoh + ) Ang <h’\/ﬁ (Fi; — Fnj) + ;h’Gojh>

jeEVT

P / 1 / ! 1 /
VSN Wo + =h'Hoh + g : Vo + — :
h 0 2h ()h o )\0] (h 05 Qh Gojh>

1 1
= W'Wo + Sh'Hoh + DAy (h’voj -+ 2h’Gojh)
jE(C,‘UII (o)
as a process indexed by h in the space of bounded functions on compact sets % (K) for any compact
K c R Finally, note that 3;" is unique because H,, + ZjegUI ;\nj@nj is symmetric and positive
definite. Then, by a modification of the bootstrap argmin continuous mapping lemma 14.2 in Hong
and Li (2020) that replaces weak convergence with epi-convergence, arg minG#* (h) ﬁ)d arg minGy (h)
h e— h

for

G (h) = W (B (Bu) — b (Ba) ) + ' Fluh

_ _ _ 1 _
+ Z Anj (h/\/ﬁ (F;:J — Fnj) + 2h/Gn]‘h> + ool (h ¢ ZZ)

JjeEVT
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1 1
Go (h) = h,WU + ih/HOh + Z )\[)j <h/V0j + 2h/G0jh) + ool (h ¢ Z)
jeé’qu‘_()\o)

5.1.3 Proof of Theorem 3

We will first show Q* < ) for all drifting sequences and then apply stochastic dominance arguments
to show uniform coverage of the confidence set. For active inequality and equality constraints j € Eu
Z* where fo; (Bo) = 0, v/nfnj (Bo)—Fnj (5’)/ h > Ugj—Fy;h. For y/n-drifting inequality constraints

e Tfi, where fo; (Bo) = ¢/v/in for ¢ < 0, Vinfas (50) = Fuj (B) b = v/t (fug (Bo) — foy (o)) -
Fj (5) i+ ¢ v Upj — Fyh+ c. For slower than y/n drifting constraints j € T, ,, where fo; (8o) =
/n? for ¢ < 0 and p < 12, V/infu; (Bo) = Fuy (B) b = v/t (g (B0) = oy (B0)) = Fuy (B) o +

en/?=r B _on. For faster than /n drifting constraints j € 7% . where fo;j (Bo) = ¢/n? for ¢ < 0

>1/2
N/ N/
and p > 1/2, v/nfn; (Bo) — Fn; (5) h = /n(fnj (Bo) = foj (Bo)) — Fuj (5) h 4 en?270 s Uy —
Féjh. For the nonactive and nondrifting inequality constraints j € Z\ <I* ) Il/ ) I<1/2 v I>1/2>

Vnfni (Bo) — Fuj (B)l h B —co. Therefore,

Q= {h: Up; — Fiyh = 0 for j € &, U; — Fysh < 0 for je T* G T, , Uy; — Fijh < —c for j e 7}, |

Recall that since vt (£ () = foy () 5 Uy and  sup (£ (3) = £ (8) = £ (o) + o (o) =

ok(1), \/ﬁ( i (Bn) = fnj (,Bn)> v Uy for all j € £ UZ. For active inequality and equality con-

p
fn] (ﬂn) _ \/ﬁ(fn](ﬂn) fO](ﬂO))
= fan

equality constraints j € I;% where fo; (B0) = ¢/+/n for ¢ < 0, Fnj (ﬁn) —
V( frg(Bn)—fo;(Bo))

straints j € £ U Z* where fo; (6o) = 0, = 0p(1). For /n-drifting in-

VA (fnj (Bn)—fo;(Bo)) 4_c
vnon Vnan

T + 0p(1) = o0p(1). For faster than /n drifting constraints j € I 7}y where
foj (Bo) = ¢/nP for ¢ < 0 and p > 12, fméfn) _ f(fm(%i;foj(ﬂo)) b = f(fm(jz?xnfw(ﬁo))

op(1) = o0p(1). For slower than y/n drifting constraints where fo;(8o) = ¢/n” for ¢ < 0 and

0 if a,nf — 0

< By c/kif apn? — k - We will label these con-

nPony

fnj (Bn) _ \/ﬁ(f’ﬂ] (Bn)*foj (ﬁO))

p < 1/2 T

—oo  if apn? — 0

#
I<1/2,k , and s

21/2,0 respectively to reflect the limit of a,n”. For the nonac-

straints as I<1/2 o
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tive Emd nondrifting inequality constraints j € 7\ <I* U 1'17% U Ifl/z U Ifl/ZOO U Ifl/Q,k U I<1/2 0)
%fn) P, _ 0. Therefore,
O* = {h : Upj — Fo;h = 0 for j € €, Uyj — Fyih <0 for j e T* qu;Q qul/ Ifl/Zoo’
Uoj — Fojh < —c/k for j € I<1/2k}
Assumption 6 and the continuous mapping theorem imply that
~ /
— v/ (8o = Bu) v/ (I (B0) = 1(80)) + fo@o i),
SN
+ ) o (\/ﬁ(Fnj (Bo) — Foj)' v/n (50 - 5n> +5 H\/ﬁ (50 - &)‘G ) +op(1)
0j

jeEVT

o q (T)

where the op(1) term is uniform in P, g (h) = _h/WO"’%h/HohjLZjegqu;()\o) Aoj (—h'Voj + %h’Gojh),

and J = argming (h). Note that ¢ (J) = I}{liélq (h). Similarly, for J* = arg ming (h),

heQ € heQ*
Ag () - Ax (B)
ap
_ . _ / _ * _ *
= v/ (15 (Ba) = I (Bn)) <50 0 ) fo— 0
fo 2 Qy, _
Hn
A2
_ * _ *
+ Anj \/E(F:]—Fnj)’<ﬂ0 6) 5 bo — B +op(1)
je€uT Gn R
P *
2 ()
where the op(1) term is uniform in P. Since Q* < Q and ¢(h) is a strictly convex function
of h, mmq( ) < (h) uniformly over P. This implies that the asymptotic distribution
*
of M unlformly first order stochastically dominates the asymptotic distribution of

an

n (ﬁn (Bo) — L (Bn)> Under the assumptions of this theorem, for all €, > 0 and n large enough,

there exists 0, > 0 such that supP (sup {J* (z,P)—J,(z,P)} > en> < 60n. Let ¢f_,, be the
PeP zeR
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A% (B Y— A% (3% ~ ~ ~
1 — o quantile of M and let é_, be the 1 — « quantile of n <£n (Bo) — Ln, <5n>) Take

n

{en}o_; and {d,}._; to be positive sequences such that €, — 0 and &,, — 0. Then,

it P (n (20 () =0 (51)) < 1)
> liminf inf P <n (ﬁn (Bo) — L (n)) < el nsup {7, (2, P) — Ju (2, P)} < )
> liminf inf P <n (ﬁn (Bo) — L (n>) < é1-ae 5up {3, (2, P) - )
> liminf inf P (n (ﬁn (Bo) — L (n)) < él,a,en) lin supsup P (ilelp {J2 (x,P) = Jn(z,P)} > en)

>1—«

5.2 Additional Results
5.2.1 Equality Constrained Quadratic Program

Lemma 5.1. Suppose Hy € R? x RY is nonsingular, R € RY x R™ has rank m, and A, = Op(1).

Then

1
ht = argmin WA, + §h'H0h
Rh=9$¢

— —Hy' (- R(R'H;'R) " R'HG') Ay + Hy 'R (R'H;'R) ™

Proof: The Lagrangian and KKT conditions are

1
L= WAy + Sh Hoh + Ao (R'h — )
A, + Hoh + RA =0

Rh—-6=0
The first KKT condition says bt = —H; ' (A, + R)). Substituting into the second KKT condition,

—R'Hy' (An+ RN =8 — A=—(R'Hy'R)™" (6 + RHy'A,)
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Therefore,

Wt = —Hy'A, + Hy'R(R'Hy 'R) ™ (6 + R'Hy'A)

— —Hy' (- R(R'H;'R) " RHG') Ay + Hy 'R (R'H;'R) ™'

5.2.2 Inequality Constrained Quadratic Program

Lemma 5.2. Suppose Hy € R x R is nonsingular, Ry € R* x R™A has rank my, and A, = Op(1),

where Ry denotes the submatriz of R € R? x R™ corresponding to the active constraints. Then

1
ht = argmin h'A, + ih/Hoh
R'h <9

— max (—Hy " (1= Ra (RAHG ' Ra) ™ RIGHG ) A+ Hy 'Ry (RAHG ' Ra) ™ o, —Hi A )
where 65 denotes the subvector of & corresponding to the active constraints.

Proof: The Lagrangian and KKT Conditions are

1 m
L=N Ay + W Hoh+ ) i (Rih — 0;)

=1

A, + Hoh + Ry =0

Wi = O,Mi (R;h — (51) =0Vi=1..m

The first KKT condition says h™ = —HO_1 (A, + Ru). The second says that if p; > 0, then
R.ht — §; = 0; such an inequality constraint is called strongly active (binding). It can also be
the case that pu; = 0 and R,h*™ — §; = 0, in which case the inequality constraint is called weakly
active. The assumption that Ry has rank mp implies linear independence constraint qualification
is satisfied, which means the set of Lagrange multipliers that satisfy the KKT conditions is a
singleton (Wachsmuth (2013)). Let the Lagrange multipliers corresponding to active constraints be
denoted pp. The Lagrange multipliers corresponding to nonactive constraints are zero. Therefore
Ru = Rppa. Stacking the equations RAT — &; = 0 for the active constraints, and accounting for

the possibility that u; = 0 for the weakly active constraints (since strict complementarity may not
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hold),
RA\hT — 6y = —Ry\Hy ' (A + Rapp) — 0p =0 = pp = max (f (RAHy"Ra) ™" (RyHy ' A + 0r) ,o)
Therefore,

ht = —Ho_l (An + RAMA)

— max (—Hy ' Ay + Hy "Ry (RyHg "Ra) ™ (RAHG "D+ 60) , ~Hg ' An)

1

— max (—Ho—l (I — Ry (RyHy'Ry) ™" R’AH(;l) Ap + Hy Ry (RyHy " Ry) ™" 64, —Ho_lAn>

5.2.3 Consistency of Proximal Bootstrap with infinite number of non-drifting con-

straints when [ (5p) = 0 (Remark 6)

The limiting distribution of y/n (Bn — Bg> can be difficult to characterize due to the presence of an
infinite number of constraints in the limit as n — o0. To avoid explicitly characterizing the limiting

distribution, we will work with the following finite constraint set X:
Y= {h : Uy —I—F(’)jh =0 for j € &,, Uy, —i—Féjh <0 forjeI;‘:}

Here, 7)) = {j €I, : fo; (bo) = 0}, and X, and ¥} are the same as in the proof of Theorem 2
except allowing for &, and Z,, to depend on n. To demonstrate consistency of the proximal boot-
strap, we will show that both o0l (h ¢ %,) and ool (h ¢ £%) have the same limit (in the sense of
epi-convergence in distribution) without explicitly characterizing this limit. Because ool (h ¢ X,,)
and ool (h ¢ ¥%) are convex functions, to show epi-convergence in distribution, it suffices to show
finite dimensional convergence. In particular, we will show that ool (h ¢ X,) — o0l (h ¢ X) and

ol (h ¢ X¥) — ool (h¢X) both converge in finite dimension to zero. To do so, we will assume

sup P< max _+/nfn; (Bo) < t) —P< max Up; < t> — 0, and
teR jegnUZ;l; jeEnuL”;

* (B _ f . (R _ ) P . e .
Stlell_‘é) P <j€1(91711%xﬁ\/ﬁ (fnj (Bn) fnj (ﬁn)) <t Xn> P <j€g71ff§,'ﬁU0] < t>’ 0. These assump

tions can be derived using the results in Chernozhukov et al. (2013) and Chernozhukov et al. (2019)

for Gaussian approximation of maxima of sums for high dimensional random vectors. We will also
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need to assume max | ni (Bo) — Foj| = op(1) and  max |Fj — Fo;| = op(1).
jeEnUIE JEERVILE

We now show finite dimensional convergence of ol (h ¢ ¥,,) to ool (h ¢ 3). For any hy, ..., hy

where k is fixed,

P (h1 € Zn, ...,hk € En)

k
=P (ﬂ {V/nfnj (Bo) + Fnj (Bo) hi = 0 for j € En,v/nfnj (Bo) + Frj (Bo) hi <0 for j € In}>

i=1

JEERUI, JEENR

=P ({ g (Vi (90) + o Py 50 1) < 0f () famae (it (o) — o P 0 s ) < 01} )

P(hieX, .., heX)

k
=P (ﬂ {Uoj + Féjhi =0 for j € &,,Up; + Féjhi <0 forje I:;})
=1

— T

=P <{je2%xz:’: (Uo] + 1rilla<x Fojh > < 0} ﬂ {Ijré%f < Uoj — 1I£za<XkF03h ) < 0})

=P < ] rgna};* (\/ﬁfn] (/80) + maX Fn] 50 > } {max ( \/7fn] (/80) - max Fn] (/BO) 1> < 0})
JECnULn

_ p<
ot sin) <) (o i) <)

P(hi€Xy,...hyeX,)—P(h1€X, ..., heX)
s (o g i ) 0§ M (v i) < 0}> et
(s (o im0 o) <)) e

where we have used \/nfy; (Bo) + 1manFnj (Bo) hi B —co for j € T,\Z%, max |F,; (Bo) — Fo;| =
SNIAS J

eEn ULk

— 0. The rest of the arguments

op(1), and sup |P < max ffm (Bo) < > - P (3 max Up; < )

teR JjEERVIE En VI
are the same as in Theorem 2. It follows that for ¢;_, the 1—a quantile of J = arg min {h’Wg + %h’Hoh},

heXx
P (\/ﬁ (Bn — ﬁo) > lea) — a.

Similarly, to show finite dimensional convergence in probability of ool (h ¢ ¥%) to 0l (h ¢ X),

for any hq, ..., hi where k is fixed,

P(hieXl .. hpeXi|A,)
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k (R 3
=P (m {fn](ﬁn) —I—Féjhi-F\/ﬁ( :j (Bn) _fnj (ﬁ_n)) —I—F,/Lj (BO Bn) =0for je&,,

i=1 Qn Qn

fnj (Bn)

Qp

n

+ F?Q]hz + \/ﬁ( :j (Bn) - fnj (Bn)) + F;L] (BO Bn) < 0 fOl“ ] EIH}‘XTL>

—p ({‘max (ﬁ( %5 (Ba) = fuj (Bu)) + max Fy b + fnja(fn) + L (Boo;ﬁn» < 0}

jeEn iy
s (7 05 5 = ) = g~ 220 g (B2} <o )

P(hieSt,  hy €S X,)—P(h ey, . . hye)

_p ({ max (m (75 (Bu) = fug (Bu)) + maxFojh) < o}

JEERUIE 1<i<k
ﬂ {gré%i{ (_\/ﬁ (f:j (Bn) - fnj (Bn)) — 1I£lza\x Fth ) < 0}’ Xn>

= ([, (v s ) < 0} () e (0 — g i) <0} ) + vt

= Op(l)

where we have used FT/LJ (M) — OP(I) fn]( )+ max Fn] (60)/ hz _) —o0 fOI'j c In\z*, fnj(ﬂn) —

On 1<i<k On

op(1) forall j € £,UT*, sup ( max \f( (Bn) = fnj (Bn)) < t‘Xn> - P( max UOJ < )

teR jeEn VI
0, and max ‘Fny — Foj‘ = op(1). The rest of the arguments are the same as in Theorem 2. It fol-

JEERUTE
Xn> EA

lows that for ¢y, the 1—a quantile of J = arg min {h’Wg + %h’Hoh}, P (a;l (BA;‘; — Bn> > Cl_q
heX

«. Since P (\/ﬁ (Bn — 50) > cl,a> — q, it follows that P (\/ﬁ (Bn 5(]) >cB a) — «, where

B

cB ., is the 1 — a empirical quantile of o, (3;" — Bn>

We can also show that the uniformity arguments in Theorem 3 extend to the case of an infinite

number of constraints when [ (8y) = 0. Define

Us; — FY;

Q= {h: Uy, — Fijh = 0 for j € &, Uy; — Fiyh < 0 for j e T U T ;

=127 h < —cforjel” 1/2}

Q*z{h:Uoj—FO'jh:Oforjeé’n,UOj—Féjh 0forjeTr v Tt ,uTf

n,>1/2 vt

n,<1/2,00°

/2

Uoj — Fj;h < —c/k for j € 1

j n,<1/2, k}

We can show that for any hq, ..., by where k is fixed, P (h1 € ¥, ..., hx € X)) —P (h1 € Q, ..., hi € Q) =
op(1) and P (h1 € X, ... hpy € X%| X)) — P (h1 € Q% ..., hy € Q%) = op(1). Let ¢f_, be the 1 —
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: Ak (Bn)-A%(BY) « : - g —
quantile of o , and let ¢f_, be the 1 — o quantile of glgl)riq(h), where A? (5) =
€

\ RN _ _
i (15 () = b (B)) (8= Bu) + 518 = Bully, and q (k) = {=W'Wo + SW'Hoh}. Let J, (- P)
denote the conditional CDF of w under P, and assume for all € > 0,

n

lim supsup P (sup |JE (z,P)— J* (z,P)| > e) = 0, where the limiting distributions {J* (-, P) : P € P}
n—00 PeP zeR
are equicontinuous at their 1 — o quantiles. For positive sequences {e,},_; and {d,},_; such that

» — 0 and 6, — 0,

g o (00000 (3) 1)

> liminf inf P ( 1nq <éf_, nsupl|Ji (z,P)—J*(z,P)| < en/2>
n—ow PeP zeR "

> liminfian< 1nq < g, nsup|JE (z,P)— J* (2, P)| < en/2>
10 PeP 2eR
. . . *

> hrrlrigéflljré?f)P (}gggiq < ae, msxlelﬂg‘J x,P) — J* (z,P)| < en/Q)

> liminfinf P [ ming (h) < ¢f_,_. > — lim supsup P <sup |J% (x,P) = J*" (z,P)| > en/Q)
n—x0 PeP  \ heQ¥ " n—w PeP \weR

>l—-a—¢, -0, =21—q«
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