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We demonstrate how to use the proximal bootstrap to conduct asymptotically valid inference

for
?
n-consistent estimators defined as the solution to a constrained optimization problem with

a possibly nonsmooth and nonconvex sample objective function and a constraint set defined by

smooth equalities and/or inequalities that can be either non-random or estimated from the data

at the
?
n rate. The proximal bootstrap estimator is typically much faster to compute than

the standard bootstrap because it can be written as the solution to a quadratic programming

problem. Monte Carlo simulations illustrate the correct coverage of the proximal bootstrap

in a boundary constrained nonsmooth GMM model, a conditional logit model with estimated

capacity constraints, and a mathematical programming with equilibrium constraints (MPEC)

formulation of the Rust (1987) Bus Engine Replacement model proposed in Su and Judd (2012).
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1 Introduction

This paper considers using the proximal bootstrap estimator proposed in Li (2021) to conduct

asymptotically valid inference for a large class of
?
n-consistent estimators with possibly non-

standard asymptotic distributions for which standard bootstrap procedures fail. The application

which we will focus on in this paper is estimators defined by the solution to a constrained opti-

mization problem with a possibly nonsmooth and nonconvex sample objective function and either
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Bulat Gafarov and Takuya Ura), and the Yale Econometrics workshop (in particular Donald Andrews, Xiaohong
Chen, Timothy Christensen, and Jean-Jacques Forneron) for helpful comments and suggestions.
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estimated or non-random smooth inequality and/or equality constraints. A well-known example of a

constrained estimator with a nonstandard distribution is the constrained MLE estimator where the

true parameter lies on the boundary of the constraint set (Andrews (1999),Andrews (2000),Andrews

(2002)).

Motivated by the optimization literature and recent contributions in computationally efficient

bootstrap procedures (e.g. Forneron and Ng (2019)), our proximal bootstrap estimator can be

expressed as the solution to a convex optimization problem and efficiently computed starting from

an initial consistent estimator using built-in and freely available software. The proximal bootstrap

can consistently estimate the non-standard asymptotic distribution of constrained estimators when

the parameters are not drifting towards the boundary. When the parameters are drifting towards

the boundary at an unknown rate, the proximal bootstrap typically cannot consistently replicate

the estimator’s distribution. However, we are still able to conduct uniformly conservatively valid

inference on the entire parameter vector using a confidence set constructed by inverting the optimal

value function. We can also conduct uniformly conservatively valid inference on subvectors of the

parameter vector using two-sided intervals obtained through projection. The proximal bootstrap

relies on a scaling sequence (labeled αn in this paper) that converges to zero at a slower than
?
n rate,

similar to the εn in the numerical bootstrap Hong and Li (2020). However, we want to emphasize

that the proximal bootstrap is a different procedure than the numerical bootstrap because it solves

a different optimization problem. The proximal bootstrap works only for
?
n-consistent estimators

but is more computationally efficient than the numerical bootstrap.

Another novel part of this paper is that we provide a general asymptotic distribution for estima-

tors defined by the solution to a constrained optimization problem with equality and/or inequality

constraints which can be estimated from the data, while Hong and Li (2020) looked only at esti-

mators with non-random constraints that do not depend on the data. The asymptotic distribution

of constrained estimators with estimated constraints is derived using ideas from the optimization

literature and encompasses as special cases the results in Geyer (1994), Andrews (1999),Andrews

(2000), and Andrews (2002) for constrained estimators with non-random constraint sets and true

parameters possibly lying on the boundaries of the constraint sets.

Our paper was inspired by ideas in the optimization literature on sequential quadratic pro-

gramming, where a local quadratic approximation is used to approximate the objective function
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on each iteration. The proximal bootstrap estimator is in effect applying such a local quadratic

approximation, but centered around an initial
?
n-consistent estimate of the parameters. Because

we want the estimation error from this initial estimate to be negligible in the proximal bootstrap

approximation of our estimator’s asymptotic distribution, we need to use a scaling sequence αn that

satisfies αn Ñ 0 and
?
nαn Ñ 8. For estimators with estimated constraint sets, αn will also serve

as a selection device so that the active constraints are included in the asymptotic distribution while

the nonactive, non-drifting constraints are not.

We were inspired to write this paper after reading a series of papers by Alexander Shapiro:

Shapiro (1988), Shapiro (1989), Shapiro (1990), Shapiro (1991), Shapiro (1993), Shapiro (2000),

and also by Keith Knight: Knight (2001), Knight (2006), and Knight (2010). While several of

these papers derive the non-standard asymptotic distributions of various constrained estimators,

we did not see them propose a practical inference procedure as we do. Examples of econometrics

papers on constrained estimation include Moon and Schorfheide (2009), Kaido and Santos (2014),

Kaido (2016), Gafarov (2016), Chen et al. (2018), Hsieh et al. (2022), Kaido et al. (2019), Kaido

et al. (2021), Horowitz and Lee (2019), and Fang and Seo (2021). While many of these papers

are concerned with either conducting inference on the optimal value of the constrained optimiza-

tion problem or testing whether the parameter of interest satisfies the constraints, we are mainly

interested in conducting inference on the optimal solution assuming that the constraints are valid.

Perhaps the closest paper to ours is Hsieh et al. (2022) who also consider inference for the opti-

mal solution, but they focus on linear programming (LP) and convex quadratic programming (QP)

problems with linear constraints. In contrast to Hsieh et al. (2022), we allow for nonconvex and

nonlinear objective and constraint functions, but we do not allow for non-unique solutions. Our

inference procedure is also different from theirs because we use resampling while they exploit the

fact that the primal-dual formulation of the KKT conditions can be written as a set of moment

inequalities and then apply test inversion.

The outline of our paper is as follows. Section 2 contains the main theoretical results, starting

with Subsection 2.1 which contains the notation followed by Subsection 2.2 which briefly reviews the

concept of proximal mappings from the optimization literature. Subsection 2.3 shows consistency of

the proximal bootstrap for finite-dimensional constrained estimators with non-random constraints,

and Subsection 2.4 shows consistency for estimated constraints. In both the non-random con-
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straints case and the estimated constraints case, the proximal bootstrap can consistently replicate

the asymptotic distribution when parameters are on the boundary of the constraint set, but not when

parameters are drifting towards the boundary. Nevertheless, as demonstrated in Subsection 2.5, we

can still use the proximal bootstrap to conduct asymptotically uniformly conservatively valid infer-

ence by inverting the optimal value function. Section 3 contains Monte Carlo simulation evidence

demonstrating the validity of confidence intervals constructed using the proximal bootstrap for a

boundary constrained nonsmooth GMM model, a conditional logit model with estimated capacity

constraints, and the mathematical programming with equilibrium constraints (MPEC) formulation

of the Rust (1987) Bus Engine Replacement model proposed in Su and Judd (2012). Section 4

concludes. Section 5 is the Appendix which contains proofs of the theorems and some auxiliary

results.

2 Proximal Bootstrap

2.1 Notation

Consider a random sample X1, X2, ..., Xn of independent draws from a probability measure P on a

sample space X . Define the empirical measure Pn ” 1
n

řn
i“1 δXi , where δx is the measure that assigns

mass 1 at x and zero everywhere else. Denote the bootstrap empirical measure by P ˚n , which can refer

to the multinomial, wild, or other exchangeable bootstraps. Weak convergence is defined in the sense

of Kosorok (2007): Zn ù Z in the metric space pD, dq if and only if supfPBL1
|E˚fpZnq´EfpZq| Ñ

0 where BL1 is the space of functions f : D ÞÑ R with Lipschitz norm bounded by 1. Conditional

weak convergence is also defined in the sense of Kosorok (2007): Zn
P

ù
W

Z in the metric space pD, dq

if and only if supfPBL1
|EWfpZnq´EfpZq|

p
ÝÑ 0 and EWfpZnq

˚´EWfpZnq˚
p
ÝÑ 0 for all f P BL1,

where BL1 is the space of functions f : D ÞÑ R with Lipschitz norm bounded by 1, EW denotes

expectation with respect to the bootstrap weightsW conditional on the data, and fpZnq˚ and fpZnq˚

denote measurable majorants and minorants with respect to the joint data (including the weights

W). Let X˚n “ o˚P p1q if the law of X˚n is governed by Pn and if Pn p|X˚n | ą εq “ oP p1q for all ε ą 0.

Also define M˚
n “ O˚P p1q (hence also OP p1q) if limmÑ8 lim supnÑ8 P pPn pM

˚
n ą mq ą εq Ñ 0,

@ε ą 0.
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2.2 Proximal Mappings

Given an Euclidean space D and a function r : D ÞÑ R, the proximal mapping of r is the operator

given by

proxr pzq “ arg min
βPD

"

r pβq `
1

2
}β ´ z}22

*

for any z P D

Given a function r : D ÞÑ R and a symmetric positive definite matrix H, the scaled proximal

mapping of r is the operator given by, for }β ´ z}2H “ pβ ´ zq
1

H pβ ´ zq,

proxH,r pzq “ arg min
βPD

"

r pβq `
1

2
}β ´ z}2H

*

for any z P D

When r is a proper closed and convex function then proxr pzq is a singleton for any z P D (Theorem

6.3 Beck (2017)). The same can be said for proxH,r pzq (Lee et al. (2014)). Although it is rarely

the case that the scaled proximal map has a closed form solution, the solution can be efficiently

computed using various proximal algorithms (see e.g. Lee et al. (2012), Lee et al. (2014), Parikh

et al. (2014), Tran-Dinh et al. (2015), Ghanbari and Scheinberg (2016), Rodomanov and Kropotov

(2016), Byrd et al. (2016)).

2.3 Constrained Estimators with Non-random Constraints

It is well known (see e.g. Andrews (2000)) that the standard bootstrap is inconsistent when the true

parameters β0 lie on the boundary of the constraint set C. Andrews (1999) derives the asymptotic

distribution of constrained extremum estimators where the rescaled constraint set
?
n pC ´ β0q can

be approximated by a convex cone. Geyer (1994) considers a more general case where the cone

does not need to be convex. We first consider constrained estimators with non-random constraints

β̂n “ arg min
βPC

Q̂n pβq, where C Ď B is a non-random, closed constraint set that is a subset of the

compact parameter space B Ă Rd, where d is fixed, and Q̂n pβq is a possibly non-smooth, nonconvex

function that converges uniformly to a function Q pβq that is twice continuously differentiable at

β0 “ arg min
βPC

Q pβq. We assume both β̂n and β0 are unique, which rules out partially identified

models.

We will show that the proximal bootstrap can consistently estimate the distribution of
?
n
´

β̂n ´ β0

¯
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both when β0 lies in the interior and on the boundary of C, but not when it is drifting to-

wards the boundary. Nevertheless, we will show in Section 2.5 that the proximal bootstrap can

be used to form a uniformly conservatively valid confidence set for either the whole parameter

vector or subvectors of the parameter vector. Because the more general results in Section 2.5

cover the case of non-random constraints as a special case, we will defer discussion of drifting

sequences in the case of non-random constraints until Section 2.5. Geyer (1994) shows that if

Q pβq achieves its minimum over C at some point β0 where it has a local quadratic approxima-

tion Q pβq “ Q pβ0q `
1
2 pβ ´ β0q

1H0 pβ ´ β0q ` o
´

}β ´ β0}
2
¯

, where H0 “
B2Qpβq
BβBβ1

ˇ

ˇ

ˇ

β“β0

is positive

definite, then
?
n
´

β̂n ´ β0

¯

ù J “ arg min
hPTCpβ0q

 

h1W0 `
1
2h
1H0h

(

, where W0 is a Gaussian and

TC pβ0q ” lim sup
τÓ0

C´β0

τ is the tangent cone of C at β0. For closed sets C that are Chernoff Regular

at β0, the limit exists and TC pβ0q “ lim
τÓ0

C´β0

τ .

Note that the assumption that Q pβq has a local quadratic approximation at β0 of the form

Q pβq “ Q pβ0q`
1
2 pβ ´ β0q

1H0 pβ ´ β0q`o
´

}β ´ β0}
2
¯

effectively assumes l pβ0q “
BQpβq
Bβ

ˇ

ˇ

ˇ

β“β0

“ 0

(this is noted on the top of page 2000 of Geyer (1994)). In other words, the constraints are not

necessary for identification of β0. We will relax this assumption in Section 2.4 to allow for l pβ0q ‰ 0.

When l pβ0q “ 0, one way that we can define the proximal bootstrap estimator is for some αn Ñ 0

and αn
?
nÑ8,

β̂˚n “ proxH̄n,81p¨RCq

´

β̄n ´ αn
?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯¯

“ arg min
βPRd

"

81 pβ R Cq ` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

*

“ arg min
βPC

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

*

Here, β̄n is an initial
?
n-consistent estimator of β0. For example, we can use β̄n “ β̂n. The sequence

αn ensures that β̄n’s estimation error does not enter into the proximal bootstrap approximation of

β̂n’s asymptotic distribution. l̂n
`

β̄n
˘

is a consistent estimate of l pβ0q using β̂n, and l̂˚n
`

β̄n
˘

is a

bootstrap (e.g. multinomial, wild) analog of l̂n
`

β̄n
˘

. If Q̂n pβq is differentiable, l̂n
`

β̄n
˘

can simply

be the Jacobian of Q̂n pβq evaluated at β̂n. More generally, to handle non-differentiable Q̂n pβq,

l̂n

´

β̂n

¯

is a subgradient of Q̂n pβq at β̂n. H̄n is a consistent, symmetric, positive definite estimate

of the population Hessian H0 using β̂n.
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If C is a convex set, then this formulation of the proximal bootstrap solves a convex optimiza-

tion problem. If C is not convex, we can linearize the constraints to make the problem convex

assuming that a constraint qualification is satisfied which ensures the linearized constraints suf-

ficiently capture the geometry of the constraints around the solution. Let the constraint set be

C “ tβ P B : fj pβq “ 0 for j P E , fj pβq ď 0 for j P Iu. Then for F̄j “
Bfjpβq
Bβ

ˇ

ˇ

ˇ

β“β̄n
, we can define an

alternative proximal bootstrap estimator using a linearized constraint set as

β̂˚n “ arg min
βPC˚

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

*

C˚ “
 

β P B : fj
`

β̄n
˘

` F̄ 1j
`

β ´ β̄n
˘

“ 0 for j P E , fj
`

β̄n
˘

` F̄ 1j
`

β ´ β̄n
˘

ď 0 for j P I
(

Because this version of the proximal bootstrap with a linearized constraint set C˚ is a special case

of the more general result in Subsection 2.4’s Theorem 2, we do not prove it in this section. We will

only consider the version with the nonlinearized constraint set C and show that β̂˚n´β̂n
αn

consistently

estimates the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

when the parameters are not drifting towards

the boundary and l pβ0q “ 0. Before we present the theorem, we list a few assumptions needed for

the theorem to hold.

The first assumption is needed to show consistency of β̂n for β0.

Assumption 1. (i) B Ă Rd is compact and d is fixed. (ii) β̂n “ arg min
βPCĎB

Q̂n pβq is uniformly tight

and unique. 1

(iii) β0 “ arg min
βPC

Q pβq is unique.

(iv) Q pβq is a lower semicontinuous function that is twice continuously differentiable at β0, and

sup
βPK

ˇ

ˇ

ˇ
Q̂n pβq ´Q pβq

ˇ

ˇ

ˇ
“ oP p1q for every compact subset K of C.

The next assumption states that Q̂n pβq admits a uniform local quadratic approximation around
?
n neighborhoods of β0. This assumption does not require Q̂n pβq to be differentiable at β0 since

l̂n pβq does not need to be the Jacobian of Q̂n pβq. This assumption is similar to the stochastic

differentiability assumption in Pollard (1985) and is needed to derive the asymptotic distribution

of
?
n
´

β̂n ´ β0

¯

.

1Uniform tightness means for every ε ą 0, there exists a compact K Ă C with P
´

β̂n P K
¯

ě 1´ ε for every n.
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Assumption 2. There exists a symmetric, positive definite H0 and
?
n
´

l̂n pβ0q ´ l pβ0q

¯

“ OP p1q

such that for any δn Ñ 0,

sup
}h}ď

?
nδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nQ̂n

´

β0 `
h?
n

¯

´ nQ̂n pβ0q ´ h
1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

´ 1
2h
1H0h

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

The role of the shrinking sequence δn is localize the quadratic approximation around β0. A

similar assumption can be found in Gallant et al. (2022).

The next assumption is needed to show that
?
n
´

l̂n pβ0q ´ l pβ0q

¯

and
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have the same asymptotic distribution.

Assumption 3. There exists a function g : X ÞÑ Rd indexed by a parameter β P Rd such that

for any β P Rd,
?
n
´

l̂n pβq ´ l pβq
¯

“
?
n pPn ´ P q g p¨, βq ` oP p1q and

?
n
´

l̂˚n pβq ´ l̂n pβq
¯

“

?
n pP ˚n ´ Pnq g p¨, βq ` o

˚
P p1q, where lim

nÑ8
P }g p¨, β0q }

21 p}g p¨, β0q } ą ε
?
nq “ 0 for each ε ą 0.

The next assumption is needed to show stochastic equicontinuity and bootstrap equicontinuity

results which will be used to show
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

and
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have the same

asymptotic distribution.

Assumption 4. (i) GR ” tg p¨, βq ´ g p¨, β0q : }β ´ β0} ď Ru is a Donsker class for some R ą 0

and P }g p¨, βq ´ g p¨, β0q }
2 Ñ 0 for β Ñ β0.

(ii) lim
λÑ8

lim sup
nÑ8

sup
těλ

t2P

#

sup
gp¨,βqPGδn

›

›

›

›

gp¨,βq´gp¨,β0q

1`
?
n}β´β0}

›

›

›

›

ą t

+

“ 0 for any δn Ñ 0.

(i) will imply stochastic equicontinuity, which in combination with the envelope function inte-

grability condition in (ii) will imply bootstrap equicontinuity. A sufficient condition for (ii) is that

sup
gp¨,βqPGδn

›

›

›

›

gp¨,βq´gp¨,β0q

1`
?
n}β´β0}

›

›

›

›

ď κ for some constant κ ą 0 and any δn Ñ 0.

Our first theorem shows that the proximal bootstrap can consistently estimate the non-standard

distribution of constrained estimators with non-random constraint sets when the parameters are not

drifting towards the boundary. Of particular importance is the sequence αn which converges to zero

at a slower than
?
n rate. The purpose of the slower than

?
n rate is to offset the estimation error

from the initial
?
n-consistent estimator β̂n.
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Theorem 1. Suppose Assumptions 1-4 are satisfied, C Ă Rd is a non-random closed set that is

Chernoff Regular at β0 “ arg min
βPC

Q pβq, and Q pβq “ Q pβ0q`
1
2 pβ ´ β0q

1H0 pβ ´ β0q`o
´

}β ´ β0}
2
¯

,

where H0 ą 0. For any β̄n such that
?
n
`

β̄n ´ β0

˘

“ OP p1q and H̄n
p
Ñ H0, let

β̂˚n “ arg min
βPC

"

Â˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

*

.

For any αn such that αn Ñ 0 and
?
nαn Ñ8,

?
n
´

β̂n ´ β0

¯

ù J and β̂˚n´β̂n
αn

P
ù
W

J , where J “

arg min
hPTCpβ0q

 

h1W0 `
1
2h
1H0h

(

, TC pβ0q “ lim
τÓ0

C´β0

τ , andW0 „ N
`

0, P pg p¨, β0q ´ Pg p¨, β0qq pg p¨, β0q ´ Pg p¨, β0qq
1
˘

.

Remark 1. We can also show that the optimal value’s asymptotic distribution can be consistently

estimated by the proximal bootstrap when the parameters are not drifting towards the boundary. In

particular, n
´

Q̂n

´

β̂n

¯

´ Q̂n pβ0q

¯

ù q pJ q, where q phq ” h1W0`
1
2h
1H0h, and

Â˚npβ̂
˚
nq´Â

˚
npβ̂nq

α2
n

P
ù
W

q pJ q. This result follows from Theorem 4.4 in Geyer (1994) in combination with Â˚npβ̂
˚
nq´Â

˚
npβ̂nq

α2
n

“

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1 ´
β̂˚n´β0

αn

¯

` 1
2

›

›

›

β̂˚n´β0

αn

›

›

›

2

H̄n
` opp1q

P
ù
W

q pJ q.

Remark 2. We can remove the assumption that C is a closed set by assuming instead that J “

arg min
hPTCpβ0q

 

h1W0 `
1
2h
1H0h

(

is almost surely unique. This can happen for example if we strengthen

the condition on C to Clarke Regularity at β0 (see Geyer (1994) page 1997 or Rockafellar et al.

(1998) Definition 6.4 page 199 for a definition), which implies that TC pβ0q is a convex cone. Every

convex set is Clarke Regular, but Clarke Regularity is weaker than assuming convexity of C. See

example 3 in Geyer (1994) for an example of a set that is Clarke Regular but not convex.

Remark 3. A special case is when β0 “ arg min
βPC

Q pβq lies in the interior of C. Then as noted

in several papers (e.g. Andrews (1999), Andrews (2002), Chen et al. (2018)), TC pβ0q “ Rd and

J is multivariate normal. Another special case of C is when there are only equality constraints:

C “
 

β P Rd : f pβq “ 0
(

where f pβq are constraints that do not depend on the data. It is well

known from Amemiya (1985) and Newey and McFadden (1994) that J is multivariate normal.

Remark 4. If l pβ0q ‰ 0, then it is important to include the Lagrange multiplier weighted constraint
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Hessians when defining the proximal bootstrap objective function:

β̂˚n “ arg min
βPC

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n
`

1

2

ÿ

jPEYI
λ̄nj

›

›β ´ β̄n
›

›

2

Ḡnj

where C ” tβ P B : fj pβq “ 0 for j P E , fj pβq ď 0 for j P Iu, Ḡnj
p
Ñ

B2fjpβq
BβBβ1

ˇ

ˇ

ˇ

β“β0

for all j P E Y I,

and λ̄n are a set of optimal Lagrange multipliers for β̄n. The reason for including the extra term

will be described in Section 2.4, where we provide a more general asymptotic distribution for when

there are estimated constraints and l pβ0q may be nonzero.

2.4 Constrained Estimators with Estimated Constraints

Now we consider constrained estimators with a finite number of
?
n-consistently estimated inequality

and/or equality constraints that are twice continuously differentiable over a compact parameter

space B Ă Rd.

β̂n “ arg min
βPC

Q̂n pβq , C “ tβ P B : fnj pβq “ 0 for j P E , fnj pβq ď 0 for j P Iu

We will define the population analog of C to be C0 ” tβ P B : f0j pβq “ 0 for j P E , f0j pβq ď 0 for j P Iu,

where sup
βPB

|fnj pβq ´ f0j pβq| “ oP p1q for all j P E Y I. We are interested in conducting inference on

β0 ” arg min
βPC0

Q pβq, which is assumed to be unique. Q pβq is twice continuously differentiable at β0

and sup
βPB

ˇ

ˇ

ˇ
Q̂n pβq ´Q pβq

ˇ

ˇ

ˇ
“ oP p1q.

For simplicity, we will impose that the population constraints satisfy Linear Independence Con-

straint Qualification (LICQ), which says that the gradients of the active constraints are linearly

independent. LICQ is the weakest possible constraint qualification that ensures the set of optimal

Lagrange multipliers that satisfy the first order KKT conditions is a singleton (Wachsmuth (2013)).

We note that LICQ will be violated when some active constraint gradients are linear combinations

of other active constraint gradients. In particular, LICQ will be violated when some of the active

constraint gradients are zero. Examples of when LICQ is violated appear in e.g. Kaido et al. (2021)

and Nocedal and Wright (2006). It is fine to relax LICQ to Mangasarian-Fromovitz constraint

qualification (MFCQ) as long as we impose the additional condition that there are unique optimal

Lagrange multipliers. MFCQ is weaker than LICQ because it does not require that the gradients

10



of the equality constraints are linearly independent.

Assumption 5. Suppose Linear Independence Constraint Qualification (LICQ) holds at β0 : the

gradients of the active constraints F0j ”
Bf0jpβq
Bβ

ˇ

ˇ

ˇ

β“β0

for j P EYI˚, where I˚ ” tj P I : f0j pβ0q “ 0u,

are linearly independent.

Instead of Assumption 2, we now require that the Lagrangian has a uniform local quadratic

approximation in
?
n neighborhoods of β0. The importance of using the Lagrangian instead of

the objective function is that it allows for the pseudo-true parameters to not be a solution of the

unconstrained population optimization problem; in other words, we allow for the possibility that

l pβ0q ‰ 0.

Assumption 6. Suppose fnj : B ÞÑ R and f0j : B ÞÑ R are twice continuously differentiable

functions that satisfy sup
βPB

|fnj pβq ´ f0j pβq| “ oP p1q for all j P EYI. Define λnj to be a set of optimal

Lagrange multipliers for β̂n. Define L̂n pβq ” Q̂n pβq `
ř

jPEYI λnjfnj pβq, Fnj pβ0q ”
Bfnjpβq
Bβ

ˇ

ˇ

ˇ

β“β0

,

and G0j ”
B2f0jpβq
BβBβ’

ˇ

ˇ

ˇ

β“β0

. Suppose H0 and B0 “ H0`
ř

jPEYI λ0jG0j are symmetric, positive definite.

For any δn Ñ 0,

sup
}h}
?
n
ďδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̂n
´

β0 `
h?
n

¯

´ nL̂n pβ0q ´ h
1
?
nl̂n pβ0q ´

1
2h
1H0h´

ř

jPEYI λ0j

`?
nFnj pβ0q

1 h` 1
2h
1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

where λ0j are the unique Lagrange multipliers that satisfy λ0jf0j pβ0q “ 0 for all j P E Y I ,

0 ď λ0j ă 8 for all j P E Y I, and ∇L pβ0, λ0q ” l pβ0q `
ř

jPEYI λ0jF0j “ 0.

Note that since ∇L pβ0, λ0q ” l pβ0q `
ř

jPEYI λ0jF0j “ 0, Assumption 6 can also be written as
follows: for any δn Ñ 0,

sup
}h}
?

n
ďδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̂n
´

β0 `
h?
n

¯

´ nL̂n pβ0q ´ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

´ 1
2
h1H0h´

ř

jPEYI λ0j

`?
n pFnj pβ0q ´ F0jq

1 h` 1
2
h1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

When l pβ0q “ 0 and max
jPEYI

|λnj ´ λ0j |
p
Ñ 0, which follows from β̂n being consistent for β0, Assump-

11



tion 6 will imply Assumption 2 because λ0j “ 0 for all j P E Y I. A more in-depth discussion of

why λ0j “ 0 appears in Remark 6. However, if l pβ0q ‰ 0, Assumption 6 will not necessarily imply

Assumption 2 because some λ0j may not be zero.

In principle, we do not require that there exists a set of unique optimal Lagrange multipliers

λnj for β̂n, although in practice it is usually the case that λnj are unique. This is because the active

constraint gradients in the sample are almost surely linearly independent when LICQ is satisfied in

the population and the sample constraints converge uniformly to the population constraints.

Next, we define the proximal bootstrap estimator. Let f˚nj pβq be the bootstrap analog of

fnj pβq and let F ˚nj pβq ”
Bf˚njpβq

Bβ . For any β̄n such that
?
n
`

β̄n ´ β0

˘

“ OP p1q, let F̄nj ” Fnj
`

β̄n
˘

,

F̄ ˚nj ” F ˚nj
`

β̄n
˘

, Ḡnj
p
Ñ

B2f0jpβq
BβBβ1

ˇ

ˇ

ˇ

β“β̄n
for all j, and let λ̄nj be a set of optimal Lagrange multipliers

for β̄n. These Lagrange multipliers can be obtained directly as outputs from the optimization

algorithm’s function call for computing β̄n. Define β̂˚n ” arg min
βPC˚

Â˚n pβq, for

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

Ḡnj

˙

C˚ ”
 

β P B : fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E ,

fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

(1)

Note that the proximal bootstrap estimator is the solution to a quadratic programming problem,

which is a convex problem if H̄n`
ř

jPEYI λ̄njḠnj is positive definite. This quadratic programming

problem can be substantially faster to solve than the original constrained problem used to compute

β̂n. Therefore, our proximal bootstrap estimator has a computational advantage over the standard

bootstrap in cases where the standard bootstrap is consistent (e.g. see the MPEC Rust (1987)

example in the Monte Carlo simulations). We do not require that there exists a set of unique

optimal Lagrange multipliers λ̄nj for β̄n, although in practice it is usually the case that λ̄nj are

unique for β̄n “ β̂n because of our assumptions of LICQ and uniform convergence of the sample

constraints to the population constraints.

In the next theorem, we show that when the population inequality constraints f0j pβ0q for j P I

are not drifting towards zero, the proximal bootstrap is able to consistently replicate the non-

12



standard asymptotic distribution of constrained estimators for which the standard bootstrap is

inconsistent. The key for proximal bootstrap consistency lies in the scaling sequence αn which

converges to zero at a slower than
?
n rate. Here, αn serves the dual purpose of offsetting the

estimation error from β̄n and also selecting the active constraints to be included in the asymptotic

distribution while dropping the nonactive constraints.

Theorem 2. Suppose Assumption 1 (after setting β0 ” arg min
βPC0

Q pβq) and Assumptions 3 - 6 are

satisfied in addition to the following:

(i) Suppose β̂n ´ β0
p
Ñ 0.

(ii) Suppose β̂˚n ´ β̂n “ o˚P p1q.

(iii) Suppose ∇2L pβ0, λ0q ” H0 `
ř

jPEYI λ0jG0j is positive definite.

(iv) Suppose
?
n pfn pβ0q ´ f0 pβ0qq ù U0, a tight random vector, and

?
n
´

l̂n pβ0q ´ l pβ0q

¯

`

ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0 `

ř

jPEYI λ0jV0j, a tight random vector.

(v) Suppose
?
n pf˚n pβ0q ´ fn pβ0qq

P
ù
W

U0, max
jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0,

?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W

W0 `
ř

jPEYI λ0jV0j,

sup
}β´β0}ďop1q

?
n pf˚n pβq ´ fn pβq ´ f

˚
n pβ0q ` fn pβ0qq “ o˚P p1q, and

sup
}β´β0}ďop1q

?
n pF ˚n pβq ´ Fn pβq ´ F

˚
n pβ0q ` Fn pβ0qq “ o˚P p1q.

(vi) H̄n
p
Ñ H0, max

jPEYI

ˇ

ˇḠnj ´G0j

ˇ

ˇ

p
Ñ 0, and H̄n `

ř

jPEYI λ̄njḠnj is symmetric, positive definite.

Suppose f0j pβ0q for j P I does not depend on n. Then, for any sequence αn such that αn Ñ 0 and
?
nαn Ñ 8,

?
n
´

β̂n ´ β0

¯

ù J and β̂˚n´β̂n
αn

P
ù
W

J , where for I˚` pλ0q ” tj P I˚ : λ0j ą 0u and

I˚0 pλ0q ” tj P I˚ : λ0j “ 0u,

J “ arg min
hPΣ

$

&

%

h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

,

.

-

Σ “
 

h : U0j ` F
1
0jh “ 0 for j P E Y I˚` pλ0q , U0j ` F

1
0jh ď 0 for j P I˚0 pλ0q

(

13



A sufficient condition for
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0`

ř

jPEYI λ0jV0j

is

¨

˚

˝

?
n
´

l̂n pβ0q ´ l pβ0q

¯

?
n pFn pβ0q ´ F0q

˛

‹

‚

ù

¨

˚

˝

W0

V0

˛

‹

‚

, where V0 “ pV0j for j P E Y Iq. Similarly, a sufficient

condition for
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W
W0 `

ř

jPEYI λ0jV0j

is

¨

˚

˝

?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

?
n pF ˚n pβ0q ´ Fn pβ0qq

˛

‹

‚

P
ù
W

¨

˚

˝

W0

V0

˛

‹

‚

. When Fn pβq “ Pnπp¨, βq and F ˚n pβq “ P ˚nπp¨, βq are

sample averages, these joint weak convergence statements can be verified using a joint Lindeberg

condition. For each ε ą 0,

lim
nÑ8

P

›

›

›

›

›

›

›

¨

˚

˝

g p¨, β0q

π p¨, β0q

˛

‹

‚

›

›

›

›

›

›

›

2

1

$

’

&

’

%

›

›

›

›

›

›

›

¨

˚

˝

g p¨, β0q

π p¨, β0q

˛

‹

‚

›

›

›

›

›

›

›

ą ε
?
n

,

/

.

/

-

“ 0.

Theorem 2 tells us that both two-sided and one-sided confidence intervals constructed using

the proximal bootstrap critical values will be asymptotically exact when the population inequality

constraints f0j pβ0q are not drifting towards zero. Later, in Section 2.5, we will consider the case

of drifting constraints and show how to construct a uniform confidence set for either the whole

parameter vector or subvectors. Before we discuss drifting sequences, we make some remarks on

special cases of the general asymptotic distribution in Theorem 2.

Remark 5. The optimal value’s asymptotic distribution can also be consistently estimated by the

proximal bootstrap under pointwise, non-drifting asymptotics. Specifically, n
´

L̂n
´

β̂n

¯

´ L̂n pβ0q

¯

ù

q pJ q, where q phq ” h1W0 `
1
2h
1H0h `

ř

jPEYI˚`pλ0q
λ0j

`

h1V0j `
1
2h
1G0jh

˘

, and Â˚npβ̂
˚
nq´Â

˚
npβ̂nq

α2
n

P
ù
W

q pJ q. The first result follows from Assumption 6 and the continuous mapping theorem, and

the second result follows from Â˚npβ̂
˚
nq´Â

˚
npβ̂nq

α2
n

“
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1 ´
β̂˚n´β0

αn

¯

` 1
2

›

›

›

β̂˚n´β0

αn

›

›

›

2

H̄n
`

ř

jPEYI λ̄nj

ˆ

?
n
´

F̄ ˚nj ´ F̄nj

¯1 ´
β̂˚n´β0

αn

¯

` 1
2

›

›

›

β̂˚n´β0

αn

›

›

›

2

Ḡnj

˙

` opp1q
P

ù
W

q pJ q.

Remark 6. If l pβ0q “ 0, which is implied byQ pβq “ Q pβ0q`
1
2 pβ ´ β0q

1H0 pβ ´ β0q`o
´

}β ´ β0}
2
¯

,

then J reduces down to

J “ arg min
hPΣ

"

h1W0 `
1

2
h1H0h

*
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Σ “
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚0 pλ0q

(

This is because by the KKT conditions, λ0j satisfies l pβ0q`
ř

jPEYI λ0jF0j “ 0, so if l pβ0q “ 0, then
ř

jPEYI λ0jF0j “ 0. By LICQ, the active constraint gradients F0j for j P E Y I˚ are all nonzero,

and furthermore, the optimal Lagrange multipliers for the nonactive inequality constraints j P IzI˚

are zero by the complementary slackness conditions λ0jf0j pβ0q “ 0 for all j P E Y I. Therefore,

λ0j “ 0 for all j P E Y I is a solution to
ř

jPEYI λ0jF0j “ 0. Since the set of Lagrange multipliers

that satisfy the KKT conditions is a singleton under LICQ, λ0j “ 0 for all j P E Y I are the unique

optimal Lagrange multipliers, which implies
ř

jPEYI λ0j

`

h1V0j `
1
2h
1G0jh

˘

“ 0, I˚` pλ0q “ ∅, and

I˚ “ I˚0 pλ0q.

In this case, it is easy to extend our theory to the case where the number of constraints is

growing with n, assuming that the dimension of β is fixed. We redefine the proximal bootstrap

estimator as β̂˚n ” arg min
βPC˚

Â˚n pβq, where

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

C˚ ”
 

β P B : fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P En,

fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P In
(

(2)

Remark 7. If there are only equality constraints, then the asymptotic distribution becomes J “

arg min
hPΣ

!

h1W0 `
1
2h
1
´

H0 `
ř

jPE λ0jG0j

¯

h
)

for Σ “

!

h : U0j ` F
1
0jh “ 0 for j P E

)

. Using stan-

dard arguments in Amemiya (1985) section 1.4.1 or Newey and McFadden (1994) section 9.1 (which

are repeated in Lemma 5.1 in the Appendix), J “ ´B´1
0

´

I ´ F0

`

F 10B
´1
0 F0

˘´1
F 10B

´1
0

¯

W0 ´

B´1
0 F0

`

F 10B
´1
0 F0

˘´1
U0. If W0 and U0 are multivariate normal, then the asymptotic distribution

will be multivariate normal.

If l pβ0q “ 0 or if the constraints are linear, then
ř

jPE λ0jG0j “ 0 and B0 “ H0, so J “

´H´1
0

´

I ´ F0

`

F 10H
´1
0 F0

˘´1
F 10H

´1
0

¯

W0 ´H
´1
0 F0

`

F 10H
´1
0 F0

˘´1
U0.

Remark 8. If strict complementarity holds, meaning λ0j ą 0 whenever f0j pβ0q “ 0, then I˚ “
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I˚` pλ0q and the asymptotic distribution reduces down to

J “ arg min
hPΣ

$

&

%

h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

,

.

-

for Σ “
!

h : U0j ` F
1
0jh “ 0 for j P E Y I˚` pλ0q

)

. Just like in the previous remark, we can express

J “ ´B´1
0

´

I ´ F0

`

F 10B
´1
0 F0

˘´1
F 10B

´1
0

¯´

W0 `
ř

jPEYI˚`pλ0q
λ0jV0j

¯

´ B´1
0 F0

`

F 10B
´1
0 F0

˘´1
U0,

where B0 “ H0 `
ř

jPEYI˚`pλ0q
λ0jG0j . If W0, V0, and U0 are multivariate normal, then J will

also be multivariate normal.

If l pβ0q “ 0, then
ř

jPEYI˚ λ0j

`

h1V0j `
1
2h
1G0jh

˘

“ 0 and I˚` pλ0q “ ∅, so J reduces down to

J “ arg min
hPΣ

 

h1W0 `
1
2h
1H0h

(

, for Σ “
!

h : U0j ` F
1
0jh “ 0 for j P E

)

.

Remark 9. If there are only inequality constraints, we can also obtain a closed form expression for

J . Because Σ “

!

h : U0j ` F
1
0jh “ 0 for j P I˚` pλ0q , U0j ` F

1
0jh ď 0 for j P I˚0 pλ0q

)

in this case,

it follows from Lemma 5.2 in the Appendix that

J “ max

$

&

%

´B´1
0

´

I ´ F0`
`

F 10`B
´1
0 F0`

˘´1
F 10`B

´1
0

¯

¨

˝W0 `
ÿ

jPI˚`pλ0q

λ0jV0j

˛

‚

´B´1
0 F0`

`

F 10`B
´1
0 F0`

˘´1
U0` ,´B

´1
0

¨

˝W0 `
ÿ

jPI˚`pλ0q

λ0jV0j

˛

‚

,

.

-

where F0` is the matrix of F0j for j P I˚` pλ0q, U0` is the vector of U0j for j P I˚` pλ0q, and

B0 “ H0 `
ř

jPI˚`pλ0q
λ0jG0j .

If there are no strongly active (binding) inequality constraints, meaning I˚` pλ0q “ ∅, then
ř

jPI˚`pλ0q
λ0jG0j “ 0, and H0 “ B0, so the asymptotic distribution reduces down to J “ ´H´1

0 W0,

which will be multivariate normal if W0 is multivariate normal.

Remark 10. In the case of non-random constraints fn pβq “ f0 pβq that do not depend on the

data, if l pβ0q may not be zero, the proximal bootstrap estimator is

β̂˚n “ arg min
βPC˚

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n
`

1

2

ÿ

jPEYI
λ̄nj

›

›β ´ β̄n
›

›

2

Ḡ0j
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C˚ ”
 

β P B : f0j

`

β̄n
˘

` F̄ 10j
`

β ´ β̄n
˘

“ 0 for j P E , f0j

`

β̄n
˘

` F̄ 10j
`

β ´ β̄n
˘

ď 0 for j P I
(

If l pβ0q “ 0, which is implied by Q pβq “ Q pβ0q `
1
2 pβ ´ β0q

1H0 pβ ´ β0q ` o
´

}β ´ β0}
2
¯

, then

the proximal bootstrap estimator can be defined as

β̂˚n “ arg min
βPC˚

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

C˚ ”
 

β P B : f0j

`

β̄n
˘

` F̄ 10j
`

β ´ β̄n
˘

“ 0 for j P E , f0j

`

β̄n
˘

` F̄ 10j
`

β ´ β̄n
˘

ď 0 for j P I
(

The asymptotic distribution when l pβ0q may not be zero can be derived as follows:

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λnjn

ˆ

f0j

ˆ

β0 `
h
?
n

˙

´ f0j pβ0q

˙

“ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

?
n pF0j ´ F0jq

1 h`
1

2
h1G0jh

˙

` oP p1q

“ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh` oP p1q

ù h1W0 `
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh

Furthermore since
?
nfnj pβ0q “

?
nf0j pβ0q “ 0 for all j P E Y I˚,

J “ arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh

+

Σ “
 

h : F 10jh “ 0 for j P E Y I˚` pλ0q , F
1
0jh ď 0 for j P I˚0 pλ0q

(

When l pβ0q “ 0, since λ0j “ 0 for all j P E Y I,

J “ arg min
hPΣ

"

h1W0 `
1

2
h1H0h

*

Σ “
 

h : F 10jh “ 0 for j P E , F 10jh ď 0 for j P I˚
(

Since LICQ is satisfied (which implies the Tangent cone TC pβ0q is equal to the linearized feasible

set Σ), J is equivalent to the asymptotic distribution in Theorem 1. A special case of this is the

constrained maximum likelihood example in Andrews (2000). He imposes a nonnegativity constraint
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µ ě 0 for a normal mean model (with variance 1) and shows that the asymptotic distribution of

the maximum likelihood estimator is J “ max tZ, 0u (where Z „ Np0, 1q) if the true mean equals

0. We can obtain this asymptotic distribution by setting F0 “ ´1, H0 “ 1, and W0 “ Z.

Remark 11. Alternatively, we can define the proximal bootstrap estimator as β̂˚n “ arg min
βPC˚

Â˚n pβq,

where

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

Ḡnj

˙

C˚ ”
 

β P B : fnj pβq ` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E ,

fnj pβq ` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

The feasible direction set is

F˚n “
 

h : fnj pβ0 ` αnhq ` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E ,

fnj pβ0 ` αnhq ` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

and the linearized feasible direction set is, for some β̃ in between β̄n and β0,

Σ˚n “

"

h :
fnj pβ0q

αn
` Fnj

´

β̃
¯1

h`
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E ,

fnj pβ0q

αn
` Fnj

´

β̃
¯1

h`
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
*

Note that since fnjpβ0q

αn
` Fnj

´

β̃
¯1

h`
?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

p
Ñ ´8 for j P IzI˚, the nonactive

inequality constraints do not affect the asymptotic distribution, under the assumption of no drifting

constraints. Since Fnj
´

β̃
¯

p
Ñ F0j for all j P E Y I, fnjpβ0q

αn
“

?
npfnjpβ0q´f0jpβ0qq?

nαn
“ oP p1q for all j P

EYI˚,
?
n
´

f˚nj pβ0q ´ fnj pβ0q

¯

P
ù
W

U0j , jointly, for all j P EYI˚, and
?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

P
ù
W

U0j , jointly, for all j P E Y I˚, it follows that 81 ph R Σ˚nq
p
Ñ
e´d

81 ph R Σq.

Therefore, this nonlinearized bootstrap estimator has the same asymptotic distribution as the

linearized version in Theorem 2.
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Remark 12. The choice of αn is a difficult problem. One possibility is to use a double bootstrap

algorithm similar to the one in Chakraborty et al. (2013). Starting from the smallest value in a

grid of αn, draw B1 bootstrap samples and compute bootstrap estimates β̂p˚,b1qn for b1 “ 1...B1.

Conditional on each of these bootstrap samples b1 “ 1...B1, draw B2 bootstrap samples and compute

bootstrap estimates β̂p˚,b1,b2qn for b2 “ 1...B2. Pick some nominal frequency 1 ´ τ . Define ĉ˚1´τ to

be the 1´ τ quantile of β̂
p˚,b1,b2q
n ´β̂

p˚,b1q
n

αn
. Compute the empirical frequency with which equal-tailed

intervals
„

β̂
p˚,b1q
n ´

ĉ˚
1´τ{2?
n
, β̂
p˚,b1q
n ´

ĉ˚
τ{2?
n



cover β̂n. If the current value of αn achieves coverage at

or above 1 ´ τ , then it picks that value as the optimal αn. Otherwise, increment αn to the next

highest value in the grid and repeat the steps above. In the absence of drifting constraints, this

procedure should find the optimal value of αn that asymptotically achieves coverage closest to the

nominal level.

2.5 Uniformity

In the case of inequality constraints that are drifting towards the boundary, the proximal bootstrap

will typically not consistently replicate the estimator’s asymptotic distribution; however we can still

obtain a uniformly conservatively asymptotically valid confidence set for β0. We use the fact that

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ù min
hPΩ

q phq, where q phq ” ´h1W0`
1
2h
1H0h`

ř

jPEYI˚`pλ0q
λ0j

`

´h1V0j `
1
2h
1G0jh

˘

,

and Â˚npβ̂nq´Â
˚
npβ̂

˚
nq

α2
n

P
ù
W

min
hPΩ˚

q phq, where Â˚n pβq is defined in equation 1. We will show that Ω˚ Ď Ω

for all drifting sequences, which implies that the asymptotic distribution of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

uniformly

first order stochastically dominates the asymptotic distribution of n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

. We show

lim inf
nÑ8

inf
PPP

P
´

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ď ĉ˚1´α

¯

ě 1´α, which implies C˚1´α “
!

β : n
´

L̂n pβq ´ L̂n
´

β̂n

¯¯

ď ĉ˚1´α

)

will be a uniformly conservatively valid nominal 1 ´ α confidence set for β0 ” β0 pP q. The next

theorem formalizes these arguments by drawing on insights from Chen et al. (2018).

Theorem 3. Let P be a class of distributions for which Assumptions 1 and 3- 6 and Conditions (i)-

(vi) of Theorem 2 are satisfied. For each P P P, let Jn p¨, P q denote the CDF of n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

under P , and assume lim sup
nÑ8

sup
PPP

sup
xPR

|Jn px, P q ´ J px, P q| “ 0, where the limiting distributions

tJ p¨, P q : P P Pu are equicontinuous at their 1´ α quantiles. Let J˚αn p¨, P q denote the conditional

CDF of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

under P , and assume for all ε ą 0, lim sup
nÑ8

sup
PPP

P

ˆ

sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ą ε

˙

“

0, where the limiting distributions tJ˚ p¨, P q : P P Pu are equicontinuous at their 1´ α quantiles.

19



Then, for any sequence αn such that αn Ñ 0 and
?
nαn Ñ8, lim inf

nÑ8
inf
PPP

P
`

β0 pP q P C˚1´α
˘

ě 1´

α, where C˚1´α “
!

β : n
´

L̂n pβq ´ L̂n
´

β̂n

¯¯

ď ĉ˚1´α

)

and ĉ˚1´α is the 1´α quantile of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

.

Remark 13. If we would like to construct a nominal 1 ´ α confidence set for γ0 “ a1β0, where

a is a known unit vector, we can use projection: CIProj1´α “

«

inf
βPC˚1´α

a1β, sup
βPC˚1´α

a1β

ff

. The uniform

asymptotic validity of these projection intervals follows from the uniform asymptotic validity of

C˚1´α.

Remark 14. In the case of λ0j “ 0 for all j P E Y I, which occurs when l pβ0q “ 0, we can replace

L̂n by Q̂n. The simultaneous confidence set becomes C˚1´α “
!

β : n
´

Q̂n pβq ´ Q̂n

´

β̂n

¯¯

ď ĉ˚1´α

)

,

where ĉ˚1´α is the 1´α quantile of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

and Â˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`

1
2

›

›β ´ β̄n
›

›

2

H̄n
.

Remark 15. We illustrate the intuition for this result by looking at an example with non-random

constraints, some of which are drifting at the
?
n rate to zero. Suppose we have equality constraints

E , active inequality constraints I˚ “ tj P I : fj pβ0q “ 0u, and non-active inequality constraints that

are drifting towards the boundary at a
?
n rate: I#

1{2 “ tj P I : fj pβ0q “ c{
?
nu, for some c ă 0. We

allow for other rates of drift in Theorem 3, but we do not present them here for simplicity. Suppose

l pβ0q “ 0 (we do not require this in Theorem 3). Then, n
´

Q̂n pβ0q ´ Q̂n

´

β̂n

¯¯

ù min
hPΩ

q phq and
Â˚npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

P
ù
W

min
hPΩ˚

q phq, where Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n

and q phq “ ´h1W0 `
1
2h
1H0h. For F0j ”

Bfjpβq
Bβ

ˇ

ˇ

ˇ

β“β0

,

Ω˚ “
!

h : ´F 10jh “ 0 for j P E ,´F 10jh ď 0 for j P I˚ Y I#
1{2

)

Ω “
!

h : ´F 10jh “ 0 for j P E ,´F 10jh ď 0 for j P I˚,´F 10jh ď ´c for j P I
#
1{2

)

Since Ω˚ Ď Ω and q phq “ ´h1W0`
1
2h
1H0h is a strictly convex function of h when H0 ą 0, min

hPΩ˚
q phq

first order stochastically dominates min
hPΩ

q phq. Then, lim inf
nÑ8

inf
PPP

P
´

n
´

Q̂n pβ0q ´ Q̂n

´

β̂n

¯¯

ď ĉ˚1´α

¯

ě

1´α, which implies C˚1´α “
!

β : n
´

Q̂n pβq ´ Q̂n

´

β̂n

¯¯

ď ĉ˚1´α

)

will be a uniformly conservatively

valid nominal 1´ α confidence set for β0.

Remark 16. In order to determine the optimal value of αn when there are drifting constraints,
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we can change the procedure in Remark 12 to instead compute the empirical frequency with which
!

β : n
´

L̂n pβq ´ L̂n
´

β̂
p˚,b1q
n

¯¯

ď ĉ˚1´τ

)

covers β̂n, where ĉ˚1´τ is the 1´τ quantile of
Â˚n

ˆ

β̂
p˚,b1q
n

˙

´Â˚n

ˆ

β̂
p˚,b1,b2q
n

˙

α2
n

and Â˚n pβq is defined in equation 1. When l pβ0q “ 0, we can use
!

β : n
´

Q̂n pβq ´ Q̂n

´

β̂
p˚,b1q
n

¯¯

ď ĉ˚1´τ

)

and Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
.

3 Monte Carlo Simulations

3.1 Boundary Constrained Maximum Likelihood

We consider a two sample location model with i.i.d data:

y1i “ β01 ` ε1i

y2i “ β02 ` ε2i

,

¨

˚

˝

ε1i

ε2i

˛

‹

‚

i.i.d.
„ N p0, I2q

We would like to impose a non-positivity constraint on β01 and a non-negativity constraint on

β02:

β̂n “

¨

˚

˝

β̂n1

β̂n2

˛

‹

‚

“ arg min
β1ď0,β2ě0

1

2n

˜

n
ÿ

i“1

py1i ´ β1q
2
`

n
ÿ

i“1

py2i ´ β2q
2

¸

We use Matlab’s built-in fmincon solver to compute the original estimator β̄n “ β̂n and also the

proximal bootstrap estimator β̂˚n “ arg min
βPC

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n

*

,

where H̄n “ I2 and l̂n
`

β̄n
˘

“
“

´
`

ȳ1n ´ β̄n1

˘

,´
`

ȳ2n ´ β̄n2

˘‰1 for ȳ1n “
1
n

řn
i“1 y1i and ȳ2n “

1
n

řn
i“1 y2i.

The goal of this simulation is to examine the coverage properties of the proximal bootstrap

projection confidence intervals CIProj1´α “

«

inf
βPC˚1´α

a1β, sup
βPC˚1´α

a1β

ff

, where a is either p1, 0q1 or p0, 1q1,

and C˚1´α “
!

β : n
´

Q̂n pβq ´ Q̂n

´

β̂n

¯¯

ď ĉ˚1´α

)

, where ĉ˚1´α is the 1´α quantile of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

and Â˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
. The true parameters β02 and

β01 “ ´β02 are drifting towards zero at five different rates: β02 P
 

n´1{6, n´1{4, n´1{3, n´1{2, n´1
(

.

We consider three different sample sizes n P t100, 500, 1000u and seven different αn’s for each

n: αn P
 

n´1{2.1, n´1{2.5, n´1{3, n´1{4, n´1{6, n´1{8, n´1{10
(

. Empirical coverage frequencies and

average interval lengths (in parentheses) of nominal 95% confidence intervals for β01 are reported

in Table 1 and those for β02 are reported in Table 2. We use 5000 bootstrap iterations and 2000
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Monte Carlo simulations. The coverage frequencies are very close to 95% for all rates of drift except

for n´1, in which case the coverage is around 99% for the smaller values of αn and around 98% for

the larger values of αn. The fact that smaller values of αn can lead to overcoverage is also evident

for the n´1{2 drift rate.

Table 1: Proximal β01 Projection Interval Empirical Coverage Frequencies

αn n´1{2.1 n´1{2.5 n´1{3 n´1{4 n´1{6 n´1{8 n´1{10

β01 “ ´n
´1 n “ 100 0.988 0.986 0.984 0.981 0.981 0.980 0.980

p0.450q p0.444q p0.441q p0.438q p0.437q p0.436q p0.436q
n “ 500 0.992 0.989 0.987 0.986 0.985 0.984 0.984

p0.198q p0.195q p0.194q p0.193q p0.193q p0.192q p0.192q
n “ 1000 0.988 0.986 0.984 0.983 0.982 0.982 0.982

p0.137q p0.135q p0.134q p0.133q p0.133q p0.133q p0.133q

β01 “ ´n
´1{2 n “ 100 0.988 0.987 0.984 0.980 0.977 0.976 0.976

p0.444q p0.434q p0.426q p0.418q p0.413q p0.412q p0.411q
n “ 500 0.983 0.980 0.978 0.974 0.970 0.970 0.970

p0.193q p0.187q p0.183q p0.180q p0.179q p0.178q p0.178q
n “ 1000 0.974 0.970 0.965 0.959 0.957 0.956 0.956

p0.134q p0.129q p0.126q p0.124q p0.123q p0.123q p0.123q

β01 “ ´n
´1{3 n “ 100 0.978 0.977 0.974 0.970 0.964 0.963 0.963

p0.465q p0.455q p0.443q p0.427q p0.416q p0.413q p0.411q
n “ 500 0.978 0.976 0.971 0.966 0.959 0.958 0.957

p0.206q p0.201q p0.193q p0.183q p0.179q p0.178q p0.177q
n “ 1000 0.966 0.962 0.956 0.948 0.941 0.939 0.939

p0.144q p0.140q p0.133q p0.126q p0.123q p0.122q p0.122q

β01 “ ´n
´1{4 n “ 100 0.982 0.981 0.979 0.976 0.969 0.965 0.963

p0.475q p0.470q p0.461q p0.443q p0.426q p0.420q p0.417q
n “ 500 0.981 0.981 0.978 0.973 0.960 0.959 0.959

p0.209q p0.208q p0.204q p0.193q p0.183q p0.180q p0.179q
n “ 1000 0.978 0.978 0.975 0.963 0.950 0.945 0.945

p0.144q p0.144q p0.142q p0.133q p0.126q p0.124q p0.124q

β01 “ ´n
´1{6 n “ 100 0.986 0.985 0.985 0.980 0.976 0.974 0.972

p0.477q p0.477q p0.474q p0.462q p0.443q p0.433q p0.428q
n “ 500 0.983 0.983 0.983 0.981 0.974 0.970 0.969

p0.209q p0.209q p0.209q p0.205q p0.193q p0.187q p0.184q
n “ 1000 0.976 0.976 0.976 0.975 0.962 0.955 0.951

p0.145q p0.145q p0.145q p0.143q p0.133q p0.129q p0.127q

In contrast to the moderately conservative coverage of the proximal bootstrap confidence sets,

standard bootstrap confidence intervals produce severe undercoverage for several rates of drift.

Table 3 shows the empirical coverage frequencies and average interval lengths (in parentheses) of

standard multinomial bootstrap two-sided equal-tailed confidence intervals, using 5000 bootstrap
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Table 2: Proximal β02 Projection Interval Empirical Coverage Frequencies

αn n´1{2.1 n´1{2.5 n´1{3 n´1{4 n´1{6 n´1{8 n´1{10

β02 “ n´1 n “ 100 0.993 0.990 0.986 0.983 0.982 0.982 0.982
p0.449q p0.444q p0.441q p0.438q p0.436q p0.436q p0.436q

n “ 500 0.989 0.987 0.984 0.981 0.981 0.980 0.980
p0.198q p0.195q p0.194q p0.193q p0.193q p0.192q p0.192q

n “ 1000 0.990 0.989 0.986 0.984 0.984 0.984 0.983
p0.137q p0.135q p0.134q p0.133q p0.133q p0.133q p0.133q

β02 “ n´1{2 n “ 100 0.990 0.988 0.984 0.981 0.977 0.977 0.976
p0.444q p0.434q p0.425q p0.418q p0.414q p0.412q p0.411q

n “ 500 0.979 0.977 0.974 0.969 0.966 0.965 0.964
p0.193q p0.187q p0.183q p0.180q p0.179q p0.178q p0.178q

n “ 1000 0.970 0.967 0.965 0.960 0.958 0.958 0.958
p0.134q p0.129q p0.126q p0.124q p0.123q p0.123q p0.123q

β02 “ n´1{3 n “ 100 0.977 0.974 0.972 0.967 0.963 0.960 0.960
p0.465q p0.455q p0.443q p0.427q p0.416q p0.413q p0.411q

n “ 500 0.970 0.966 0.964 0.958 0.952 0.950 0.949
p0.206q p0.201q p0.193q p0.183q p0.179q p0.178q p0.177q

n “ 1000 0.967 0.964 0.957 0.953 0.947 0.947 0.946
p0.144q p0.140q p0.133q p0.126q p0.123q p0.122q p0.122q

β02 “ n´1{4 n “ 100 0.982 0.981 0.978 0.973 0.968 0.965 0.964
p0.475q p0.470q p0.461q p0.443q p0.426q p0.420q p0.417q

n “ 500 0.974 0.973 0.970 0.964 0.956 0.953 0.952
p0.209q p0.208q p0.204q p0.193q p0.183q p0.180q p0.179q

n “ 1000 0.976 0.975 0.974 0.961 0.952 0.948 0.945
p0.145q p0.144q p0.142q p0.134q p0.126q p0.124q p0.124q

β02 “ n´1{6 n “ 100 0.986 0.984 0.984 0.981 0.973 0.969 0.969
p0.477q p0.477q p0.474q p0.462q p0.443q p0.433q p0.428q

n “ 500 0.975 0.975 0.975 0.973 0.966 0.963 0.960
p0.209q p0.209q p0.209q p0.205q p0.193q p0.187q p0.184q

n “ 1000 0.976 0.976 0.976 0.975 0.964 0.956 0.953
p0.145q p0.145q p0.145q p0.143q p0.134q p0.129q p0.127q

iterations and 2000 Monte Carlo simulations. Especially for the quicker rates of drift, the coverage

can be far below 95%. We also examined one-sided intervals and they were also not able to get

close to 95% coverage for both parameters. The average interval lengths of the proximal bootstrap

projection intervals are wider than the standard bootstrap intervals, but the difference becomes less

pronounced as the sample size increases.
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Table 3: Standard Bootstrap Equal-tailed Empirical Coverage Frequencies

n 100 500 1000 5000 10000
β0 “ ˘n

´1 0.493 0.494 0.521 0.582 0.684
p0.204q p0.090q p0.063q p0.027q p0.020q
0.495 0.491 0.490 0.608 0.694
p0.205q p0.090q p0.063q p0.028q p0.020q

β0 “ ˘n
´1{2 0.659 0.674 0.672 0.653 0.665

p0.286q p0.129q p0.091q p0.040q p0.029q
0.664 0.672 0.651 0.673 0.673
p0.285q p0.129q p0.091q p0.041q p0.029q

β0 “ ˘n
´1{3 0.835 0.900 0.909 0.948 0.943

p0.359q p0.170q p0.122q p0.055q p0.039q
0.827 0.912 0.917 0.953 0.953
p0.358q p0.170q p0.122q p0.055q p0.039q

β0 “ ˘n
´1{4 0.911 0.946 0.949 0.950 0.943

p0.384q p0.175q p0.124q p0.055q p0.039q
0.909 0.957 0.947 0.956 0.954
p0.383q p0.175q p0.124q p0.055q p0.039q

β0 “ ˘n
´1{6 0.951 0.946 0.950 0.949 0.943

p0.389q p0.175q p0.124q p0.055q p0.039q
0.942 0.956 0.947 0.955 0.954
p0.389q p0.175q p0.124q p0.055q p0.039q

3.2 Boundary Constrained Nonsmooth GMM

We consider a simple location model with i.i.d data:

yi “ β0 ` εi, εi „ Np0, 1q, β0 “ 0

For π p¨, βq “ r1 pyi ď βq ´ τ ; yi ´ βs
1, let the population and sample moments be

π pβq “ rP pyi ď βq ´ 0.5;Eyi ´ βs
1 , π̂n pβq “

«

1

n

n
ÿ

i“1

1 pyi ď βq ´ 0.5;
1

n

n
ÿ

i“1

yi ´ β

ff1

Our GMM estimator has a non-negativity constraint:

β̂n “ arg min
βě0

"

Q̂n pβq “
1

2
π̂n pβq

1 π̂n pβq

*

We use Matlab’s built-in fmincon solver to compute β̄n “ β̂n and also

β̂˚n “ arg min
βPC

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n

*

, where H̄n “ Ĝ1nĜn`L̂
1
nπ̂n

`

β̄n
˘

,
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l̂n
`

β̄n
˘

“ Ĝ1nπ̂n
`

β̄n
˘

, l̂˚n
`

β̄n
˘

“ Ĝ˚
1

n π̂
˚
n

`

β̄n
˘

, and

Ĝn “

»

—

–

1
nh

řn
i“1Kh

´

yi ´ β̂n

¯

´1

fi

ffi

fl

, Ĝ˚n “

»

—

–

1
nh

řn
i“1Kh

´

y˚i ´ β̂n

¯

´1

fi

ffi

fl

, L̂n “

»

—

–

1
nh2

řn
i“1K

1
h

´

yi ´ β̂n

¯

0

fi

ffi

fl

,

Kh pxq “ K px{hq,K pxq “ p2πq´1{2 expp´x2{2q,K 1
h pxq “ K 1 px{hq andK 1 pxq “ ´ p2πq´1{2 x expp´x2{2q.

We use the Silverman’s rule of thumb bandwidth h “ 1.06n´1{5.

We consider five different sample sizes n P t100, 500, 1000, 5000, 10000u and three different αn’s

for each n: αn P
 

n´1{3, n´1{4, n´1{6, n´1{8, n´1{10
(

. We use 5000 bootstrap iterations and 2000

Monte Carlo simulations. Empirical coverage frequencies and average interval lengths for two-sided

equal-tailed nominal 95% proximal bootstrap confidence intervals
”

β̂n ´
ĉ˚0.975?

n
, β̂n ´

ĉ˚0.025?
n

ı

, where

ĉ˚τ is the τth-percentile of β̂˚n´β̂n
αn

, are reported in Table 4. There is slight overcoverage but the

intervals are not particularly wide. For this example, there is practically no difference in coverage

for the different values of αn.

Table 4: Proximal Bootstrap Equal-Tailed Coverage Frequencies and Interval Lengths, β0 “ 0

n 100 500 1000 5000 10000

αn “ n´1{3 0.969 0.975 0.971 0.972 0.968
p0.216q p0.095q p0.067q p0.029q p0.021q

αn “ n´1{4 0.969 0.975 0.971 0.972 0.968
p0.210q p0.092q p0.065q p0.029q p0.020q

αn “ n´1{6 0.969 0.975 0.971 0.972 0.968
p0.206q p0.091q p0.064q p0.028q p0.020q

αn “ n´1{8 0.969 0.975 0.971 0.972 0.968
p0.204q p0.090q p0.063q p0.028q p0.020q

αn “ n´1{10 0.969 0.975 0.971 0.972 0.968
p0.203q p0.090q p0.063q p0.028q p0.020q

We now compare the proximal bootstrap with the centered standard bootstrap estimator β̂˚˚n “

arg min
βPC

´

π̂˚n pβq ´ π̂n

´

β̂n

¯¯1 ´

π̂˚n pβq ´ π̂n

´

β̂n

¯¯

. Empirical coverage frequencies for equal-tailed

nominal 95% confidence intervals and average interval lengths are reported in Table 5. Interestingly,

the coverage frequencies are similar, although the intervals are wider.
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Table 5: Standard Bootstrap Equal-Tailed Coverage Frequencies and Interval Lengths, β0 “ 0

n 100 500 1000 5000 10000
0.968 0.976 0.974 0.974 0.967
p0.236q p0.107q p0.076q p0.034q p0.024q

3.3 Conditional Logit Model with Estimated Inequality Constraints

We generate data according to yij “ 1
´

y˚ij ą y˚ik@k ‰ j
¯

, where the utility of individual i “ 1...n

from picking choice j “ 1...J is given by

y˚ij “ β0xij ` εij , for xi „ N

¨

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

2

:

J

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0.5 ... 0.5

0.5 1 ... 0.5

: : : :

0.5 0.5 ... 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

and εij
i.i.d.
„ Type 1 Extreme Value. We set β0 “ 0.1. The constrained MLE estimator maximizes

the log-likelihood subject to the constraints that the share of individuals who pick each choice

cannot exceed the supply of that choice. These inequality constraints can be viewed as capacity

constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium demand

for each housing unit should not exceed the supply of that housing unit. For Pij ”
exppβxijq

ř

l exppβxilq
,

β̂n “ arg max ln
β

L pβq “
1

nJ

n
ÿ

i“1

J
ÿ

j“1

yij lnPij

s.t.
1

n

n
ÿ

i“1

Pij ď b̄j for all j “ 1...J

where b̄j “ 1
106

ř106

i“1
exppβ0x̃ijq

ř

l exppβ0x̃ilq
for x̃ij drawn independently from the same distribution as xij . We

use Matlab’s built-in fmincon solver to compute β̄n “ β̂n and also β̂˚n ” arg min
βPC˚

Â˚n pβq, where

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

Ḡnj

˙

C˚ ”
 

fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(
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We use analytic expressions for the components in the proximal bootstrap objective function and

constraints:

l̂n pβq “ ´
B lnL pβq

Bβ
“ ´

1

nJ

n
ÿ

i“1

J
ÿ

j“1

pyij ´ Pijqxij

Hn pβq “ ´
B2 lnL pβq

BβBβ1
“

1

nJ

n
ÿ

i“1

J
ÿ

j“1

Pij

˜

xij ´
ÿ

l

Pilxil

¸˜

xij ´
ÿ

l

Pilxil

¸1

Fnj pβq “
1

n

n
ÿ

i“1

BPij
Bβ

“
1

n

n
ÿ

i“1

Pij
B lnPij
Bβ

“
1

n

n
ÿ

i“1

Pij

˜

xij ´
ÿ

l

Pilxil

¸

Gnj pβq “
1

n

n
ÿ

i“1

B2Pij
BβBβ1

“
1

n

n
ÿ

i“1

BPij
Bβ

˜

xij ´
ÿ

l

Pilxil

¸1

´
1

n

n
ÿ

i“1

Pij
ÿ

l

BPil
Bβ

x1il

“
1

n

n
ÿ

i“1

Pij

˜

xij ´
ÿ

l

Pilxil

¸˜

xij ´
ÿ

l

Pilxil

¸1

´
1

n

n
ÿ

i“1

ÿ

l

PijPil

˜

xil ´
ÿ

m

Pimxim

¸

x1il

Because l pβ0q “ 0 in this model, we can in principle also use an alternative formulation of

the proximal bootstrap with Â˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
. How-

ever we found that especially for the smaller sample sizes, including the term involving the La-

grange multipliers λ̄nj helps with the coverage. We consider n P t100, 500, 1000u, J “ 20, and

αn P
 

n´1{3, n´1{4, n´1{6, n´1{8, n´1{10
(

. Empirical coverage frequencies for equal-tailed nominal

95% confidence intervals and average interval lengths are reported in table 6. We use B “ 2000

bootstrap iterations and R “ 1000 Monte Carlo simulations. While the proximal bootstrap intervals

undercover somewhat for smaller values of n and αn, the coverage is very close to the nominal level

for n “ 2000 and larger values of αn. We also consider larger values of J . Proximal bootstrap em-

pirical coverage frequencies for equal-tailed nominal 95% confidence intervals and average interval

lengths are reported in table 7. The results are computed using B “ 2000, R “ 1000. The coverage

is slightly below the nominal level for n “ 100 but very close to the nominal level for n “ 500.

Standard bootstrap empirical coverage frequencies for equal-tailed nominal 95% confidence inter-

vals and average interval lengths are reported in table 8. The standard bootstrap undercovers, and

its coverage is less than that of the proximal bootstrap for all values of n. The standard bootstrap

intervals are also wider than the proximal bootstrap intervals for smaller values of n.
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Table 6: Proximal Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n “ 100
J “ 20

n “ 500
J “ 20

n “ 1000
J “ 20

n “ 2000
J “ 20

αn “ n´1{3 0.917 0.923 0.946 0.929
(0.0016) (0.0007) (0.0005) (0.0004)

αn “ n´1{4 0.924 0.935 0.952 0.946
(0.0016) (0.0007) (0.0005) (0.0004)

αn “ n´1{6 0.922 0.939 0.952 0.951
(0.0016) (0.0007) (0.0005) (0.0004)

αn “ n´1{8 0.922 0.927 0.945 0.953
(0.0015) (0.0007) (0.0005) (0.0004)

αn “ n´1{10 0.918 0.920 0.944 0.952
(0.0015) (0.0007) (0.0005) (0.0004)

Table 7: Proximal Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n “ 100
J “ 50

n “ 500
J “ 50

n “ 100
J “ 100

n “ 500
J “ 100

αn “ n´1{3 0.928 0.936 0.932 0.945
(0.0007) (0.0003) (0.0006) (0.0003)

αn “ n´1{4 0.936 0.940 0.939 0.949
(0.0007) (0.0003) (0.0006) (0.0003)

αn “ n´1{6 0.941 0.946 0.944 0.954
(0.0007) (0.0003) (0.0006) (0.0003)

αn “ n´1{8 0.939 0.946 0.945 0.950
(0.0007) (0.0003) (0.0006) (0.0003)

αn “ n´1{10 0.938 0.947 0.947 0.950
(0.0007) (0.0003) (0.0006) (0.0003)

3.4 Rust (1987) Bus Engine Replacement Model

We apply our method to conduct inference for the Mathematical Programming with Equilibrium

Constraints (MPEC) formulation of the Rust (1987) Bus Engine Replacement model. Su and Judd

(2012) indicate that the MPEC estimator can be bootstrapped, although they do not provide an

analysis of the empirical coverage frequencies of bootstrap confidence intervals. We find that our

proximal bootstrap method performs equally good in terms of coverage and is more than twice as

fast as the standard bootstrap.

Using the code accompanying Su and Judd (2012), we generate data using the following param-

eters used in their paper: discount factor β “ 0.975 which is assumed to be known by the researcher

and thus not estimated, replacement cost RC “ 11.7257, operating cost parameter θ1 “ 2.4569,
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Table 8: Standard Bootstrap Empirical Coverage Frequencies and Average Interval Lengths

n “ 100
J “ 20

n “ 500
J “ 20

n “ 1000
J “ 20

n “ 2000
J “ 20

B “ 2000
R “ 1000

0.922 0.911 0.919 0.909
(0.0018) (0.0008) (0.0006) (0.0004)

B “ 2000
R “ 2000

0.926 0.907 0.910 0.910
(0.0018) (0.0008) (0.0006) (0.0004)
n “ 100
J “ 50

n “ 500
J “ 50

n “ 100
J “ 100

n “ 500
J “ 100

B “ 2000
R “ 1000

0.922 0.928 0.911 0.940
(0.0008) (0.0004) (0.0007) (0.0003)

B “ 2000
R “ 2000

0.929 0.926 0.921 0.934
(0.0008) (0.0004) (0.0007) (0.0003)

and transition probabilities θ13 “
ˆ

0.0937, 0.4475, 0.4459, 0.0127, 0.0002

˙

. The MPEC ob-

jective function is a log likelihood which is a function of both the structural parameters and the

choice-specific value functions EV px, dq given the data
´

`

xit, d
i
t

˘T

t“1

¯M

i“1
, where xit is the mileage of

bus i in period t and dit is an indicator for whether bus i’s engine is replaced in period t.

L pθ1, θ3, RC,EV q “
1

M

M
ÿ

i“1

T
ÿ

t“2

log

˜

exp
“

ν
`

xit, d
i
t; θ1, RC

˘

` βEV
`

xit, d
i
t

˘‰

ř

d1Pt0,1u exp
“

ν
`

xit, d
1; θ1, RC

˘

` βEV
`

xit, d
1
˘‰

¸

`
1

M

M
ÿ

i“1

T
ÿ

t“2

log
`

p3

`

xit
ˇ

ˇxit´1, d
i
t´1, θ3

˘˘

The constraints are the fixed point equations defining the discretized choice-specific value functions

EV px, dq for mileage constrained to lie on a grid x̂ “ tx̂1, x̂2, ..., x̂Ku:

EV px̂k, dq “
ÿ

x1

log

¨

˝

ÿ

d1Pt0,1u

exp
“

ν
`

x1, d1; θ1, RC
˘

` βEV
`

x1, d1
˘‰

˛

‚p3

`

x1
ˇ

ˇ x̂k, d, θ3

˘

(3)

Given the current state x̂k, the next period mileage x1 P tx̂k, x̂k`1, x̂k`2, x̂k`3, x̂k`4u can move up

at most 4 grid points if the engine is not replaced. If the engine is replaced, the mileage first resets

to x̂1 before transitioning to a different mileage. Su and Judd (2012)’s code chooses the mileage
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grid to be x̂ “ t1, 2, 3, ..., 175u. The utility function in their code is defined as

ν px, d; θ1, RCq “

$

’

’

&

’

’

%

´0.001xθ1 , d “ 0

´RC ´ 0.001θ1 , d “ 1

If the engine is replaced, the transition probabilities are p3 px
1 “ x̂1`j | x̂k, 1, θ3q “ θ3j . If the

engine is not replaced, the transition probabilities are p3 px
1 “ x̂k`j | x̂k, 0, θ3q “ θ3j . The only

values of the choice-specific value functions we need to estimate are the ones corresponding to no

replacement EV “ rEV px̂1, 0q , EV px̂2, 0q , ..., EV px̂K , 0qs because EV px̂k, 1q “ EV px̂1, 0q for all

k, as pointed out in footnote 9 of Su and Judd (2012). Notice that because the mileage grid is

fixed, the constraints do not depend on the data
´

`

xit, d
i
t

˘T

t“1

¯M

i“1
. Define θ ” pθ1, θ

1
3, RC,EV q

1 and

C “ tfj pθq “ 0 for j P E , fj pθq ď 0 for j P Iu, where fj pθq includes the EV fixed point equations

(3) as well as the constraints on the transition probabilities satisfying 0 ď θ3 ď 1 and
ř

j θ3j “ 1.

Because our asymptotics are large M , fixed T , the rate of convergence of our estimator is
?
M .

For some αM Ñ 0 and
?
MαM Ñ 8, and a

?
M -consistent estimator θ̄M , the proximal bootstrap

estimator is given by

θ̂˚M ” arg min
θPC˚

αM
?
M

´

l̂˚M
`

θ̄M
˘

´ l̂n
`

θ̄M
˘

¯1
`

θ ´ θ̄M
˘

`
1

2

›

›θ ´ θ̄M
›

›

2

H̄M

C˚ “
 

fj
`

θ̄M
˘

` F 1j
`

θ ´ θ̄M
˘

“ 0 for j P E , fj
`

θ̄M
˘

` F 1j
`

θ ´ θ̄M
˘

ď 0 for j P I
(

We follow Su and Judd (2012) and use Knitro to compute θ̄M “ θ̂M as well as θ̂˚M , although

in principle the built-in Matlab nonlinear optimization solvers should also find the solution given

enough time to search the parameter space. Because l pθ0q “ 0 in this model, we do not need to

include the Lagrange multiplier term in the objective function.

Tables 9-11 show the empirical coverage frequencies and average interval lengths for two-sided

equal tailed nominal 95% proximal bootstrap confidence intervals computed using B “ 1000

bootstrap iterations and R “ 2000 Monte Carlo simulations. We consider 6 different values of

M P t500, 1000, 2000, 4000, 5000, 6000u and three different values of αM P
 

M´1{3,M´1{4,M´1{6
(

.

The number of time periods is T “ 120. Most of the parameters have coverage very close to the

nominal level for sufficiently large values of M , and the coverage is very similar for the three differ-
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ent values of αM . Due to time constraints on the server, we were unable to obtain results for the

standard bootstrap using the same values of M , B, and R, but the results should be similar given

that the standard bootstrap is consistent in this example.

Table 9: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for αM “M´1{3

M 500 1000 2000 4000 5000 6000
θ1 0.925 0.946 0.949 0.942 0.948 0.949

p0.520q p0.373q p0.264q p0.187q p0.167q p0.152q
θ30 0.951 0.947 0.945 0.933 0.932 0.935

p0.005q p0.003q p0.002q p0.002q p0.001q p0.001q
θ31 0.955 0.944 0.951 0.948 0.94 0.947

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ32 0.949 0.952 0.944 0.942 0.942 0.952

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ33 0.957 0.95 0.949 0.951 0.96 0.957

p0.002q p0.001q p0.001q p0.001q p0.001q p0.001q
RC 0.927 0.95 0.949 0.946 0.946 0.947

p1.683q p1.204q p0.853q p0.604q p0.540q p0.492q

Table 10: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for αM “M´1{4

M 500 1000 2000 4000 5000 6000
θ1 0.923 0.949 0.95 0.941 0.949 0.95

p0.520q p0.372q p0.264q p0.187q p0.167q p0.153q
θ30 0.952 0.948 0.94 0.935 0.934 0.937

p0.005q p0.003q p0.002q p0.002q p0.001q p0.001q
θ31 0.954 0.942 0.95 0.946 0.944 0.948

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ32 0.952 0.95 0.941 0.943 0.939 0.948

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ33 0.959 0.95 0.95 0.949 0.958 0.958

p0.002q p0.001q p0.001q p0.001q p0.001q p0.001q
RC 0.927 0.952 0.95 0.945 0.949 0.952

p1.683q p1.204q p0.853q p0.604q p0.540q p0.493q
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Table 11: Proximal Bootstrap Coverage Frequencies and Average Interval Lengths for αM “M´1{6

M 500 1000 2000 4000 5000 6000
θ1 0.924 0.947 0.949 0.943 0.948 0.95

p0.520q p0.372q p0.264q p0.187q p0.167q p0.152q
θ30 0.952 0.95 0.941 0.933 0.933 0.94

p0.005q p0.003q p0.002q p0.002q p0.001q p0.001q
θ31 0.955 0.942 0.949 0.949 0.944 0.953

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ32 0.951 0.951 0.942 0.944 0.94 0.946

p0.008q p0.006q p0.004q p0.003q p0.003q p0.002q
θ33 0.96 0.951 0.949 0.951 0.959 0.954

p0.002q p0.001q p0.001q p0.001q p0.001q p0.001q
RC 0.925 0.951 0.95 0.947 0.948 0.944

p1.666q p1.201q p0.852q p0.603q p0.540q p0.493q

4 Conclusion

We have demonstrated how to use a computationally efficient bootstrap procedure to conduct

asymptotically valid inference for
?
n-consistent constrained optimization estimators with nonstan-

dard asymptotic distributions. Our proximal bootstrap estimator can be expressed as the solution

to a quadratic programming problem and relies on a scaling sequence that converges to zero at a

slower than
?
n rate. We have illustrated its applicability in a boundary constrained GMM problem,

a conditional logit model with capacity constraints, and a MPEC formulation of the Rust (1987)

model.

5 Appendix

5.1 Proofs of Theorems

5.1.1 Proof of Theorem 1

Assumption 1 implies that β̂n
p
Ñ β0 “ arg min

βPC
Q pβq (see e.g. Corollary 3.2.3 in van der Vaart

and Wellner (1996)). Assumption 2, Q pβq “ Q pβ0q `
1
2 pβ ´ β0q

1H0 pβ ´ β0q ` o
´

}β ´ β0}
2
¯

,

and β̂n
p
Ñ β0 imply that the conditions of Lemma 4.3 in Geyer (1994) are satisfied, and therefore

?
n
´

β̂n ´ β0

¯

“ OP p1q.
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To derive its asymptotic distribution, use the centered and scaled parameter h “
?
n pβ ´ β0q:

?
n
´

β̂n ´ β0

¯

“ arg min
hP
?
npC´β0q

"

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q

*

“ arg min
hP
?
npC´β0q

"

h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h` oP p1q

*

The second line is due to the uniform in h local quadratic expansion of nQ̂n
´

β0 `
h?
n

¯

´nQ̂n pβ0q,

which follows from Assumption 2.

Then Assumption 3 implies the Lindeberg Condition is satisfied and
?
n pPn ´ P q g p¨, β0q ù

W0. Therefore,

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q ù h1W0 `
1

2
h1H0h

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd. Since h1W0`
1
2h
1H0h has a continuous sample path, according to page 5 of Knight (1999),

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q Ñu´d h
1W0 `

1

2
h1H0h

whereÑu´d denotes convergence in distribution with respect to the topology of uniform convergence

on compact sets. Chernoff Regularity implies that

81
`

h R
?
n pC ´ β0q

˘ e
Ñ81 ph R TC pβ0qq

where e
Ñ denotes epigraphical convergence as defined in Geyer (1994), page 1997. Therefore, by

Theorem 4 of Knight (1999),

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q ` 81
`

h R
?
n pC ´ β0q

˘

Ñe´d h
1W0 `

1

2
h1H0h`81 ph R TC pβ0qq

whereÑe´d denotes epi-convergence in distribution as defined on page 5 of Knight (1999). Then by

Theorem 1 of Knight (1999), whose conditions are satisfied because h1W0 `
1
2h
1H0h almost surely

has a unique minimizer over TC pβ0q due to C being a closed set (see Proposition 4.2 and Theorem
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4.4 of Geyer (1994)),

?
n
´

β̂n ´ β0

¯

“ arg min
hPRd

"

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q ` 81
`

h R
?
n pC ´ β0q

˘

*

ù arg min
hPRd

"

h1W0 `
1

2
h1H0h`81 ph R TC pβ0qq

*

“ J

Now we show β̂˚n
p
Ñ β0. Since αn Ñ 0 implies αn

?
nH̄n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“ o˚pp1q,

β̂˚n ´ β0 “ arg min
uPpC´β0q

"

1

2

›

›

›
u` β0 ´ β̄n ` αn

?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯
›

›

›

2

H̄n

*

“ arg min
uPpC´β0q

"

1

2
u1H0u` u

1H0

`

β0 ´ β̄n
˘

`
1

2

›

›β0 ´ β̄n
›

›

2

H0

*

` opp1q

“ β̄n ´ β0 ` opp1q “ opp1q

where the second line follows from the convexity in h of the proximal bootstrap objective function

and compactness of C ´ β0.

Next, to derive the asymptotic distribution, since
?
nαn Ñ 8 and

?
n
´

β̂n ´ β0

¯

“ OP p1q,
β̂˚n´β̂n
αn

“
β̂˚n´β0

αn
` o˚P p1q, where

β̂˚n ´ β0

αn
“ arg min

hPRd

"

81

ˆ

h R
C ´ β0

αn

˙

` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

H̄n

*

“ arg min
hPRd

#

81

ˆ

h R
C ´ β0

αn

˙

`
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

“ arg min
hPRd

"

81

ˆ

h R
C ´ β0

αn

˙

` h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh` o

˚
pp1q

*

Assumption 4 implies
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

and
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have the same asymptotic

distribution. Therefore,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

P
ù
W

h1W0 `
1

2
h1H0h
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A bootstrap in probability version of Theorem 4 of Knight (1999) can then be stated to show that

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`81

ˆ

h R
C ´ β0

αn

˙

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

Ĝ˚nphq

p
Ñ
e´d

h1W0 `
1

2
h1H0h`81 ph R TC pβ0qq

loooooooooooooooooooooomoooooooooooooooooooooon

G0phq

where p
Ñ
e´d

denotes epi-convergence of the conditional law of Ĝ˚n to G0, which can be equivalently

stated as supfPBL1
|EWf

´

Ĝ˚n
¯

´ Ef pG0q |
p
ÝÑ 0 and EWf

´

Ĝ˚n
¯˚

´ EWf
´

Ĝ˚n
¯

˚

p
ÝÑ 0 for all

f P BL1, where BL1 is the class of Lipschitz norm 1 functions with respect to the metric of

epi-convergence defined as d
´

Ĝ˚n,G0

¯

“
´8

0 max
!ˇ

ˇ

ˇ
depi Ĝ˚n pvq ´ depi G0 pvq

ˇ

ˇ

ˇ
: |v| ď ρ

)

exp p´ρq dρ

, where dC pvq “ inf t|v ´ u| : u P Cu for a non-empty closed subset of Rd`1, and epi G phq “

tph, αq : G phq ď αu is the epigraph of G : Rd ÞÑ R.

A modification of Theorem 1 of Knight (1999) to epi-convergence of conditional laws suggests

that

β̂˚n ´ β0

αn
“ arg min

hPRd
Ĝ˚n phq ` o˚P p1q

P
ù
W

arg min
hPRd

G0 phq “ J

�

5.1.2 Proof of Theorem 2

We can show that consistency implies
?
n-consistency using a modified version of the first part of

the proof of Theorem 5 on page 141 of Pollard (1984) to allow for estimated constraints. We need to

constrain β̂n to lie in C and replace his population objective F p¨q with the population Lagrangian

L pβ0, λ0q ” Q pβ0q `
ř

jPEYI λ0jf0j pβ0q. The first order KKT condition ∇L pβ0, λ0q ” l pβ0q `

ř

jPEYI λ0jF0j “ 0 and positive-definiteness of ∇2L pβ0, λ0q ” H0 `
ř

jPEYI λ0jG0j imply the local

quadratic expansion L pβ, λ0q “ L pβ0, λ0q`
1
2}β´β0}

2
∇2Lpβ0,λ0q

`o
`

}β ´ β0}
2
˘

for β in a small neigh-

borhood of β0. This expansion in combination with the local quadratic approximation of the La-

grangain in Assumption 6 will imply Pollard (1984)’s equation (6), where Fnp¨q is replaced by L̂n p¨q

and the empirical process En∆ is replaced by
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq,

which is still Opp1q by the assumptions of our Theorem. Note that it is not necessary for β0 to be

in the interior of C0 to show
?
n-consistency; it would be necessary if we were to show asymptotic
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normality.

Recall L̂n pβq “ Q̂n pβq `
ř

jPEYI λnjfnj pβq is the sample Lagrangian evaluated at the optimal

Lagrange multipliers λnj for β̂n. It is well known that β̂n “ arg min
βPC

Q̂n pβq can be equivalently

expressed as β̂n “ arg min
βPC

L̂n pβq when the first order KKT conditions are satisfied. Shapiro (1990)

shows that it is important to use this Lagrangian formulation when deriving the asymptotic distri-

bution of β̂n because it captures the sampling variation in the objective as well as the estimated

constraints.

Additionally, LICQ implies that the linearization of the constraint set is sufficient to capture the

geometry of the constraints near β0 (Nocedal and Wright (2006) chapter 12). We can then use this

linearized constraint set to derive the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

. Denote the feasible

direction set by

Fn “
"

h : fnj

ˆ

β0 `
h
?
n

˙

“ 0 for j P E , fnj
ˆ

β0 `
h
?
n

˙

ď 0 for j P I
*

For some mean value β̃ such that Fnj
´

β̃
¯

p
Ñ F0j , denote the linearized feasible direction set by

Σn “

"

h :
?
nfnj pβ0q ` Fnj

´

β̃
¯1

h “ 0 for j P E ,
?
nfnj pβ0q ` Fnj

´

β̃
¯1

h ď 0 for j P I
*

Minimizing the Lagrangian over Fn is equivalent to minimizing the Lagrangian over Σn:

?
n
´

β̂n ´ β0

¯

“ arg min
hPFn

"

nL̂n
ˆ

β0 `
h
?
n

˙

´ nL̂n pβ0q

*

“ arg min
hPΣn

"

nL̂n
ˆ

β0 `
h
?
n

˙

´ nL̂n pβ0q

*

“ arg min
hPΣn

#

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λnjn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

+

ù arg min
hPΣ

$

&

%

h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

,

.

-

“ J

where the last line follows from the following arguments. First note that Assumption 6 implies that
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for any δn Ñ 0,

sup
}h}
?

n
ďδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̂n
´

β0 `
h?
n

¯

´ nL̂n pβ0q ´ h
1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

´ 1
2
h1H0h´

ř

jPEYI λ0j

`?
n pFnj pβ0q ´ F0jq

1 h` 1
2
h1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Therefore, uniformly in h,

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λnjn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

“ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

?
n pFnj pβ0q ´ F0jq

1 h`
1

2
h1G0jh

˙

` oP p1q

Recall
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0`

ř

jPEYI λ0jV0j , and λ0j “ 0

for all j P IzI˚` pλ0q. Since the last line is a convex function of h, pointwise convergence implies

uniform convergence over compact sets K Ă Rd (Pollard (1991)). Therefore,

h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

?
n pFnj pβ0q ´ F0jq

1 h`
1

2
h1G0jh

˙

` oP p1q

ù h1W0 `
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

“ h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd.

Now consider the constraints. Since
?
nfnj pβ0q `Fnj

´

β̃
¯1

h
p
Ñ ´8 for j P IzI˚, the nonactive

inequality constraints do not affect the asymptotic distribution. Since
?
nfnj pβ0q ù U0j , jointly,

for all j P E Y I˚, Fnj
´

β̃
¯

“ F0` oP p1q, and finite dimensional convergence in distribution implies

epi-convergence in distribution for convex functions,

81 ph R Σnq Ñe´d 81
`

h R
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

(˘

Because we have assumed LICQ at β0, Theorem 2.1 of Shapiro (1988) implies that minimizing over
!

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

)

will produce the same set of solutions as
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minimizing over Σ ”
!

h : U0j ` F
1
0jh “ 0 for j P E Y I˚` pλ0q , U0j ` F

1
0jh ď 0 for j P I˚0 pλ0q

)

.

Condition (iii) is a second order sufficient condition and guarantees that the argmin in J

is unique. Then by the argmin continuous mapping theorem (Theorem 1 of Knight (1999)),

arg min
h

Ĝn phq Ñe´d arg min
h

G0 phq, where

Ĝn phq “ nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λnjn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

`81 ph R Σnq

G0 phq “ h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

`81 ph R Σq

Now we show consistency of the proximal bootstrap β̂˚n
p
Ñ β0. αn Ñ 0 implies αn

?
nH̄n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“

o˚pp1q and αn
?
n
´

F̄ ˚nj ´ F̄nj

¯

“ o˚pp1q for all j P E Y I. Using convexity of the proximal bootstrap

objective function and compactness of C˚ ´ β0,

β̂˚n ´ β0 “ arg min
uPpC˚´β0q

"

1

2

›

›

›
u` β0 ´ β̄n ` αn

?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯
›

›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

u` β0 ´ β̄n
˘

`
1

2

›

›u` β0 ´ β̄n
›

›

2

Ḡnj

˙

+

“ arg min
uPpC˚´β0q

#

1

2
u1

˜

H0 `
ÿ

jPEYI
λ0jG0j

¸

u` u1

˜

H0 `
ÿ

jPEYI
λ0jG0j

¸

`

β0 ´ β̄n
˘

`
1

2

›

›β0 ´ β̄n
›

›

2

H0
`

1

2

ÿ

jPEYI
λ0j

›

›β0 ´ β̄n
›

›

2

G0j

+

` opp1q

“ β̄n ´ β0 ` opp1q “ opp1q

Next we derive the asymptotic distribution of the proximal bootstrap. Note that since C˚ is

already a linearized constraint set, the linearized feasible direction set is simply

Σ˚n “
 

h : fnj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E

fnj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

“

#

h :
fnj

`

β̄n
˘

αn
` F̄ 1njh`

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

“ 0 for j P E ,

fnj
`

β̄n
˘

αn
` F̄ 1njh`

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

ď 0 for j P I

+
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Note that fnjpβ̄nq
αn

p
Ñ´8 for j P IzI˚ while fnjpβ̄nq

αn
“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

“

?
npfnjpβ̄nq´fnjpβ0qq

?
nαn

`
?
npfnjpβ0q´f0jpβ0qq?

nαn
“ oP p1q for j P E Y I˚. Additionally, F̄ 1nj

´

β0´β̄n
αn

¯

“ oP p1q, F̄n “ F0 ` oP p1q,
?
n
´

f˚nj pβ0q ´ fnj pβ0q

¯

P
ù
W

U0j , jointly, for all j P E Y I˚, and
?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

P
ù
W

U0j , jointly, for all j P E Y I˚ because sup
}β´β0}ďop1q

?
n pf˚n pβq ´ fn pβq ´ f

˚
n pβ0q ` fn pβ0qq “ o˚P p1q.

Therefore,

81 ph R Σ˚nq
p
Ñ
e´d

81
`

h R
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

(˘

Next, we can center and scale the bootstrap estimator to get

β̂˚n ´ β0

αn
“ arg min

hPΣ˚n

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

Ḡnj

˙

+

“ arg min
hPΣ˚n

#

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

`
ÿ

jPEYI
λ̄nj

˜

?
n
`

F̄ ˚nj ´ F̄nj
˘1

ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

Ḡnj

¸+

“ arg min
hPΣ˚n

"

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

`
ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

` o˚P p1q

+

P
ù
W

arg min
hPΣ

$

&

%

h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

,

.

-

“ J

where the last line follows from the following arguments. First, note that since H̄n
p
Ñ H0, Ḡnj

p
Ñ G0j

for all j, and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K Ă Rd,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

“h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1G0jh

˙

` oP p1q
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Next, note that Assumption 4, max
jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0, and sup

}β´β0}ďop1q

?
n pF ˚n pβq ´ Fn pβq ´ F

˚
n pβ0q ` Fn pβ0qq “

o˚P p1q imply
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
ř

jPEYI λ̄nj
?
n
´

F̄ ˚nj ´ F̄nj

¯

P
ù
W
W0 `

ř

jPEYI λ0jV0j because

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
ÿ

jPEYI
λ̄nj
?
n
`

F̄ ˚nj ´ F̄nj
˘

“
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

´

´

l̂˚n pβ0q ´ l̂n pβ0q

¯¯

`
ÿ

jPEYI
λ0j

?
n
`

F ˚nj pβ0q ´ Fnj pβ0q
˘

`
ÿ

jPEYI

`

λ̄nj ´ λ0j

˘?
n
`

F̄ ˚nj ´ F̄nj
˘

`
ÿ

jPEYI
λ0j

?
n
`

F̄ ˚nj ´ F̄nj ´
`

F ˚nj pβ0q ´ Fnj pβ0q
˘˘

“
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ÿ

jPEYI
λ0j

?
n
`

F ˚nj pβ0q ´ Fnj pβ0q
˘

` o˚P p1q

and we assumed
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W
W0`

ř

jPEYI λ0jV0j .

Additionally, max
jPEYI

ˇ

ˇḠnj ´G0j

ˇ

ˇ

p
Ñ 0 and max

jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0 imply that

ř

jPEYI λ̄njḠnj
p
Ñ

ř

jPEYI λ0jG0j . By convexity of the bootstrap Lagrangian in h, pointwise convergence implies

uniform convergence over compact sets K Ă Rd; therefore,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1G0jh

˙

P
ù
W

h1W0 `
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

“ h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd. Finally, note that β̂˚n is unique because H̄n `
ř

jPEYI λ̄njḠnj is symmetric and positive

definite. Then, by a modification of the bootstrap argmin continuous mapping lemma 14.2 in Hong

and Li (2020) that replaces weak convergence with epi-convergence, arg min
h

Ĝ˚n phq
p
Ñ
e´d

arg min
h

G0 phq

for

Ĝ˚n phq “ h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

`
ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

`81 ph R Σ˚nq
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G0 phq “ h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

`81 ph R Σq

�

5.1.3 Proof of Theorem 3

We will first show Ω˚ Ď Ω for all drifting sequences and then apply stochastic dominance arguments

to show uniform coverage of the confidence set. For active inequality and equality constraints j P EY

I˚ where f0j pβ0q “ 0,
?
nfnj pβ0q´Fnj

´

β̃
¯1

h ù U0j´F
1
0jh. For

?
n-drifting inequality constraints

j P I#
1{2 where f0j pβ0q “ c{

?
n for c ă 0,

?
nfnj pβ0q ´ Fnj

´

β̃
¯1

h “
?
n pfnj pβ0q ´ f0j pβ0qq ´

Fnj

´

β̃
¯1

h`c ù U0j´F
1
0jh`c. For slower than

?
n drifting constraints j P I#

ă1{2 where f0j pβ0q “

c{nρ for c ă 0 and ρ ă 1{2,
?
nfnj pβ0q ´ Fnj

´

β̃
¯1

h “
?
n pfnj pβ0q ´ f0j pβ0qq ´ Fnj

´

β̃
¯1

h `

cn1{2´ρ p
Ñ ´8. For faster than

?
n drifting constraints j P I#

ą1{2 where f0j pβ0q “ c{nρ for c ă 0

and ρ ą 1{2,
?
nfnj pβ0q ´ Fnj

´

β̃
¯1

h “
?
n pfnj pβ0q ´ f0j pβ0qq ´ Fnj

´

β̃
¯1

h ` cn1{2´ρ ù U0j ´

F 10jh. For the nonactive and nondrifting inequality constraints j P Iz
´

I˚ Y I#
1{2 Y I#

ă1{2 Y I#
ą1{2

¯

,
?
nfnj pβ0q ´ Fnj

´

β̃
¯1

h
p
Ñ ´8. Therefore,

Ω “
!

h : U0j ´ F
1
0jh “ 0 for j P E , U0j ´ F

1
0jh ď 0 for j P I˚ Y I#

ą1{2, U0j ´ F
1
0jh ď ´c for j P I

#
1{2

)

Recall that since
?
n
´

f˚nj pβ0q ´ fnj pβ0q

¯

P
ù
W

U0j and sup
}β´β0}ďop1q

?
n pf˚n pβq ´ fn pβq ´ f

˚
n pβ0q ` fn pβ0qq “

o˚pp1q,
?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

P
ù
W

U0j for all j P E Y I. For active inequality and equality con-

straints j P E Y I˚ where f0j pβ0q “ 0, fnjpβ̄nq
αn

“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

“ opp1q. For
?
n-drifting in-

equality constraints j P I#
1{2 where f0j pβ0q “ c{

?
n for c ă 0, fnjpβ̄nqαn

“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

` c?
nαn

“
?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

` opp1q “ opp1q. For faster than
?
n drifting constraints j P I#

ą1{2 where

f0j pβ0q “ c{nρ for c ă 0 and ρ ą 1{2, fnjpβ̄nqαn
“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

` c
nραn

“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

`

opp1q “ opp1q. For slower than
?
n drifting constraints where f0j pβ0q “ c{nρ for c ă 0 and

ρ ă 1{2, fnjpβ̄nq
αn

“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

` c
nραn

p
Ñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if αnnρ Ñ8

c{k if αnnρ Ñ k

´8 if αnnρ Ñ 0

. We will label these con-

straints as I#
ă1{2,8, I

#
ă1{2,k , and I#

ă1{2,0 , respectively to reflect the limit of αnnρ. For the nonac-
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tive and nondrifting inequality constraints j P Iz
´

I˚ Y I#
1{2 Y I#

ą1{2 Y I#
ă1{2,8 Y I#

ă1{2,k Y I#
ă1{2,0

¯

,
fnjpβ̄nq
αn

p
Ñ ´8. Therefore,

Ω˚ “
!

h : U0j ´ F
1
0jh “ 0 for j P E , U0j ´ F

1
0jh ď 0 for j P I˚ Y I#

1{2 Y I#
ą1{2 Y I#

ă1{2,8,

U0j ´ F
1
0jh ď ´c{k for j P I#

ă1{2,k

)

Assumption 6 and the continuous mapping theorem imply that

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

“
?
n
´

β0 ´ β̂n

¯1?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2

›

›

›

?
n
´

β0 ´ β̂n

¯›

›

›

2

H0

`
ÿ

jPEYI
λ0j

ˆ

?
n pFnj pβ0q ´ F0jq

1
?
n
´

β0 ´ β̂n

¯

`
1

2

›

›

›

?
n
´

β0 ´ β̂n

¯›

›

›

2

G0j

˙

` oP p1q

ù q pJ q

where the oP p1q term is uniform in P , q phq ” ´h1W0`
1
2h
1H0h`

ř

jPEYI˚`pλ0q
λ0j

`

´h1V0j `
1
2h
1G0jh

˘

,

and J “ arg min
hPΩ

q phq. Note that q pJ q “ min
hPΩ

q phq. Similarly, for J ˚ “ arg min
hPΩ˚

q phq,

Â˚n

´

β̂n

¯

´ Â˚n

´

β̂˚n

¯

α2
n

“
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1

˜

β0 ´ β̂
˚
n

αn

¸

`
1

2

›

›

›

›

›

β0 ´ β̂
˚
n

αn

›

›

›

›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

¨

˝

?
n
`

F̄ ˚nj ´ F̄nj
˘1

˜

β0 ´ β̂
˚
n

αn

¸

`
1

2

›

›

›

›

›

β0 ´ β̂
˚
n

αn

›

›

›

›

›

2

Ḡnj

˛

‚` oP p1q

P
ù
W

q pJ ˚q

where the oP p1q term is uniform in P . Since Ω˚ Ď Ω and q phq is a strictly convex function

of h, min
hPΩ

q phq ď min
hPΩ˚

q phq uniformly over P . This implies that the asymptotic distribution

of Â˚npβ̂nq´Â
˚
npβ̂

˚
nq

α2
n

uniformly first order stochastically dominates the asymptotic distribution of

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

. Under the assumptions of this theorem, for all εn ą 0 and n large enough,

there exists δn ą 0 such that sup
PPP

P

ˆ

sup
xPR

 

J˚αn px, P q ´ Jn px, P q
(

ą εn

˙

ď δn. Let ĉ˚1´α be the
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1´α quantile of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

and let ĉ1´α be the 1´α quantile of n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

. Take

tεnu
8
n“1 and tδnu8n“1 to be positive sequences such that εn Ñ 0 and δn Ñ 0. Then,

lim inf
nÑ8

inf
PPP

P
´

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ď ĉ˚1´α

¯

ě lim inf
nÑ8

inf
PPP

P

ˆ

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ď ĉ˚1´α X sup
xPR

 

J˚αn px, P q ´ Jn px, P q
(

ď εn

˙

ě lim inf
nÑ8

inf
PPP

P

ˆ

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ď ĉ1´α´εn X sup
xPR

 

J˚αn px, P q ´ Jn px, P q
(

ď εn

˙

ě lim inf
nÑ8

inf
PPP

P
´

n
´

L̂n pβ0q ´ L̂n
´

β̂n

¯¯

ď ĉ1´α´εn

¯

´ lim sup
nÑ8

sup
PPP

P

ˆ

sup
xPR

 

J˚αn px, P q ´ Jn px, P q
(

ą εn

˙

ě 1´ α

�

5.2 Additional Results

5.2.1 Equality Constrained Quadratic Program

Lemma 5.1. Suppose H0 P Rd ˆ Rd is nonsingular, R P Rd ˆ Rm has rank m, and ∆n “ OP p1q.

Then

h` “ arg min

R1h “ δ

h1∆n `
1

2
h1H0h

“ ´H´1
0

´

I ´R
`

R1H´1
0 R

˘´1
R1H´1

0

¯

∆n `H
´1
0 R

`

R1H´1
0 R

˘´1
δ

Proof: The Lagrangian and KKT conditions are

L “ h1∆n `
1

2
h1H0h` λ ˝

`

R1h´ δ
˘

∆n `H0h`Rλ “ 0

R1h´ δ “ 0

The first KKT condition says h` “ ´H´1
0 p∆n `Rλq. Substituting into the second KKT condition,

´R1H´1
0 p∆n `Rλq “ δ ùñ λ “ ´

`

R1H´1
0 R

˘´1 `
δ `R1H´1

0 ∆n

˘
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Therefore,

h` “ ´H´1
0 ∆n `H

´1
0 R

`

R1H´1
0 R

˘´1 `
δ `R1H´1

0 ∆n

˘

“ ´H´1
0

´

I ´R
`

R1H´1
0 R

˘´1
R1H´1

0

¯

∆n `H
´1
0 R

`

R1H´1
0 R

˘´1
δ

5.2.2 Inequality Constrained Quadratic Program

Lemma 5.2. Suppose H0 P RdˆRd is nonsingular, RΛ P RdˆRmΛ has rank mΛ, and ∆n “ OP p1q,

where RΛ denotes the submatrix of R P Rd ˆ Rm corresponding to the active constraints. Then

h` “ arg min

R1h ď δ

h1∆n `
1

2
h1H0h

“ max
´

´H´1
0

´

I ´RΛ

`

R1ΛH
´1
0 RΛ

˘´1
R1ΛH

´1
0

¯

∆n `H
´1
0 RΛ

`

R1ΛH
´1
0 RΛ

˘´1
δΛ,´H

´1
0 ∆n

¯

where δΛ denotes the subvector of δ corresponding to the active constraints.

Proof: The Lagrangian and KKT Conditions are

L “ h1∆n `
1

2
h1H0h`

m
ÿ

i“1

µi
`

R1ih´ δi
˘

∆n `H0h`Rµ “ 0

µi ě 0, µi
`

R1ih´ δi
˘

“ 0@i “ 1...m

The first KKT condition says h` “ ´H´1
0 p∆n `Rµq. The second says that if µi ą 0, then

R1ih
` ´ δi “ 0; such an inequality constraint is called strongly active (binding). It can also be

the case that µi “ 0 and R1ih
` ´ δi “ 0, in which case the inequality constraint is called weakly

active. The assumption that RΛ has rank mΛ implies linear independence constraint qualification

is satisfied, which means the set of Lagrange multipliers that satisfy the KKT conditions is a

singleton (Wachsmuth (2013)). Let the Lagrange multipliers corresponding to active constraints be

denoted µΛ. The Lagrange multipliers corresponding to nonactive constraints are zero. Therefore

Rµ “ RΛµΛ. Stacking the equations R1ih
` ´ δi “ 0 for the active constraints, and accounting for

the possibility that µi “ 0 for the weakly active constraints (since strict complementarity may not
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hold),

R1Λh
` ´ δΛ “ ´R

1
ΛH

´1
0 p∆n `RΛµΛq ´ δΛ “ 0 ùñ µΛ “ max

´

´
`

R1ΛH
´1
0 RΛ

˘´1 `
R1ΛH

´1
0 ∆n ` δΛ

˘

, 0
¯

Therefore,

h` “ ´H´1
0 p∆n `RΛµΛq

“ max
´

´H´1
0 ∆n `H

´1
0 RΛ

`

R1ΛH
´1
0 RΛ

˘´1 `
R1ΛH

´1
0 ∆n ` δΛ

˘

,´H´1
0 ∆n

¯

“ max
´

´H´1
0

´

I ´RΛ

`

R1ΛH
´1
0 RΛ

˘´1
R1ΛH

´1
0

¯

∆n `H
´1
0 RΛ

`

R1ΛH
´1
0 RΛ

˘´1
δΛ,´H

´1
0 ∆n

¯

5.2.3 Consistency of Proximal Bootstrap with infinite number of non-drifting con-

straints when l pβ0q “ 0 (Remark 6)

The limiting distribution of
?
n
´

β̂n ´ β0

¯

can be difficult to characterize due to the presence of an

infinite number of constraints in the limit as nÑ8. To avoid explicitly characterizing the limiting

distribution, we will work with the following finite constraint set Σ:

Σ “
 

h : U0j ` F
1
0jh “ 0 for j P En, U0j ` F

1
0jh ď 0 for j P I˚n

(

Here, I˚n ” tj P In : f0j pβ0q “ 0u, and Σn and Σ˚n are the same as in the proof of Theorem 2

except allowing for En and In to depend on n. To demonstrate consistency of the proximal boot-

strap, we will show that both 81 ph R Σnq and 81 ph R Σ˚nq have the same limit (in the sense of

epi-convergence in distribution) without explicitly characterizing this limit. Because 81 ph R Σnq

and 81 ph R Σ˚nq are convex functions, to show epi-convergence in distribution, it suffices to show

finite dimensional convergence. In particular, we will show that 81 ph R Σnq ´ 81 ph R Σq and

81 ph R Σ˚nq ´ 81 ph R Σq both converge in finite dimension to zero. To do so, we will assume

sup
tPR

ˇ

ˇ

ˇ

ˇ

P

ˆ

max
jPEnYI˚n

?
nfnj pβ0q ď t

˙

´ P

ˆ

max
jPEnYI˚n

U0j ď t

˙
ˇ

ˇ

ˇ

ˇ

Ñ 0, and

sup
tPR

ˇ

ˇ

ˇ

ˇ

P

ˆ

max
jPEnYI˚n

?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

ď t

ˇ

ˇ

ˇ

ˇ

Xn
˙

´ P

ˆ

max
jPEnYI˚n

U0j ď t

˙ˇ

ˇ

ˇ

ˇ

p
Ñ 0. These assump-

tions can be derived using the results in Chernozhukov et al. (2013) and Chernozhukov et al. (2019)

for Gaussian approximation of maxima of sums for high dimensional random vectors. We will also
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need to assume max
jPEnYI˚n

|Fnj pβ0q ´ F0j | “ oP p1q and max
jPEnYI˚n

ˇ

ˇF̄nj ´ F0j

ˇ

ˇ “ oP p1q.

We now show finite dimensional convergence of 81 ph R Σnq to 81 ph R Σq. For any h1, ..., hk

where k is fixed,

P ph1 P Σn, ..., hk P Σnq

“ P

˜

k
č

i“1

 ?
nfnj pβ0q ` Fnj pβ0q

1 hi “ 0 for j P En,
?
nfnj pβ0q ` Fnj pβ0q

1 hi ď 0 for j P In
(

¸

“ P

ˆ"

max
jPEnYIn

ˆ

?
nfnj pβ0q ` max

1ďiďk
Fnj pβ0q

1 hi

˙

ď 0

*

č

"

max
jPEn

ˆ

´
?
nfnj pβ0q ´ max

1ďiďk
Fnj pβ0q

1 hi

˙

ď 0

*˙

P ph1 P Σ, ..., hk P Σq

“ P

˜

k
č

i“1

 

U0j ` F
1
0jhi “ 0 for j P En, U0j ` F

1
0jhi ď 0 for j P I˚n

(

¸

“ P

ˆ"

max
jPEnYI˚n

ˆ

U0j ` max
1ďiďk

F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´U0j ´ max
1ďiďk

F 10jhi

˙

ď 0

*˙

P ph1 P Σn, ..., hk P Σnq ´ P ph1 P Σ, ..., hk P Σq

“ P

ˆ"

max
jPEnYI˚n

ˆ

?
nfnj pβ0q ` max

1ďiďk
Fnj pβ0q

1 hi

˙

ď 0

*

č

"

max
jPEn

ˆ

´
?
nfnj pβ0q ´ max

1ďiďk
Fnj pβ0q

1 hi

˙

ď 0

*˙

´ P

ˆ"

max
jPEnYI˚n

ˆ

U0j ` max
1ďiďk

F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´U0j ´ max
1ďiďk

F 10jhi

˙

ď 0

*˙

` op1q

“ P

ˆ"

max
jPEnYI˚n

ˆ

?
nfnj pβ0q ` max

1ďiďk
F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´
?
nfnj pβ0q ´ max

1ďiďk
F 10jhi

˙

ď 0

*˙

´ P

ˆ"

max
jPEnYI˚n

ˆ

U0j ` max
1ďiďk

F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´U0j ´ max
1ďiďk

F 10jhi

˙

ď 0

*˙

` op1q

“ op1q

where we have used
?
nfnj pβ0q ` max

1ďiďk
Fnj pβ0q

1 hi
p
Ñ ´8 for j P InzI˚n , max

jPEnYI˚n
|Fnj pβ0q ´ F0j | “

oP p1q, and sup
tPR

ˇ

ˇ

ˇ

ˇ

P

ˆ

max
jPEnYI˚n

?
nfnj pβ0q ď t

˙

´ P

ˆ

max
jPEnYI˚n

U0j ď t

˙ˇ

ˇ

ˇ

ˇ

Ñ 0. The rest of the arguments

are the same as in Theorem 2. It follows that for c1´α the 1´α quantile of J “ arg min
hPΣ

 

h1W0 `
1
2h
1H0h

(

,

P
´?

n
´

β̂n ´ β0

¯

ą c1´α

¯

Ñ α.

Similarly, to show finite dimensional convergence in probability of 81 ph R Σ˚nq to 81 ph R Σq,

for any h1, ..., hk where k is fixed,

P ph1 P Σ˚n, ..., hk P Σ˚n|Xnq
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“ P

˜

k
č

i“1

#

fnj
`

β̄n
˘

αn
` F̄ 1njhi `

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

“ 0 for j P En,

fnj
`

β̄n
˘

αn
` F̄ 1njhi `

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

ď 0 for j P In

+ˇ

ˇ

ˇ

ˇ

ˇ

Xn

¸

“ P

˜#

max
jPEnYIn

˜

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` max
1ďiďk

F̄ 1njhi `
fnj

`

β̄n
˘

αn
` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

¸

ď 0

+

č

#

max
jPEn

˜

´
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

´ max
1ďiďk

F̄ 1njhi ´
fnj

`

β̄n
˘

αn
´ F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

¸

ď 0

+ˇ

ˇ

ˇ

ˇ

ˇ

Xn

¸

P ph1 P Σ˚n, ..., hk P Σ˚n|Xnq ´ P ph1 P Σ, ..., hk P Σq

“ P

ˆ"

max
jPEnYI˚n

ˆ

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` max
1ďiďk

F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

´ max
1ďiďk

F 10jhi

˙

ď 0

*ˇ

ˇ

ˇ

ˇ

Xn
˙

´ P

ˆ"

max
jPEnYI˚n

ˆ

U0j ` max
1ďiďk

F 10jhi

˙

ď 0

*

č

"

max
jPEn

ˆ

´U0j ´ max
1ďiďk

F 10jhi

˙

ď 0

*˙

` oP p1q

“ oP p1q

where we have used F̄ 1nj
´

β0´β̄n
αn

¯

“ oP p1q,
fnjpβ̄nq
αn

` max
1ďiďk

Fnj pβ0q
1 hi

p
Ñ ´8 for j P InzI˚n ,

fnjpβ̄nq
αn

“

oP p1q for all j P EnYI˚n , sup
tPR

ˇ

ˇ

ˇ

ˇ

P

ˆ

max
jPEnYI˚n

?
n
´

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘

¯

ď t

ˇ

ˇ

ˇ

ˇ

Xn
˙

´ P

ˆ

max
jPEnYI˚n

U0j ď t

˙
ˇ

ˇ

ˇ

ˇ

p
Ñ

0, and max
jPEnYI˚n

ˇ

ˇF̄nj ´ F0j

ˇ

ˇ “ oP p1q. The rest of the arguments are the same as in Theorem 2. It fol-

lows that for c1´α the 1´α quantile of J “ arg min
hPΣ

 

h1W0 `
1
2h
1H0h

(

, P
´

α´1
n

´

β̂˚n ´ β̂n

¯

ą c1´α

ˇ

ˇ

ˇ
Xn

¯

p
Ñ

α. Since P
´?

n
´

β̂n ´ β0

¯

ą c1´α

¯

Ñ α, it follows that P
´?

n
´

β̂n ´ β0

¯

ą cB1´α

¯

Ñ α, where

cB1´α is the 1´ α empirical quantile of α´1
n

´

β̂˚n ´ β̂n

¯

.

We can also show that the uniformity arguments in Theorem 3 extend to the case of an infinite

number of constraints when l pβ0q “ 0. Define

Ω “
!

h : U0j ´ F
1
0jh “ 0 for j P En, U0j ´ F

1
0jh ď 0 for j P I˚n Y I#

n,ą1{2, U0j ´ F
1
0jh ď ´c for j P I

#
n,1{2

)

Ω˚ “
!

h : U0j ´ F
1
0jh “ 0 for j P En, U0j ´ F

1
0jh ď 0 for j P I˚n Y I#

n,1{2 Y I#
n,ą1{2 Y I#

n,ă1{2,8,

U0j ´ F
1
0jh ď ´c{k for j P I#

n,ă1{2,k

)

We can show that for any h1, ..., hk where k is fixed, P ph1 P Σn, ..., hk P Σnq´P ph1 P Ω, ..., hk P Ωq “

oP p1q and P ph1 P Σ˚n, ..., hk P Σ˚n|Xnq ´ P ph1 P Ω˚, ..., hk P Ω˚q “ oP p1q. Let ĉ˚1´α be the 1 ´ α
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quantile of Â˚npβ̂nq´Â
˚
npβ̂

˚
nq

α2
n

, and let c˚1´α be the 1 ´ α quantile of min
hPΩ˚

q phq, where Â˚n pβq “

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
and q phq “

 

´h1W0 `
1
2h
1H0h

(

. Let J˚αn p¨, P q

denote the conditional CDF of Â
˚
npβ̂nq´Â

˚
npβ̂

˚
nq

α2
n

under P , and assume for all ε ą 0,

lim sup
nÑ8

sup
PPP

P

ˆ

sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ą ε

˙

“ 0, where the limiting distributions tJ˚ p¨, P q : P P Pu

are equicontinuous at their 1 ´ α quantiles. For positive sequences tεnu8n“1 and tδnu8n“1 such that

εn Ñ 0 and δn Ñ 0,

lim inf
nÑ8

inf
PPP

P
´

n
´

Q̂n pβ0q ´ Q̂n

´

β̂n

¯¯

ď ĉ˚1´α

¯

ě lim inf
nÑ8

inf
PPP

P

ˆ

min
hPΩ

q phq ď ĉ˚1´α X sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ď εn{2

˙

ě lim inf
nÑ8

inf
PPP

P

ˆ

min
hPΩ

q phq ď c˚1´α´εn X sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ď εn{2

˙

ě lim inf
nÑ8

inf
PPP

P

ˆ

min
hPΩ˚

q phq ď c˚1´α´εn X sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ď εn{2

˙

ě lim inf
nÑ8

inf
PPP

P

ˆ

min
hPΩ˚

q phq ď c˚1´α´εn

˙

´ lim sup
nÑ8

sup
PPP

P

ˆ

sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ą εn{2

˙

ě 1´ α´ εn ´ δn ě 1´ α
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