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We demonstrate how to use the proximal bootstrap to conduct asymptotically valid inference

for
?
n-consistent estimators defined as the solution to a constrained optimization problem with

a possibly nonsmooth and nonconvex sample objective function and a constraint set defined by

smooth equalities and/or inequalities which can be estimated from the data. We allow for the

inequalities to drift towards equality as the sample size goes to infinity, and show how to use test-

inversion to construct a uniformly asymptotically valid confidence set for the parameters. The

proximal bootstrap estimator is typically much faster to compute than alternative bootstrap

procedures because it can be written as the solution to a quadratic programming problem.

Monte Carlo simulations illustrate the correct coverage of the proximal bootstrap in a boundary

constrained maximum likelihood model, a boundary constrained nonsmooth GMM model, and

a conditional logit model with estimated capacity constraints.
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This paper considers using the proximal bootstrap estimator proposed in Li (2021) to conduct
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which we will focus on in this paper is estimators defined by the solution to a constrained opti-

mization problem with smooth inequality and/or equality constraints and a possibly nonsmooth

and nonconvex sample objective function. A well-known example of a constrained estimator with

a nonstandard distribution is the constrained MLE estimator where the true parameter lies on the

boundary of the constraint set. It is well known (see e.g. Andrews (2000)) that applying a standard

bootstrap procedure to estimate the distribution of the constrained estimator is inconsistent when

the true parameters β0 lie on the boundary of the constraint set C. An example of an inconsistent

standard bootstrap procedure is the nonparametric bootstrap, which involves resampling the data

with replacement, computing the constrained estimator on the resampled data sets, and then use

the percentiles of these estimators to form confidence intervals.

Motivated by the optimization literature and recent contributions in computationally efficient

bootstrap procedures (e.g. Kline and Santos (2012), Armstrong et al. (2014), Forneron and Ng

(2019)), our proximal bootstrap estimator can be expressed as the solution to a convex optimiza-

tion problem and efficiently computed starting from an initial consistent estimator using built-in

and freely available software. The proximal bootstrap can consistently estimate the non-standard

asymptotic distribution of constrained estimators when the parameters are on the boundary, but

not drifting towards the boundary. When the parameters are drifting towards the boundary at

an unknown rate, the proximal bootstrap typically cannot consistently replicate the estimator’s

distribution. However, we are still able to conduct uniformly asymptotically valid inference on the

entire parameter vector using a confidence set constructed by inverting a test statistic based on the

difference between two objectives. We can also conduct uniformly asymptotically valid inference on

subvectors of the parameter vector using either projection or profiling of the objective functions.

This idea of using test inversion to construct uniformly asymptotically valid confidence regions has

similarities to the literature on partially identified models, for example, Chernozhukov et al. (2007),

Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Han (2009), Andrews

and Guggenberger (2010), Andrews and Soares (2010), Bugni (2010), Canay (2010), and many oth-

ers. However, we do not handle partial identification in this paper because our object of interest β0

is assumed to be unique.

Another novel part of this paper is that we provide a general asymptotic distribution for estima-

tors defined by the solution to constrained optimization problems where the Lagrangian admits a
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uniform local quadratic expansion in
?
n neighborhoods of β0. This local quadratic expansion rules

out linear programming estimators and other estimators that have large flat regions near β0. The

asymptotic distribution is derived using ideas from the optimization literature and encompasses as

special cases the results in Geyer (1994), Andrews (1999),Andrews (2000), and Andrews (2002a)

for constrained estimators with non-random constraint sets and true parameters possibly lying on

the boundaries of the constraint sets. Andrews (1999) derives the asymptotic distribution of con-

strained extremum estimators where the rescaled constraint set
?
n pC ´ β0q can be approximated

by a convex cone. Geyer (1994) considers a more general case where the cone does not need to be

convex.

Our paper was inspired by ideas in the optimization literature on sequential quadratic program-

ming, where a local quadratic approximation is used to approximate the objective function on each

iteration. The proximal bootstrap estimator is in effect applying such a local quadratic approxi-

mation centered around an initial
?
n-consistent estimate of the parameters. Because we want the

estimation error from this initial estimate to be negligible in the proximal bootstrap approxima-

tion of our estimator’s asymptotic distribution, we need to use a scaling sequence αn that satisfies

αn Ñ 0 and
?
nαn Ñ 8. αn will also serve as a selection device so that the active constraints are

included in the asymptotic distribution while the inactive, non-drifting constraints are not. The

αn in this paper is similar to the εn in the numerical bootstrap Hong and Li (2020). However,

we want to emphasize that the proximal bootstrap is a different procedure than the numerical

bootstrap because it solves a different optimization problem. The proximal bootstrap works only

for
?
n-consistent estimators but is more computationally efficient than the numerical bootstrap.

Additionally, Hong and Li (2020) looked only at estimators with non-random constraints that do

not depend on the data and did not consider drifting constraints. In the case of a smooth sample

objective function without constraints, the proximal bootstrap is similar (but not identical) to the

k-step bootstrap (for k “ 1) proposed by Davidson and MacKinnon (1999) and investigated further

by Andrews (2002b). The proximal bootstrap has an additional scaling factor of αn
?
n in front

of the inverse Hessian times Jacobian, which is different from the k-step bootstrap which uses a

scaling of 1. There are also some similarities with the score bootstrap of Kline and Santos (2012) for

unconstrained problems, but our method of inference is still different even when the constraints are

not active. We have the additional scaling factor in front of the score and we can handle nonsmooth

3



objectives.

The statistics literature contains many papers on constrained estimation such as Shapiro (1988),

Shapiro (1989), Shapiro (1990), Knight (2001), Knight (2006), and Knight (2010). While several

of these papers derive the non-standard asymptotic distributions of various constrained estimators,

we did not see them propose a practical inference procedure as we do. Examples of econometrics

papers on constrained estimation include Moon and Schorfheide (2009), Kaido and Santos (2014),

Kaido (2016), Gafarov (2016), Chen et al. (2018), Hsieh et al. (2022), Kaido et al. (2019), Kaido

et al. (2021), Horowitz and Lee (2019), Fang and Seo (2021), and Chernozhukov et al. (2023). While

many of these papers are concerned with either conducting inference on the optimal value of the

constrained optimization problem or testing whether the constraints are valid, we are interested

in conducting inference on the optimal solution. Perhaps the closest paper to ours is Hsieh et al.

(2022) who also consider inference for the optimal solution, but they focus on linear programming

(LP) and convex quadratic programming (QP) problems with linear constraints. In contrast to

Hsieh et al. (2022), we allow for nonconvex and nonlinear objective and constraint functions, but

we do not handle linear programming or partially identified models. Our inference procedure is

also different from theirs because we use resampling followed by inverting a test statistic while they

exploit the fact that the primal-dual formulation of the Karush-Kuhn-Tucker (KKT) conditions can

be written as a set of moment inequalities and then apply test inversion.

We offer simulation evidence supporting the uniform asymptotic validity of the proximal boot-

strap test-inversion procedure. For a two-sided boundary constrained maximum likelihood model,

we compare the empirical coverage frequencies of the proximal bootstrap test-inversion confidence

interval to the intervals proposed by Hsieh et al. (2022), Fang and Santos (2019), subsampling,

and the nonparametric bootstrap. The only methods that were uniformly valid across all drifting

parameters were the proximal bootstrap and Hsieh et al. (2022), and we found in simulations that

the proximal bootstrap is less conservative and has shorter average interval length. For a bound-

ary constrained nonsmooth GMM model and a conditional logit model with estimated capacity

constraints, we did not include a comparison with Hsieh et al. (2022) or Fang and Santos (2019)

because we believe their methods do not apply. But we still compared the proximal bootstrap with

subsampling and the nonparametric bootstrap and found that the proximal bootstrap achieves cov-

erage close to the nominal level while subsampling and the nonparametric bootstrap undercover. In
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all simulations, we found that the coverage and average interval length of the proximal bootstrap

test-inversion confidence interval were not sensitive to the choice of αn.

The outline of our paper is as follows. Subsection 1.1 contains examples of constrained estimators

and Subsection 1.2 contains the notation. Section 2 contains the main theoretical results. Subsection

2.1 shows pointwise consistency of the proximal bootstrap for constrained estimators with non-

random constraint sets. Subsubsection 2.1.1 illustrates how to apply the proximal bootstrap for

the Andrews (2000) example. In Subsection 2.2, by considering all rates of drift for the inequality

constraints, we show how to conduct uniformly asymptotically valid inference by inverting a test

statistic involving the objective function. Section 2.3 proposes a double bootstrap algorithm for

choosing αn. Section 2.4 contains an extension of our results to estimators with constraints that are

estimated (meaning they depend on the data). Section 3 contains Monte Carlo simulation evidence

demonstrating the uniform validity of the proximal bootstrap for a boundary constrained MLE

model with a two-sided estimated constraint, a boundary constrained nonsmooth GMM model, and

a conditional logit model with estimated capacity constraints. Section 4 concludes. Section 5 is the

Appendix which contains proofs of the theorems.

1.1 Examples of Constrained Estimators

Example 1. An example of a constrained estimator with a non-random constraint set is the bound-

ary constrained maximum likelihood estimator in Andrews (2000). Suppose we have a simple loca-

tion model with i.i.d data:

yi “ β0 ` εi, εi „ Np0, 1q

The maximum likelihood estimator subject to the constraint that β ě 0 is

β̂n “ arg min
βě0

1

2n

n
ÿ

i“1

pyi ´ βq
2

Example 2. Another example is a nonsmooth GMM estimator with a non-negativity constraint.

Our model is

yi “ β0 ` εi, εi „ Np0, 1q
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For π p¨, βq “ r1 pyi ď βq ´ τ, yi ´ βs
1 and π̂n pβq “

“

1
n

řn
i“1 1 pyi ď βq ´ 0.5, 1

n

řn
i“1 yi ´ β

‰1,

β̂n “ arg min
βě0

"

Q̂n pβq “
1

2
π̂n pβq

1 π̂n pβq

*

Example 3. An example involving an estimated constraint set is a conditional logit model with

capacity constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium

demand for each housing unit should not exceed the supply of that housing unit. Let the choices

be given by yij “ 1
´

y˚ij ą y˚ik@k ‰ j
¯

, where the utility of individual i “ 1...n from picking choice

j “ 1...J is given by y˚ij “ β0xij`εij , where εij
i.i.d.
„ Type 1 Extreme Value. The researcher observes

the choices yij but not the utilities y˚ij and would like to estimate the parameters β0 using maximum

likelihood. For Pij pβq ”
exppβxijq

ř

l exppβxilq
,

β̂n “ arg max
β

1

nJ

n
ÿ

i“1

J
ÿ

j“1

yij lnPij pβq

s.t.
1

n

n
ÿ

i“1

Pij pβq ď b̄j for all j “ 1...J

1.2 Notation

Consider a random sample Xn “ pX1, X2, ..., Xnq of independent draws from a probability mea-

sure P on a sample space X . Define the empirical measure Pn ” 1
n

řn
i“1 δXi , where δx is the

measure that assigns mass 1 at x and zero everywhere else. Denote the bootstrap empirical mea-

sure by P ˚n “ 1
n

řn
i“1WniδXi , which can refer to the multinomial, wild, or other exchangeable

bootstraps. An exchangeable bootstrap requires that Wn ” pWn1, . . . ,Wnnq is an exchange-

able vector of nonnegative weights which sum to 1. For the multinomial bootstrap, Wn is a

multinomial random vector (independent of the data) with probabilities p1{n, . . . , 1{nq. For the

wild bootstrap, P ˚n “
1
n

řn
i“1

`

ξi{ξ̄n
˘

δXi , where ξi are non-negative i.i.d. random variables (in-

dependent of the data) with finite third moments and ξ̄n “ 1
n

řn
i“1 ξi. Weak convergence is

defined in the sense of Kosorok (2007): Zn ù Z in the metric space pD, dq if and only if

supfPBL1
|E˚fpZnq ´ EfpZq| Ñ 0 where BL1 is the space of functions f : D ÞÑ R with Lips-

chitz norm bounded by 1. E˚fpZnq is the outer expectation of fpZnq, which is the infimum over

all EU where U is measurable, U ě fpZnq, and EU exists. Conditional weak convergence is
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also defined in the sense of Kosorok (2007): Zn
P

ù
W

Z in the metric space pD, dq if and only if

supfPBL1
|EWfpZnq ´EfpZq|

p
ÝÑ 0 and EWfpZnq

˚ ´EWfpZnq˚
p
ÝÑ 0 for all f P BL1, where BL1

is the space of functions f : D ÞÑ R with Lipschitz norm bounded by 1, EW denotes expectation

with respect to the bootstrap weights W conditional on the data, and fpZnq˚ and fpZnq˚ denote

measurable majorants and minorants with respect to the joint data (including the weights W). Let

X˚n “ o˚P p1q if P p|X
˚
n | ą ε|Xnq “ oP p1q for all ε ą 0. Also define M˚

n “ O˚P p1q (hence also OP p1q)

if limmÑ8 lim supnÑ8 P pP pM
˚
n ą m|Xnq ą εq Ñ 0 @ε ą 0.

2 Proximal Bootstrap

2.1 Proximal Bootstrap with non-estimated constraints

In this section, we consider constrained estimators with a finite number of non-estimated inequality

and/or equality constraints fj pβq that are twice continuously differentiable over a compact param-

eter space B Ă Rd, where d is fixed. The non-random constraint set C Ď B is a closed subset of

B and Q̂n pβq is a possibly non-smooth, nonconvex function that converges uniformly to a function

Q pβq that is twice continuously differentiable at β0, which is the true parameter on which we would

like to conduct inference. We assume that our constraints C are correctly specified so that we can

express β0 “ arg min
βPC

Q pβq, and we can estimate β0 using

β̂n “ arg min
βPC

Q̂n pβq , C “ tβ P B : fj pβq “ 0 for j P E , fj pβq ď 0 for j P Iu

where E contains the indices of the equality constraints and I those of the inequality constraints.

We will assume β0 is the unique argmin of Q pβq over C. We will show that the proximal bootstrap

can consistently estimate the distribution of
?
n
´

β̂n ´ β0

¯

both when β0 lies in the interior and on

the boundary of C, but not when it is drifting towards the boundary. Nevertheless, we will show in

Section 2.2 by applying test-inversion, we can form a uniformly asymptotically valid confidence set.

Next, we define the proximal bootstrap estimator. For any β̄n such that
?
n
`

β̄n ´ β0

˘

“ Opp1q,

let F̄nj ”
Bfjpβq
Bβ

ˇ

ˇ

ˇ

β“β̄n
and Ḡnj ”

B2fjpβq
BβBβ1

ˇ

ˇ

ˇ

β“β̄n
for all j, and let

 

λ̄nj for j P E Y I
(

be a set of optimal

Lagrange multipliers obtained from solving for β̄n. These Lagrange multipliers can be obtained

directly as outputs from the optimization algorithm used to compute β̄n. For any sequence αn such
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that αn Ñ 0 and
?
nαn Ñ8, define β̂˚n ” arg min

βPC˚
Â˚n pβq, where

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n
`

1

2

ÿ

jPEYI
λ̄nj

›

›β ´ β̄n
›

›

2

Ḡnj

C˚ “
 

β P B : fj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

“ 0 for j P E , fj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

ď 0 for j P I
(

(1)

Here, C˚ is a linearization of C around β̄n, where β̄n is an initial
?
n-consistent estimator of β0,

such as β̄n “ β̂n. The sequence αn ensures that β̄n’s asymptotic distribution does not enter into

the proximal bootstrap estimator’s asymptotic distribution. l̂n
`

β̄n
˘

is a consistent estimate of

l pβ0q ”
BQ0pβq
Bβ

ˇ

ˇ

ˇ

β“β0
using β̄n, and l̂˚n

`

β̄n
˘

is a bootstrap (e.g. multinomial, wild) analog of l̂n
`

β̄n
˘

.

If Q̂n pβq is differentiable, l̂n
`

β̄n
˘

can simply be the Jacobian of Q̂n pβq evaluated at β̄n. More

generally, to handle non-differentiable Q̂n pβq, l̂n
`

β̄n
˘

is a subgradient of Q̂n pβq at β̄n, meaning

that for any β, Q̂n pβq´ Q̂n
`

β̄n
˘

ě l̂n
`

β̄n
˘1 `

β ´ β̄n
˘

. H̄n is a consistent estimate of the population

Hessian H0 ”
B2Q0pβq
BβBβ1

ˇ

ˇ

ˇ

β“β0
constructed using β̄n.

We now discuss why we named the procedure the proximal bootstrap. Given a function r : D ÞÑ

R and a symmetric positive definite matrix H, the scaled proximal mapping of r is the operator

given by, for }β ´ z}2H “ pβ ´ zq
1

H pβ ´ zq,

proxH,r pzq “ arg min
βPD

"

r pβq `
1

2
}β ´ z}2H

*

for any z P D

We can equivalently express the proximal bootstrap estimator using a scaled proximal map as

β̂˚n “ proxB̄n,81p¨RC˚q

´

β̄n ´ αn
?
nB̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯¯

“ arg min
βPRd

"

81 pβ R C˚q ` αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

B̄n

*

where B̄n “ H̄n `
ř

jPEYI λ̄njḠnj and 81 pβ R C˚q evaluates to 8 if β does not lie in C˚ and

evaluates to 0 otherwise. Because C˚ is a closed, convex set, 81 pβ R C˚q will be a proper closed,

convex function. The intuition for the proximal bootstrap is that β̂˚n is the point inside C˚ that is

closest to, or "proximal" to, β̄n´αn
?
nB̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

. Note that the proximal bootstrap

estimator is the solution to a quadratic programming problem, which is a convex problem if B̄n is

positive definite. This quadratic programming problem can be substantially faster to solve than the
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original constrained problem used to compute β̂n. Therefore, our proximal bootstrap estimator has

a computational advantage over the standard bootstrap in cases where the standard bootstrap is

consistent.

2.1.1 Proximal Bootstrap in Andrews (2000) Example

Before we go into the technical details, we illustrate how to apply the proximal bootstrap to the

boundary constrained maximum likelihood estimator in Andrews (2000) (example 1):

β̂n “ arg min
βě0

#

Q̂n pβq “
1

2n

n
ÿ

i“1

pyi ´ βq
2

+

“ max pȳn, 0q

Andrews (2000) shows that the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

under pointwise asymp-

totics is given by

?
n
´

β̂n ´ β0

¯

ù

$

’

’

’

&

’

’

’

%

arg min
th:hě0u

 

h1W0 `
1
2h
1H0h

(

“ max
 

´H´1
0 W0, 0

(

, if β0 “ 0

arg min
th:hě´8u

 

h1W0 `
1
2h
1H0h

(

“ ´H´1
0 W0 , if β0 ą 0

Andrews (2000) shows that the asymptotic distribution of
?
n
´

β̂boot
n ´ β̂n

¯

, where β̂boot
n “ max pȳ˚n, 0q

is the standard nonparametric bootstrap estimator using the resampled sample mean ȳ˚n, will not

coincide with the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

when β0 “ 0. We now show that the

proximal bootstrap estimator will consistently estimate the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

both when β0 “ 0 and when β0 ą 0, but is not drifting towards 0. Even though the proximal boot-

strap is unable to consistently replicate the asymptotic distribution for drifting parameters, we are

still able to use test-inversion to construct a uniformly asymptotically valid confidence set, as will

be discussed in Section 2.2.

In this example, the sample objective is differentiable, so l̂n pβq is simply the sample Jacobian.

l pβ0q “ ´E ryi ´ β0s

l̂n pβ0q “ ´
1

n

n
ÿ

i“1

pyi ´ β0q ” ´ȳn ` β0

?
n
´

l̂n pβ0q ´ l pβ0q

¯

“ ´
?
n pPn ´ P q yi ù N p0, V ar pyiqq
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Our initial estimator is typically β̄n “ β̂n, but it can also be some other
?
n-consistent estimator

such as max
´

1
n{2

řn{2
i“1 yi, 0

¯

. One way to construct our proximal bootstrap estimator is by using

the multinomial bootstrap for the Jacobian:

l̂˚n
`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

`

y˚i ´ β̄n
˘

” ´ȳ˚n ` β̄n

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

“ ´pP ˚n ´ Pnq yi

where P ˚n “
1
n

řn
i“1WniδXi , andWn is a multinomial random vector (independent of the data) with

probabilities p1{n, . . . , 1{nq.

Alternatively, we can use the wild bootstrap to estimate the Jacobian:

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

“ ´
1

n

n
ÿ

i“1

ˆ

ξi
ξ̄n
´ 1

˙

`

yi ´ β̄n
˘

“ ´
1

n

n
ÿ

i“1

ˆ

ξi
ξ̄n
´ 1

˙

yi ` β̄n

˜

1
n

řn
i“1 ξi

ξ̄n
´ 1

¸

loooooooooooomoooooooooooon

0

“ ´pP ˚n ´ Pnq yi

where P ˚n “
1
n

řn
i“1

`

ξi{ξ̄n
˘

δXi , and ξi are non-negative i.i.d. random variables (independent of the

data) with finite third moments and ξ̄n “ 1
n

řn
i“1 ξi.

For both the multinomial and wild bootstrap,
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

P
ù
W

N p0, V ar pyiqq ” W0

and
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

P
ù
W

W0, and additionally,
?
n
´

l̂n pβ0q ´ l pβ0q

¯

ù W0. Thus we can

use existing bootstrap procedures to estimate the distribution of the Jacobian. To estimate the

distribution of the constrained estimator, we need to consider the fact that the constraint may be

binding. For this example, the proximal bootstrap estimator is a scaled Newton step from an initial
?
n-consistent estimator, subject to a non-negativity constraint. The sequence αn ensures that β̄n’s

asymptotic distribution does not enter into the asymptotic distribution of β̂˚n, which in this example

is given by

β̂˚n “ arg min
βě0

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

*
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“ arg min
βě0

"

αn
?
n pȳn ´ ȳ

˚
nq

`

β ´ β̄n
˘

`
1

2

`

β ´ β̄n
˘2
*

“ max
`

β̄n ` αn
?
n pȳ˚n ´ ȳnq , 0

˘

Note that since
?
nαn Ñ 8, β̂n´β0

αn

p
Ñ 0 and the asymptotic distribution of β̂˚n´β̂n

αn
is same as the

asymptotic distribution of β̂
˚
n´β0
αn

, which equals the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

under

pointwise asymptotics:

β̂˚n ´ β0

αn
“ arg min

!

h:
β0
αn
`hě0

)

#

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

“ arg min
!

h:hě´
β0
αn

)

"

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1

h`
1

2
h1H̄nh` o

˚
p p1q

*

P
ù
W

$

’

’

’

&

’

’

’

%

arg min
th:hě0u

 

h1W0 `
1
2h
1H0h

(

“ max
 

´H´1
0 W0, 0

(

, if β0 “ 0

arg min
th:hě´8u

 

h1W0 `
1
2h
1H0h

(

“ ´H´1
0 W0 , if β0 ą 0

where H0 “ 1 and W0 „ N p0, V ar pyiqq for this example. Note that αn Ñ 0 also serves a selection

device so that when the constraint β0 ě 0 is active, it enters into the asymptotic distribution,

but when it is inactive (and β0 is not drifting towards zero), it has no impact on the asymptotic

distribution.

If we didn’t have
?
nαn Ñ 8, then β0´β̄n

αn
ù Z will not be oP p1q and Z will enter into the

proximal bootstrap’s asymptotic distribution:

β̂˚n ´ β0

αn
“ arg min

!

h:
β0
αn
`hě0

)

#

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

P
ù
W

$

’

’

’

&

’

’

’

%

arg min
th:hě0u

 

h1W0 ` Z 1W0 `
1
2 ph` Zq1H0 ph` Zq

(

“ max
 

´H´1
0 W0 ´ Z, 0

(

, if β0 “ 0

arg min
th:hě´8u

 

h1W0 ` Z 1W0 `
1
2 ph` Zq1H0 ph` Zq

(

“ ´H´1
0 W0 ´ Z , if β0 ą 0

2.1.2 Assumptions

We now list some technical assumptions and discuss them afterwards.

11



Assumption 1. (i) B Ă Rd is compact, C Ď B is closed, and d is fixed.

(ii) β̂n satisfies Q̂n
´

β̂n

¯

ď inf
βPC

Q̂n pβq ` op p1q.

(iii) β0 is the unique value of arg min
βPC

Q pβq.

(iv) Q pβq is twice continuously differentiable at β0, and sup
βPB

ˇ

ˇ

ˇ
Q̂n pβq ´Q pβq

ˇ

ˇ

ˇ
“ oP p1q.

Assumption 2. (i) There exists a function g : X ÞÑ Rd indexed by a parameter β P Rd such that

for any β P Rd,
?
n
´

l̂n pβq ´ l pβq
¯

“
?
n pPn ´ P q g p¨, βq`oP p1q and

?
n
´

l̂˚n pβq ´ l̂n pβq
¯

“

?
n pP ˚n ´ Pnq g p¨, βq`o

˚
P p1q, where lim

nÑ8
P }g p¨, β0q }

21 p}g p¨, β0q } ą ε
?
nq “ 0 for each ε ą 0.

(ii) GR ” tg p¨, βq ´ g p¨, β0q : }β ´ β0} ď Ru is a Donsker class for some R ą 0 and P }g p¨, βq ´

g p¨, β0q }
2 Ñ 0 for β Ñ β0.

Assumption 3. lim
λÑ8

lim sup
nÑ8

sup
těλ

t2P

#

sup
gp¨,βqPGδn

›

›

›

›

gp¨,βq´gp¨,β0q
1`
?
n}β´β0}

›

›

›

›

ą t

+

“ 0 for any δn Ñ 0.

Assumption 4. Suppose Linear Independence Constraint Qualification (LICQ) holds at β0 : the

gradients of the active constraints F0j ”
Bfjpβq
Bβ

ˇ

ˇ

ˇ

β“β0
for j P EYI˚, where I˚ ” tj P I : fj pβ0q “ 0u,

are linearly independent.

Assumption 5. Suppose fj : B ÞÑ R for all j P EYI are twice continuously differentiable functions.

Let λ0j be the unique Lagrange multipliers that satisfy λ0jfj pβ0q “ 0 for all j P EYI , λ0j ě 0 for all

j P EYI, and ∇L pβ0, λ0q ” l pβ0q`
ř

jPEYI λ0jF0j “ 0, where L pβ0, λ0q ” Q pβq`
ř

jPEYI λ0jfj pβq

and F0j ”
Bfjpβq
Bβ

ˇ

ˇ

ˇ

β“β0
. Define L̃n pβq ” Q̂n pβq `

ř

jPEYI λ0jfj pβq, and G0j ”
B2fjpβq
BβBβ1

ˇ

ˇ

ˇ

β“β0
. Then

for any δn Ñ 0, and Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h
1
?
nl̂n pβ0q ´

1
2h
1H0h´

ř

jPEYI λ0j

´?
nF 10jh`

1
2h
1G0jh

¯

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Assumption 1 is a standard assumption for showing consistency of β̂n for β0. Assumption

2 allows us to apply Theorem 2.6 of Kosorok (2007) and show that
?
n
´

l̂n pβ0q ´ l pβ0q

¯

and

12



?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have the same asymptotic distribution. In the case of the wild bootstrap

P ˚n “
1
n

řn
i“1

`

ξi{ξ̄n
˘

δXi , we need to ensure that the weights ξi have mean equal to variance.

We use Assumption 3 to show bootstrap equicontinuity which will imply
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

and
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have the same asymptotic distribution. Assumption 2(ii) will imply

stochastic equicontinuity, which in combination with the envelope function integrability condition

in Assumption 3 will imply bootstrap equicontinuity (see Lemma 4.2 of Wellner and Zhan (1996)).

A sufficient condition for Assumption 3 is that sup
gp¨,βqPGδn

›

›

›

›

gp¨,βq´gp¨,β0q
1`
?
n}β´β0}

›

›

›

›

ď κ for some constant κ ą 0

and any δn Ñ 0.

For the Andrews (2000) example (example 1), Assumptions 2 and 3 are satisfied. Note that we

showed earlier that
?
n
´

l̂n pβq ´ l pβq
¯

“
?
n pPn ´ P q g p¨, βq ` oP p1q and

?
n
´

l̂˚n pβq ´ l̂n pβq
¯

“

?
n pP ˚n ´ Pnq g p¨, βq ` o˚P p1q, where g p¨, βq “ ´ pyi ´ βq. Since g p¨, βq ´ g p¨, β0q “ ´ pyi ´ βq `

pyi ´ β0q “ β ´ β0, GR ” tg p¨, βq ´ g p¨, β0q : |β ´ β0| ď Ru for any R ą 0 is a fixed function

class and therefore also a Donsker class, and P |g p¨, βq ´ g p¨, β0q|
2
Ñ 0 as β Ñ β0. Additionally,

sup
gp¨,βqPGδn

ˇ

ˇ

ˇ

gp¨,βq´gp¨,β0q
1`
?
n|β´β0|

ˇ

ˇ

ˇ
ď 1 so Assumption 3 is satisfied. In the Appendix, we verify that Assumptions

2 and 3 are satisfied for examples 2 and 3.

Assumption 4 imposes that the constraints satisfy Linear Independence Constraint Qualification

(LICQ), which says that the gradients of the active constraints are linearly independent. LICQ is the

weakest possible constraint qualification that ensures the set of optimal Lagrange multipliers that

satisfy the first order Karush-Kuhn-Tucker (KKT) conditions is a singleton (Wachsmuth (2013)).

We note that LICQ will be violated when some active constraint gradients are linear combinations

of other active constraint gradients. In particular, LICQ will be violated when some of the active

constraint gradients are zero. Examples of when LICQ is violated appear in e.g. Kaido et al. (2021)

and Nocedal and Wright (2006). It is fine to relax LICQ to Mangasarian-Fromovitz constraint

qualification (MFCQ) as long as we impose the additional condition that there are unique optimal

Lagrange multipliers. MFCQ is weaker than LICQ because it does not require the gradients of the

equality constraints to be linearly independent. Both MFCQ and LICQ are clearly satisfied for

our examples 1-2 because there can be at most one constraint active at β0. For example 3, MFCQ

and LICQ will be satisfied if the constraint gradients corresponding to the active constraints at β0

(those j for which 1
n

řn
i“1 Pij pβ0q “ b̄j) are linearly independent.
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Assumption 5 requires that the sample Lagrangian evaluated at the population Lagrange mul-

tipliers has a uniform local quadratic approximation in
?
n neighborhoods of β0. This assumption

is similar to the stochastic differentiability assumption in Pollard (1985) and is needed to derive

the asymptotic distribution of
?
n
´

β̂n ´ β0

¯

. The importance of using the Lagrangian instead of

the objective function is that it allows for β0 to not be a solution of the unconstrained population

optimization problem; in other words, we allow for the possibility that l pβ0q ‰ 0. Note that since

the derivative of the population Lagrangian satisfies ∇L pβ0, λ0q ” l pβ0q `
ř

jPEYI λ0jF0j “ 0

by the KKT conditions, Assumption 5 can also be written as follows: for any δn Ñ 0, and

Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h
1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

´ 1
2h
1H0h´

1
2

ř

jPEYI λ0jh
1G0jh

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

When l pβ0q “ 0 and LICQ is satisfied, λ0j “ 0 for all j P E Y I. A more in-depth discussion of why

λ0j “ 0 appears in Remark 1. Assumption 5 can then be rewritten as follows: for any δn Ñ 0,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nQ̂n

´

β0 `
h?
n

¯

´ nQ̂n pβ0q ´ h
1
?
nl̂n pβ0q ´

1
2h
1H0h

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Assumption 5 is satisfied in Example 1 because the objective Q̂n pβq “ 1
2n

řn
i“1 pyi ´ βq

2 is quadratic

and the constraint β ě 0 is linear. In particular, nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q “ nQ̂n

´

β0 `
h?
n

¯

´

nQ̂n pβ0q ´ λ0
?
nh “ h1

?
nl̂n pβ0q `

1
2h
1H0h ` λ0

?
nh “ h1

?
n
´

l̂n pβ0q ´ l pβ0q

¯

` 1
2h
1H0h, where

we have used the KKT condition l pβ0q ´ λ0 “ 0. To check that Assumption 5 is satisfied in Ex-

ample 2, we can use Proposition 1 of Chernozhukov and Hong (2003) who show that the uniform

local quadratic approximation of the objective in a neighborhood of β0 follows from compact-

ness of the parameter space, continuity of the population Jacobian and Hessian, and the moments

tπ p¨, βq : }β ´ β0} ď Ru being a Donsker class for any R ą 0. The constraint β ě 0 is linear and

can be dealt with using the same KKT condition l pβ0q ´ λ0 “ 0 as in Example 1. For Example 3,

we can use Lemma 2 of Chernozhukov and Hong (2003) which says that the uniform local quadratic

approximation of the objective in a neighborhood of β0 will hold when Q̂n pβq is twice continuously

differentiable with a second derivative matrix that is uniformly consistent for the population hessian
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H0 in a neighborhood of β0. The constraints in this example are estimated, and we will require

the second derivatives of the estimated sample constraints to be uniformly consistent for the second

derivatives of the population constraints.

In the following theorem, we show that when the inequality constraints fj pβ0q for j P I are not

drifting towards zero and when there are no strongly active constraints, the proximal bootstrap is

able to consistently replicate the non-standard asymptotic distribution of constrained estimators for

which the standard bootstrap is inconsistent. We denote β̄n as the initial
?
n-consistent estimator

for β0, Ḡnj ”
B2fjpβq
BβBβ1

ˇ

ˇ

ˇ

β“β̄n
for all j, and

 

λ̄nj for j P E Y I
(

are a set of optimal Lagrange multipliers

obtained from the optimization problem used to compute β̄n.

Theorem 1. Suppose Assumptions 1 - 5 are satisfied in addition to the following:

(i) ∇2L pβ0, λ0q ” H0 `
ř

jPEYI λ0jG0j is positive definite on M pλ0q “

!

h : F 10jh “ 0, j P E
)

.

(ii) H̄n
p
Ñ H0, max

jPEYI

ˇ

ˇḠnj ´G0j

ˇ

ˇ

p
Ñ 0, and max

jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0.

(iii) I˚` pλ0q ” tj P I˚ : λ0j ą 0u “ ∅, where I˚ ” tj P I : fj pβ0q “ 0u.

Suppose fj pβ0q for j P I is fixed ( not changing with the sample size n ). For any sequence αn such

that αn Ñ 0 and
?
nαn Ñ8, let β̂˚n ” arg min

βPC˚
Â˚n pβq, where Â˚n pβq and C˚ are defined in equation

1. Then,
?
n
´

β̂n ´ β0

¯

ù J and β̂˚n´β̂n
αn

P
ù
W

J , where

J “ arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh

+

Σ “
 

h : F 10jh “ 0 for j P E , F 10jh ď 0 for j P I˚
(

W0 „ N
`

0, P pg p¨, β0q ´ Pg p¨, β0qq pg p¨, β0q ´ Pg p¨, β0qq
1
˘

.

In condition (i), we do not require the Lagrangian’s hessian ∇2L pβ0, λ0q to be positive def-

inite on Rd because β0 is typically a saddle-point of L pβ0, λ0q. Condition (ii) says that the

sample analogs of the hessians and Lagrange multipliers are consistent for their population lim-

its. Condition (iii) rules out the strongly active inequality constraints at β0 because the prox-

imal bootstrap cannot distinguish between strongly versus weakly active inequality constraints
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(weakly active inequality constraints are those j P I˚ such that λ0j “ 0). If both strong and

weakly active inequality constraints are present, then the constraint set in J should be Σ “
!

h : F 10jh “ 0 for j P E Y I˚` pλ0q , F
1
0jh ď 0 for j P I˚0 pλ0q

)

. The rate conditions on αn will ensure

that the nonactive inequality constraints will not be included in Σ; however, among the active in-

equality constraints, the proximal bootstrap is not able to determine which of them have positive

Lagrange multipliers and turn them into equality constraints inside Σ. We think that ruling out

strongly active inequality constraints at β0 is a plausible assumption because we are effectively rul-

ing out misspecified inequality constraints. In Example 1, the constraint β ě 0 will be misspecified

at β0 if E ryis ă 0 and we are interested in conducting inference on β0 “ arg min
βě0

E
”

pyi ´ βq
2
ı

.

The proximal bootstrap cannot handle this misspecified inequality constraint because λ0 is posi-

tive. Notice that the proximal bootstrap can allow for all types of equality constraints, including

misspecified ones, because all of them remain as equality constraints inside Σ.

Remark 1. If l pβ0q “ 0, meaning that the population unconstrained minimum is the same as the

constrained minimum, then J reduces down to

J “ arg min
hPΣ

"

h1W0 `
1

2
h1H0h

*

Σ “
 

h : F 10jh “ 0 for j P E , F 10jh ď 0 for j P I˚
(

This is because by the KKT conditions, λ0j satisfies l pβ0q`
ř

jPEYI λ0jF0j “ 0, so if l pβ0q “ 0, then
ř

jPEYI λ0jF0j “ 0. By LICQ, the active constraint gradients F0j for j P E Y I˚ are all nonzero,

and furthermore, the optimal Lagrange multipliers for the nonactive inequality constraints j P IzI˚

are zero by the complementary slackness conditions λ0jfj pβ0q “ 0 for all j P E Y I. Therefore,

λ0j “ 0 for all j P E Y I is a solution to
ř

jPEYI λ0jF0j “ 0. Since the set of Lagrange multipliers

that satisfy the KKT conditions is a singleton under LICQ, λ0j “ 0 for all j P E Y I are the unique

optimal Lagrange multipliers, which implies
ř

jPEYI λ0jh
1G0jh “ 0.

In this case, we can redefine the proximal bootstrap estimator as β̂˚n ” arg min
βPC˚

Ẑ˚n pβq, where

Ẑ˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n
(2)
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From results in Shapiro (1988) and Shapiro (1989), when l pβ0q “ 0 and LICQ is satisfied, the

Tangent cone TC pβ0q ” lim sup
τÓ0

C´β0
τ is equal to Σ “

!

h : F 10jh “ 0 for j P E , F 10jh ď 0 for j P I˚
)

,

so J can be written as arg min
hPTCpβ0q

 

h1W0 `
1
2h
1H0h

(

, which coincides with the asymptotic distribution

given in Geyer (1994). Additionally, LICQ implies C is Chernoff Regular at β0, and this cone K

will be the Tangent cone TC pβ0q. The constraint set C is Chernoff Regular at β0 if C is well-

approximated by a cone K at β0, meaning that inf
wPK

}pβ ´ β0q ´ w} “ o p}β ´ β0}q for all β P C,

and inf
βPC

}pβ ´ β0q ´ w} “ o p}w}q for all w P K (see Theorem 2.1 of Geyer (1994) for more details).

Remark 2. If there are only equality constraints, then the asymptotic distribution becomes J “

arg min
hPΣ

!

h1W0 `
1
2h
1
´

H0 `
ř

jPE λ0jG0j

¯

h
)

for Σ “
!

h : F 10jh “ 0 for j P E
)

. Using standard ar-

guments in Amemiya (1985) Section 1.4.1 or Newey and McFadden (1994) Section 9.1, J “

´B´1
0

´

I ´ F0

`

F 10B
´1
0 F0

˘´1
F 10B

´1
0

¯

W0, where B0 “ H0 `
ř

jPE λ0jG0j . If W0 is multivariate

normal, then the asymptotic distribution will be multivariate normal.

If l pβ0q “ 0 or if the constraints are linear, then
ř

jPE λ0jG0j “ 0 and B0 “ H0, so J “

´H´1
0

´

I ´ F0

`

F 10H
´1
0 F0

˘´1
F 10H

´1
0

¯

W0.

2.2 Uniformity

In the case of drifting inequality constraints fj pβ0q “ c{nρ for some ρ ą 0 and c ă 0, the

proximal bootstrap will typically not consistently replicate the estimator’s asymptotic distribu-

tion; however we can still obtain a uniformly asymptotically valid confidence set for β0 using test-

inversion. Throughout this section, we will assume the constraints are not necessary for iden-

tification of β0, meaning l pβ0q “ 0. We will benchmark the distribution of the test statistic

n

ˆ

Q̂n pβ0q ´ inf
hPBδn

Q̂n

´

β0 `
h?
n

¯

˙

against the empirical distribution of ´
inf
βPB

Ẑ˚n pβq

α2
n

, where Ẑ˚n pβq “

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
, Bδn “

!

h P Rd : }h}?
n
ď δn

)

is a shrinking neigh-

borhood, and δn Ñ 0 satisfies
?
nδn Ñ κ for κ P p0,8s. Let ĉ˚1´α be the 1´α quantile of ´

inf
βPB

Ẑ˚n pβq

α2
n

.

We will show that C˚1´α “
"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

is a uniformly asymptot-

ically valid nominal 1´ α confidence set for β0 ” β pP q.

In the theorem below, Jn p¨, P q denotes the CDF of n
ˆ

Q̂n pβ0q ´ inf
hPBδn

Q̂n

´

β0 `
h?
n

¯

˙

under P ,

and J p¨, P q denotes the CDF of its limiting distribution under P . Similarly, J˚αn p¨, P q denotes the
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conditional CDF of ´
inf
βPB

Ẑ˚n pβq

α2
n

under P , and J˚ p¨, P q denotes the CDF of its limiting distribution

under P .

Theorem 2. Let P be a class of distributions for which l pβ0q “ 0, Assumptions 1 - 5 hold uniformly

in P P P and condition (ii) of Theorem 1 is satisfied uniformly in P P P, and tJ p¨, P q : P P Pu and

tJ˚ p¨, P q : P P Pu are equicontinuous at J´1
n p1´ α, P q. Then lim inf

nÑ8
inf
PPP

P
`

β0 P C˚1´α
˘

ě 1 ´ α,

where C˚1´α “
"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

, Bδn “
!

h P Rd : }h}?
n
ď δn

)

, δn Ñ 0

satisfies
?
nδn Ñ κ for κ P p0,8s, and ĉ˚1´α is the 1´α quantile of ´

inf
βPB

Ẑ˚n pβq

α2
n

for any αn satisfying

αn Ñ 0 and
?
nαn Ñ8.

Remark 3. If we would like to construct a nominal 1´α confidence set for a subvector γ0 “ a1β0,

where a is a known vector, we could use projection: CIProj1´α “

«

inf
βPC˚1´α

a1β, sup
βPC˚1´α

a1β

ff

. The uniform

asymptotic validity of these projection intervals follows directly from the uniform asymptotic validity

of C˚1´α.

Andrews (2000) Example Revisited Suppose in the Andrews (2000) example the parameter

is drifting at some τn rate: β0 “ c{τn for some constant c ą 0. When c ą 0, l pβ0q “ 0 and

the inequality constraint β ą 0 is weakly active in the limit as τn Ñ 8. To conduct uniformly

valid inference, we can use C˚1´α “
"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

, where ĉ˚1´α is

the 1 ´ α quantile of ´
inf
βPB

Ẑ˚n pβq

α2
n

, and Ẑ˚n pβq “ αn
?
n pȳn ´ ȳ

˚
nq

`

β ´ β̄n
˘

` 1
2

`

β ´ β̄n
˘2. We can

show that n
ˆ

Q̂n pβ0q ´ inf
hPBδn

Q̂n

´

β0 `
h?
n

¯

˙

ù ´ inf
hPBκ

q phq, where Bκ “
 

h P Rd : }h} ď κ
(

for

?
nδn Ñ κ P p0,8s, and ´

inf
βPB

Ẑ˚n pβq

α2
n

P
ù
W
´min
hPRd

q phq, where q phq “ h1W0 `
1
2h
1H0h, H0 “ 1 and

W0 „ N p0, V ar pyiqq.

2.3 Choice of αn

In order to determine the optimal value of αn, one possibility is to use a double bootstrap algorithm

similar to the one in Chakraborty et al. (2013). Starting from the smallest value in a grid of αn,

draw B1 bootstrap samples and compute initial
?
n-consistent estimates β̄pb1qn for b1 “ 1, . . . , B1.

To obtain these initial
?
n-consistent estimates, we could use the proximal bootstrap or other
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consistent procedures such as subsampling, but we cannot use the standard bootstrap which can

be inconsistent when parameters are not in the interior. We can use these β̄pb1qn to estimate the

Jacobians l̂pb1qn

´

β̄
pb1q
n

¯

and Hessians H̄pb1qn and Ḡ
pb1q
nj and all j P E Y I. Conditional on each of

these bootstrap samples b1 “ 1, . . . , B1, draw B2 bootstrap samples and compute l̂pb2qn

´

β̄
pb1q
n

¯

´

l̂
pb1q
n

´

β̄
pb1q
n

¯

for b2 “ 1, . . . , B2. Pick some nominal frequency 1´τ . Compute the empirical frequency

with which Ĉpb1q1´α “

"

β : n

ˆ

Q̂
pb1q
n pβq ´ inf

hPBδn
Q̂
pb1q
n

´

β ` h?
n

¯

˙

ď ĉ˚1´τ

*

covers β̂n, where ĉ˚1´τ is the

1´ τ quantile of ´
inf
βPB

Â
pb1,b2q
n pβq

α2
n

and

Ẑpb1,b2qn pβq ” αn
?
n
´

l̂pb2qn

´

β̄pb1qn

¯

´ l̂pb1qn

´

β̄pb1qn

¯¯1 ´

β ´ β̄pb1qn

¯

`
1

2

›

›

›
β ´ β̄pb1qn

›

›

›

2

H̄
pb1q
n

(3)

If the current value of αn achieves coverage at or above 1´τ , then it picks that value as the optimal

αn. Otherwise, increment αn to the next highest value in the grid and repeat the steps above.

The justification for why this procedure works is similar to the arguments in Hall and Martin

(1988) for using bootstrap iteration to reduce coverage error for confidence intervals. We are trying

to estimate the coverage frequency of C˚1´α by constructing confidence sets Ĉpb1q1´α using the resampled

data. We need B1 and B2 to be large enough so that we can estimate the coverage frequency well

enough.

2.4 Estimated Constraints

We can also apply the proximal bootstrap to constrained estimators with a finite number of
?
n-

consistently estimated inequality and/or equality constraints that are twice continuously differen-

tiable over a compact parameter space B Ă Rd.

β̂n “ arg min
βPC

Q̂n pβq , C “ tβ P B : fnj pβq “ 0 for j P E , fnj pβq ď 0 for j P Iu

We will define the population analog of C Ď B to be C0 ” tβ P B : f0j pβq “ 0 for j P E , f0j pβq ď 0 for j P Iu,

where sup
βPB

|fnj pβq ´ f0j pβq| “ oP p1q for all j P E Y I. We are interested in conducting inference on

β0 ” arg min
βPC0

Q pβq, which is assumed to be unique. Q pβq is twice continuously differentiable at β0

and sup
βPB

ˇ

ˇ

ˇ
Q̂n pβq ´Q pβq

ˇ

ˇ

ˇ
“ oP p1q.
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Let f˚nj pβq be the bootstrap analog of fnj pβq and let F ˚nj pβq ”
Bf˚njpβq

Bβ . For any β̄n such that
?
n
`

β̄n ´ β0

˘

“ Opp1q, let F̄nj ” Fnj
`

β̄n
˘

, F̄ ˚nj ” F ˚nj
`

β̄n
˘

, Ḡnj ”
B2fnjpβq
BβBβ1

ˇ

ˇ

ˇ

β“β̄n
for all j, and let

λ̄nj be a set of optimal Lagrange multipliers for β̄n. These Lagrange multipliers can be obtained

directly as outputs from the optimization algorithm’s function call for computing β̄n. We modify

our proximal bootstrap to account for the sampling variation in the constraint Jacobians:

Â˚n pβq ” αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β ´ β̄n
˘

`
1

2

›

›β ´ β̄n
›

›

2

Ḡnj

˙

C˚ ”
 

β P B : fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E ,

fnj
`

β̄n
˘

` F̄ 1nj
`

β ´ β̄n
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

(4)

We will modify Assumption 1 to account for the difference between the sample versus the population

constraints.

Assumption 11. (i) B Ă Rd is compact, C Ď B is closed, and d is fixed.

(ii) β̂n satisfies Q̂n
´

β̂n

¯

ď inf
βPC

Q̂n pβq ` op p1q.

(iii) β0 is the unique value of arg min
βPC0

Q pβq.

(iv) Q pβq is twice continuously differentiable at β0, and sup
βPB

ˇ

ˇ

ˇ
Q̂n pβq ´Q pβq

ˇ

ˇ

ˇ
“ oP p1q.

(v) fnj : B ÞÑ R and f0j : B ÞÑ R are twice continuously differentiable functions that satisfy

sup
βPB

|fnj pβq ´ f0j pβq| “ oP p1q for all j P E Y I.

We also modify Assumption 5 to account for estimated constraints.

Assumption 51. Let λ0j be the unique Lagrange multipliers that satisfy λ0jf0j pβ0q “ 0 for all

j P E Y I , 0 ď λ0j ă 8 for all j P E Y I, and ∇L pβ0, λ0q ” l pβ0q `
ř

jPEYI λ0jF0j “ 0. Define

L̃n pβq ” Q̂n pβq `
ř

jPEYI λ0jfnj pβq, Fnj pβ0q ”
Bfnjpβq
Bβ

ˇ

ˇ

ˇ

β“β0
, and G0j ”

B2f0jpβq
BβBβ1

ˇ

ˇ

ˇ

β“β0
. For any
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δn Ñ 0, and Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h
1
?
nl̂n pβ0q ´

1
2h
1H0h´

ř

jPEYI λ0j

`?
nFnj pβ0q

1 h` 1
2h
1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Note that since ∇L pβ0, λ0q ” l pβ0q `
ř

jPEYI λ0jF0j “ 0, Assumption 51 can also be written as

follows: for any δn Ñ 0, and Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h1
?
n
´

l̂n pβ0q ´ l pβ0q
¯

´ 1
2
h1H0h´

ř

jPEYI λ0j
`?
n pFnj pβ0q ´ F0jq

1 h` 1
2
h1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Assumption 51 will hold in Example 3 if uniform local quadratic expansions exist for Q̂n pβq and

the constraints fnj pβq “ 1
n

řn
i“1 Pij pβq ´ b̄j . Since both Q̂n pβq and fnj pβq are twice continuously

differentiable, the uniform local quadratic expansions will hold if the second derivative matrices of

Q̂n pβq and fnj pβq are uniformly consistent for the population hessians H0 and G0j when β lies in

a neighborhood of β0.

We next impose that the bootstrapped constraint Jacobians converge weakly in probability to

the same limiting distribution as the unbootstrapped constraint Jacobians.

Assumption 6. (i)
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0`

ř

jPEYI λ0jV0j,

a tight random vector.

(ii)
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W

W0 `
ř

jPEYI λ0jV0j.

(iii) sup
}β´β0}ďop1q

?
n pF ˚n pβq ´ Fn pβq ´ F

˚
n pβ0q ` Fn pβ0qq “ o˚P p1q.

A sufficient condition for
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0`

ř

jPEYI λ0jV0j

is

¨

˚

˝

?
n
´

l̂n pβ0q ´ l pβ0q

¯

?
n pFn pβ0q ´ F0q

˛

‹

‚

ù

¨

˚

˝

W0

V0

˛

‹

‚

, where F0 “ pF0j for j P E Y Iq and V0 “ pV0j for j P E Y Iq.

Similarly, a sufficient condition for
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W
W0`

ř

jPEYI λ0jV0j is

¨

˚

˝

?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

?
n pF ˚n pβ0q ´ Fn pβ0qq

˛

‹

‚

P
ù
W

¨

˚

˝

W0

V0

˛

‹

‚

. When Fn pβq “ Pnπp¨, βq and F ˚n pβq “
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P ˚nπp¨, βq are sample averages, these joint weak convergence statements can be verified under a joint

Lindeberg condition.

In the next theorem, we show that when the population inequality constraints f0j pβ0q for j P I

are not drifting towards zero, the proximal bootstrap is able to consistently replicate the non-

standard asymptotic distribution of constrained estimators for which the standard bootstrap is

inconsistent.

Theorem 3. Suppose Assumptions 11, 2 - 4, 51, and 6 are satisfied in addition to the following:

(i) ∇2L pβ0, λ0q ” H0 `
ř

jPEYI λ0jG0j is positive definite on M pλ0q “

!

h : F 10jh “ 0, j P E
)

.

(ii) H̄n
p
Ñ H0, max

jPEYI

ˇ

ˇḠnj ´G0j

ˇ

ˇ

p
Ñ 0, and max

jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0.

(iii) I˚n,` pλ0q ” tj P I˚n : λ0j ą 0u “ ∅, where I˚n ” tj P I : fnj pβ0q “ 0u, and

I˚` pλ0q ” tj P I˚ : λ0j ą 0u “ ∅, where I˚ ” tj P I : f0j pβ0q “ 0u.

Suppose f0j pβ0q for j P I is fixed ( not changing with n ). Then, for any sequence αn such that

αn Ñ 0 and
?
nαn Ñ8,

?
n
´

β̂n ´ β0

¯

ù J and β̂˚n´β̂n
αn

P
ù
W

J ,

J “ arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

+

Σ “
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

(

Note that uniformity results in Theorem 2 still hold in the case of estimated constraints, as long

as l pβ0q “ 0.

3 Monte Carlo Simulations

3.1 Two-sided Boundary Constraint

We consider a simple location model with i.i.d data:

yi “ β0 ` εi , εi
i.i.d.
„ N p0, 1q
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We would like to compute the maximum likelihood estimator subject to the constraint that the

parameter lies between 0 and x̄n “ 1
n

řn
i“1 xi, where xi

i.i.d.
„ N p5, 1q and xi K yi.

β̂n “ arg min
0ďβďx̄n

1

2n

n
ÿ

i“1

pyi ´ βq
2

Note that we can express our estimator as a function of ȳn, treating x̄n as given.

β̂n “ max pmin pȳn, x̄nq , 0q ” φ pȳnq

We will examine the empirical coverage and average interval length of the proximal boot-

strap confidence set C˚1´α “

"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

, where ĉ˚1´α is the

1 ´ α quantile of ´
inf
βPB

Ẑ˚n pβq

α2
n

and Ẑ˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
,

for β̄n “ β̂n, l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

“ ȳn ´ ȳ˚n and H̄n “ 1. The true parameter β0 takes on 7 dif-

ferent values: β0 P
 

1, n´1{6, n´1{4, n´1{3, n´1{2, n´1, 0
(

. We consider four different sample sizes

n P t100, 500, 1000, 5000u and use 1000 bootstrap iterations and 2000 Monte Carlo simulations. We

chose αn “ n´1{4 after performing the double bootstrap procedure described in Section 2.3 using

n “ 5000, B1 “ B2 “ 5000, and β0 “ 0. The empirical coverage frequencies over a grid of αn P
 

n´1{3, n´1{4, n´1{6, n´1{7, n´1{8, n´1{9, n´1{10
(

were t0.9496, 0.9538, 0.9460, 0.9536, 0.9508, 0.9526, 0.9496u.

αn “ n´1{4 was the smallest value which achieved coverage at or above the nominal level of 0.95.

We also tried using all the other values of αn and found that the coverage was the same up to

three decimal places across the different values of αn. We did not constrain h when computing

inf
hPBδn

Q̂n

´

β ` h?
n

¯

, which effectively sets δn to
?
nδn Ñ8.

We will compare the empirical coverage frequency of the proximal bootstrap to alternative meth-

ods. Fang and Santos (2019)’s equal-tailed two-sided interval is
”

φ pȳq ´ 1?
n
ĉ1´α{2, φ pȳnq ´

1?
n
ĉα{2

ı

,

where ĉα is the αth quantile of φ̂1 p
?
n pȳ˚n ´ ȳnqq, ȳ˚n is the nonparametric bootstrap analog of ȳn,
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and

φ̂1 phq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

h if κn ă
?
nȳn{σ̂ and

?
n pȳn ´ x̄nq {σ̂ ă ´κn

max ph, 0q if |
?
nȳn{σ̂| ď κn

min ph, x̄nq if |
?
n pȳn ´ x̄nq {σ̂| ď κn

0 if
?
nȳn{σ̂ ă ´κn or

?
n pȳn ´ x̄nq {σ̂ ą κn

We use Fang and Santos (2019)’s recommended choice of κn “ Φ´1 p1´ δnq for some δn Ó 0

(see their Example 2.1 on page 391-392). We tried three different types of confidence intervals

(two-sided equal-tailed, one-sided lower, and one-sided upper) and four different values of δn P
 

n´1, n´1{2, n´1{3, n´1{6
(

, and none of them produced uniformly valid coverage for all drifting

parameter sequences.

Hsieh et al. (2022) propose using

CSPDn p1´ αq “

"

β : min
λ,sě0,λ1β“0,λ2s“0

ng py, β, λ1, λ2, sq
1
´

GV̂ G1
¯´1

g py, β, λ1, λ2, sq ď χ2
2 p1´ αq

*

g py, β, λ1, λ2q “

»

—

–

´ 1
n

řn
i“1 pyi ´ βq ´ λ1 ` λ2

x̄n ´ β ´ s

fi

ffi

fl

“

»

—

–

´1 0

0 1

fi

ffi

fl

»

—

–

ȳn

x̄n

fi

ffi

fl

`

»

—

–

β ´ λ1 ` λ2

´β ´ s

fi

ffi

fl

G “

»

—

–

´1 0

0 1

fi

ffi

fl

V̂ “

»

—

–

yV ar pyq 0

0 yV ar pxq

fi

ffi

fl

“

»

—

–

1
n´1

řn
i“1 pyi ´ ȳnq

2 0

0 1
n´1

řn
i“1 pxi ´ x̄nq

2

fi

ffi

fl

Table 1 compares the empirical coverage frequencies and average interval lengths (in parentheses)

of the proximal bootstrap simultaneous confidence set to Hsieh et al. (2022)’s confidence set, Fang

and Santos (2019)’s equal-tailed two-sided intervals, subsampling (using t
?
nu as the subsample

size) and standard nonparametric bootstrap two-sided equal-tailed confidence intervals. For n large

enough, the proximal bootstrap coverage frequencies are close to 95% for all drifting parameters.

Hsieh et al. (2022)’s coverage is more conservative than the proximal bootstrap for all parameters,

and the average interval lengths for Hsieh et al. (2022) are longer. The coverage of Fang and Santos
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(2019), subsampling, and the standard nonparametric bootstrap can be far below 95%, especially

for β0 “ 1{n where the coverage drops to around 50%.

3.2 Boundary Constrained Nonsmooth GMM

We consider a simple location model with i.i.d data:

yi “ β0 ` εi, εi „ Np0, 1q

For π p¨, βq “ r1 pyi ď βq ´ τ, yi ´ βs
1, let the population and sample moments be

π pβq “ rP pyi ď βq ´ 0.5, Eyi ´ βs
1 , π̂n pβq “

«

1

n

n
ÿ

i“1

1 pyi ď βq ´ 0.5,
1

n

n
ÿ

i“1

yi ´ β

ff1

Our GMM estimator has a non-negativity constraint:

β̂n “ arg min
βě0

"

Q̂n pβq “
1

2
π̂n pβq

1 π̂n pβq

*

We will examine the empirical coverage and average interval length of the proximal bootstrap

confidence set C˚1´α “
"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

, where ĉ˚1´α is the 1 ´ α

quantile of ´
inf
βPB

Ẑ˚n pβq

α2
n

and Ẑ˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
, for H̄n “

Ĝ1nĜn ` L̂
1
nπ̂n

`

β̄n
˘

, l̂n
`

β̄n
˘

“ Ĝ1nπ̂n
`

β̄n
˘

, l̂˚n
`

β̄n
˘

“ Ĝ˚
1

n π̂
˚
n

`

β̄n
˘

, and

Ĝn “

»

—

–

1
nh

řn
i“1Kh

´

yi ´ β̂n

¯

´1

fi

ffi

fl

, Ĝ˚n “

»

—

–

1
nh

řn
i“1Kh

´

y˚i ´ β̂n

¯

´1

fi

ffi

fl

, L̂n “

»

—

–

1
nh2

řn
i“1K

1
h

´

yi ´ β̂n

¯

0

fi

ffi

fl

,

Kh pxq “ K px{hq,K pxq “ p2πq´1{2 expp´x2{2q,K 1
h pxq “ K 1 px{hq andK 1 pxq “ ´ p2πq´1{2 x expp´x2{2q.

We use the Silverman’s rule of thumb bandwidth h “ 1.06n´1{5.

We consider possibly drifting sequences of parameters β0 P
 

0, n´1, n´1{2, n´1{3, n´1{4, n´1{6, 2
(

.

We consider four different sample sizes n P t100, 500, 1000, 5000u and we use 1000 bootstrap iter-

ations and 2000 Monte Carlo simulations. Table 2 shows the empirical coverage frequencies and

average interval lengths (in parentheses) of nominal 95% confidence intervals constructed using

the proximal bootstrap, subsampling, and the standard nonparametric bootstrap. To the best of
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Table 1: Empirical Coverage Frequencies and Average Interval Lengths

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 1
n “ 100

Proximal Bootstrap 0.944 0.944 0.947 0.940 0.950 0.951 0.943
p0.379q p0.380q p0.379q p0.379q p0.377q p0.380q p0.379q

Hsieh et al. (2022) 0.993 0.984 0.983 0.985 0.989 0.980 0.981
p0.478q p0.478q p0.478q p0.479q p0.477q p0.478q p0.479q

Fang and Santos (2019) 0.975 0.470 0.586 0.953 0.954 0.939 0.952
p0.028q p0.028q p0.043q p0.055q p0.055q p0.055q p0.055q

Subsampling 0.980 0.620 0.534 0.663 0.777 0.944 0.947
p0.028q p0.028q p0.029q p0.035q p0.042q p0.055q p0.055q

Nonparametric Bootstrap 0.972 0.609 0.679 0.948 0.946 0.955 0.953
p0.028q p0.027q p0.041q p0.055q p0.055q p0.055q p0.055q

n “ 500
Proximal Bootstrap 0.952 0.941 0.949 0.957 0.945 0.960 0.952

p0.165q p0.165q p0.165q p0.165q p0.165q p0.165q p0.165q
Hsieh et al. (2022) 0.990 0.987 0.987 0.984 0.990 0.985 0.987

p0.209q p0.209q p0.209q p0.209q p0.209q p0.209q p0.209q
Fang and Santos (2019) 0.975 0.470 0.586 0.953 0.954 0.939 0.952

p0.028q p0.028q p0.043q p0.055q p0.055q p0.055q p0.055q
Subsampling 0.980 0.620 0.534 0.663 0.777 0.944 0.947

p0.028q p0.028q p0.029q p0.035q p0.042q p0.055q p0.055q
Nonparametric Bootstrap 0.972 0.609 0.679 0.948 0.946 0.955 0.953

p0.028q p0.027q p0.041q p0.055q p0.055q p0.055q p0.055q
n “ 1000

Proximal Bootstrap 0.954 0.946 0.947 0.953 0.953 0.945 0.950
p0.114q p0.114q p0.114q p0.114q p0.114q p0.114q p0.114q

Hsieh et al. (2022) 0.994 0.988 0.983 0.984 0.987 0.989 0.989
p0.145q p0.145q p0.145q p0.145q p0.145q p0.145q p0.145q

Fang and Santos (2019) 0.975 0.470 0.586 0.953 0.954 0.939 0.952
p0.028q p0.028q p0.043q p0.055q p0.055q p0.055q p0.055q

Subsampling 0.980 0.620 0.534 0.663 0.777 0.944 0.947
p0.028q p0.028q p0.029q p0.035q p0.042q p0.055q p0.055q

Nonparametric Bootstrap 0.972 0.609 0.679 0.948 0.946 0.955 0.953
p0.028q p0.027q p0.041q p0.055q p0.055q p0.055q p0.055q

n “ 5000
Proximal Bootstrap 0.948 0.951 0.947 0.950 0.945 0.951 0.958

p0.045q p0.045q p0.045q p0.045q p0.046q p0.045q p0.046q
Hsieh et al. (2022) 0.990 0.985 0.991 0.985 0.982 0.990 0.987

p0.059q p0.059q p0.059q p0.059q p0.059q p0.059q p0.059q
Fang and Santos (2019) 0.975 0.470 0.586 0.953 0.954 0.939 0.952

p0.028q p0.028q p0.043q p0.055q p0.055q p0.055q p0.055q
Subsampling 0.980 0.620 0.534 0.663 0.777 0.944 0.947

p0.028q p0.028q p0.029q p0.035q p0.042q p0.055q p0.055q
Nonparametric Bootstrap 0.972 0.609 0.679 0.948 0.946 0.955 0.953

p0.028q p0.027q p0.041q p0.055q p0.055q p0.055q p0.055q
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our knowledge, Hsieh et al. (2022)’s method does not apply for this example because it is not a

quadratic programming problem. We are also unable to use Fang and Santos (2019) because there

is no closed form solution to the optimization problem. For choosing αn, we apply the double

bootstrap method described in Section 2.3 using n “ 5000, B1 “ B2 “ 5000, β0 “ 0 over the

grid αn P
 

n´1{3, n´1{4, n´1{6, n´1{7, n´1{8, n´1{9, n´1{10
(

. The empirical coverage frequencies were

t0.9512, 0.9502, 0.9506, 0.9478, 0.9432, 0.9368, 0.9338u. αn “ n´1{3 was the smallest value which

achieved coverage at or above the nominal level of 0.95. We also tried using all the other values

of αn and found that the coverage was the same up to three decimal places across the different

values of αn. We did not constrain h when computing inf
hPBδn

Q̂n

´

β ` h?
n

¯

, which effectively sets δn

to
?
nδn Ñ8.

The coverage of the proximal bootstrap is close to the nominal level for all values of β0 while the

coverage of subsampling and the standard nonparametric bootstrap are far below the nominal level

for drifting values of β0 P
 

n´1, n´1{2, n´1{3, n´1{4, n´1{6
(

. The coverage is worst when β0 “ n´1,

where it can drop to around 50%. The average interval lengths of the proximal bootstrap are

somewhat larger than the other methods.

3.3 Conditional Logit Model with Estimated Inequality Constraints

We generate data according to yij “ 1
´

y˚ij ą y˚ik@k ‰ j
¯

, where the utility of individual i “ 1...n

from picking choice j “ 1...J is given by

y˚ij “ β0xij ` εij , for xi „ N

¨

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

2

:

J

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0.5 ... 0.5

0.5 1 ... 0.5

: : : :

0.5 0.5 ... 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

and εij
i.i.d.
„ Type 1 Extreme Value. We set β0 “ 0.1. The constrained MLE estimator maximizes

the log-likelihood subject to the constraints that the share of individuals who pick each choice

cannot exceed the supply of that choice. These inequality constraints can be viewed as capacity

constraints similar to the ones in de Palma et al. (2007) which state that the equilibrium demand
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Table 2: Empirical Coverage Frequencies and Average Interval Lengths

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 2
n “ 100

Proximal Bootstrap 0.946 0.946 0.946 0.947 0.947 0.947 0.947
p0.380q p0.380q p0.381q p0.381q p0.381q p0.381q p0.381q

Subsampling 0.969 0.496 0.587 0.686 0.761 0.847 0.939
p0.211q p0.213q p0.232q p0.266q p0.297q p0.341q p0.390q

Nonparametric Bootstrap 0.969 0.518 0.671 0.844 0.916 0.947 0.947
p0.236q p0.240q p0.294q p0.359q p0.383q p0.390q p0.388q

n “ 500
Proximal Bootstrap 0.953 0.952 0.953 0.954 0.953 0.953 0.953

p0.165q p0.165q p0.166q p0.166q p0.166q p0.166q p0.166q
Subsampling 0.974 0.490 0.539 0.646 0.773 0.897 0.952

p0.092q p0.093q p0.099q p0.115q p0.132q p0.162q p0.175q
Nonparametric Bootstrap 0.971 0.490 0.666 0.885 0.941 0.944 0.941

p0.106q p0.107q p0.133q p0.169q p0.175q p0.175q p0.175q
n “ 1000

Proximal Bootstrap 0.945 0.944 0.944 0.945 0.944 0.944 0.944
p0.115q p0.115q p0.115q p0.115q p0.115q p0.115q p0.115q

Subsampling 0.981 0.519 0.562 0.686 0.797 0.923 0.962
p0.065q p0.065q p0.069q p0.080q p0.093q p0.118q p0.124q

Nonparametric Bootstrap 0.969 0.497 0.681 0.917 0.940 0.943 0.943
p0.076q p0.076q p0.095q p0.122q p0.124q p0.124q p0.124q

n “ 5000
Proximal Bootstrap 0.953 0.952 0.952 0.953 0.953 0.953 0.953

p0.046q p0.046q p0.046q p0.046q p0.046q p0.046q p0.046q
Subsampling 0.973 0.558 0.522 0.648 0.785 0.944 0.959

p0.028q p0.028q p0.029q p0.035q p0.042q p0.055q p0.055q
Nonparametric Bootstrap 0.975 0.601 0.685 0.953 0.954 0.952 0.954

p0.034q p0.034q p0.042q p0.055q p0.055q p0.055q p0.055q
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for each housing unit should not exceed the supply of that housing unit. For Pij pβq ”
exppβxijq

ř

l exppβxilq
,

β̂n “ arg max ln
β

L pβq “
1

nJ

n
ÿ

i“1

J
ÿ

j“1

yij lnPij pβq

s.t.
1

n

n
ÿ

i“1

Pij pβq ď b̄j for all j “ 1...J

where b̄j “ 1
106

ř106

i“1
exppβ0x̃ijq

ř

l exppβ0x̃ilq
for x̃ij drawn independently from the same distribution as xij .

We examine the empirical coverage and average length of the proximal bootstrap confidence

set C˚1´α “
"

β : n

ˆ

Q̂n pβq ´ inf
hPBδn

Q̂n

´

β ` h?
n

¯

˙

ď ĉ˚1´α

*

, where ĉ˚1´α is the 1 ´ α quantile of

´
inf
βPB

Ẑ˚n pβq

α2
n

for Ẑ˚n pβq “ αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β ´ β̄n
˘

` 1
2

›

›β ´ β̄n
›

›

2

H̄n
and β̄n “ β̂n. We use

analytic expressions for the components in the proximal bootstrap objective function:

l̂n pβq “ ´
B lnL pβq

Bβ
“ ´

1

nJ

n
ÿ

i“1

J
ÿ

j“1

pyij ´ Pij pβqqxij

Hn pβq “ ´
B2 lnL pβq

BβBβ1
“

1

nJ

n
ÿ

i“1

J
ÿ

j“1

Pij pβq

˜

xij ´
ÿ

l

Pil pβqxil

¸˜

xij ´
ÿ

l

Pil pβqxil

¸1

We consider n P t100, 500, 1000, 5000u, J “ 20, αn P
 

n´1{3, n´1{4, n´1{6, n´1{8, n´1{10
(

, B “ 1000

bootstrap iterations, and R “ 2000 Monte Carlo simulations. Empirical coverage frequencies for the

proximal bootstrap confidence set, subsampling equal-tailed interval, and standard nonparametric

bootstrap equal-tailed interval, as well as average interval lengths are reported in Table 3. The

proximal bootstrap coverage frequencies and average interval lengths are the same up to three

decimal places across the different values of αn. The proximal bootstrap coverage frequencies are

very close to the nominal level of 95% for sufficiently large values of n. Both subsampling and the

standard nonparametric bootstrap undercover for all values of n, with the standard nonparametric

bootstrap having worse coverage than subsampling.
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Table 3: Empirical Coverage Frequencies and Average Interval Lengths

n 100 500 1000 5000

αn “ n´1{3 0.936 0.951 0.949 0.951
p0.073q p0.032q p0.022q p0.009q

αn “ n´1{4 0.936 0.951 0.949 0.951
p0.073q p0.032q p0.022q p0.009q

αn “ n´1{6 0.936 0.951 0.949 0.951
p0.073q p0.032q p0.022q p0.009q

αn “ n´1{8 0.936 0.951 0.949 0.951
p0.073q p0.032q p0.022q p0.009q

αn “ n´1{10 0.936 0.951 0.949 0.951
p0.073q p0.032q p0.022q p0.009q

Subsampling 0.927 0.937 0.939 0.933
p0.002q p0.001q p0.000q p0.000q

Nonparametric Bootstrap 0.917 0.928 0.916 0.903
p0.002q p0.001q p0.001q p0.000q

4 Conclusion

We have demonstrated how to use a computationally efficient bootstrap procedure to conduct

asymptotically valid inference for
?
n-consistent constrained optimization estimators with nonstan-

dard asymptotic distributions. Our proximal bootstrap estimator can be expressed as the solution

to a quadratic programming problem and relies on a scaling sequence that converges to zero at a

slower than
?
n rate. We have illustrated its empirical performance in boundary constrained MLE

and GMM problems and a conditional logit model with capacity constraints.

5 Appendix

5.1 Proofs of Theorems

5.1.1 Proof of Theorem 1

Using the arguments in Theorem 2.1 of Shapiro (1988) and Lemma 3.1 of Shapiro (1989), when β̂n

lies in a neighborhood of β0, β̂n is almost surely a minimizer of L̃n pβq “ Q̂n pβq `
ř

jPEYI λ0jfj pβq

over C pλ0q “
 

β P B : fj pβq “ 0 for j P E Y I˚` pλ0q , fj pβq ď 0 for j P I˚0 pλ0q
(

, where I˚` pλ0q ”

tj P I˚ : λ0j ą 0u, I˚0 pλ0q ” tj P I˚ : λ0j “ 0u, and I˚ “ tj P I : fj pβ0q “ 0u.

Consistency of β̂n for β0 follows from Assumption 1 and Corollary 3.2.3 in van der Vaart and
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Wellner (1996). We can show that consistency implies
?
n-consistency using a modified version of

the first part of the proof of Theorem 5 on page 141 of Pollard (1984) to allow for constraints. We

need to replace his population objective F p¨q with the population Lagrangian L pβ0, λ0q ” Q pβ0q `

ř

jPEYI λ0jfj pβ0q. The first order KKT condition ∇L pβ0, λ0q ” l pβ0q`
ř

jPEYI λ0jF0j “ 0 implies

the local quadratic expansion L pβ, λ0q “ L pβ0, λ0q `
1
2}β ´ β0}

2
∇2Lpβ0,λ0q ` o

`

}β ´ β0}
2
˘

for β in a

small neighborhood of β0. This expansion in combination with the local quadratic approximation

of the Lagrangian in Assumption 5 will imply a modified version of Pollard (1984)’s equation (6),

where Fnp¨q is replaced by L̃n p¨q and the empirical process En∆ is replaced by
?
n
´

l̂n pβ0q ´ l pβ0q

¯

.

We assumed in condition (iii) that I˚` pλ0q “ ∅, which means I˚ “ I˚0 pλ0q, and C pλ0q “

tβ P B : fj pβq “ 0 for j P E , fj pβq ď 0 for j P I˚u.

Denote the feasible direction set by

Fn “
"

h : fj

ˆ

β0 `
h
?
n

˙

“ 0 for j P E , fj
ˆ

β0 `
h
?
n

˙

ď 0 for j P I˚
*

Denote the linearized feasible direction set by

Σn “
 

h :
?
nfj pβ0q ` F

1
0jh “ 0 for j P E ,

?
nfj pβ0q ` F

1
0jh ď 0 for j P I˚

(

LICQ implies the linearized feasible direction set is sufficient to capture the geometry of the con-

straints near β0 so that
?
n
´

β̂n ´ β0

¯

is asymptotically equivalent to the minimizer of the La-

grangian over Σn:

?
n
´

β̂n ´ β0

¯

“ arg min
hPΣn

"

nL̃n
ˆ

β0 `
h
?
n

˙

´ nL̃n pβ0q

*

` oP p1q

“ arg min
hPΣn

#

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fj

ˆ

β0 `
h
?
n

˙

´ fj pβ0q

˙

+

` oP p1q

ù arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh

+

“ J

where the convergence result in the last line follows from the following arguments. First note that
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Assumption 5 implies that for any δn Ñ 0, and Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h
1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

´ 1
2h
1H0h´

1
2

ř

jPEYI λ0jh
1G0jh

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Recall
?
n
´

l̂n pβ0q ´ l pβ0q

¯

ù W0 and λ0j “ 0 for all j P IzI˚` pλ0q, where we have assumed

I˚` pλ0q “ ∅. Since pointwise convergence implies uniform convergence over compact sets K Ă Rd

for convex functions of h, we have that uniformly in h P Bδn ,

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fj

ˆ

β0 `
h
?
n

˙

´ fj pβ0q

˙

“ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh` oP p1q

ù h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd.

Now consider the constraints. Since
?
nfj pβ0q ` F 10jh

p
Ñ ´8 for j P IzI˚, the nonactive

inequality constraints do not affect the asymptotic distribution. Also,
?
nfj pβ0q “ 0 for all j P

E Y I˚. Condition (i) is a second order sufficient condition and guarantees that the argmin of

h1W0 `
1
2h
1H0h `

1
2

ř

jPE λ0jh
1G0jh over Σ is unique. Then by the argmin continuous mapping

theorem (Theorem 1 of Knight (1999)), arg min
h

Ĝn phq Ñe´d arg min
h

G0 phq, where

Ĝn phq “ nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fj

ˆ

β0 `
h
?
n

˙

´ fj pβ0q

˙

`81 ph R Σnq

G0 phq “ h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh`81 ph R Σq

Σ “
 

h : F 10jh “ 0 for j P E , F 10jh ď 0 for j P I˚
(

Now we show consistency of the proximal bootstrap. αn Ñ 0 implies αn
?
nH̄n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“

o˚pp1q. Using convexity of the proximal bootstrap objective function, compactness of C˚ ´ β0, and
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the fact that β̄n P C˚,

β̂˚n ´ β0 “ arg min
uPpC˚´β0q

"

1

2

›

›

›
u` β0 ´ β̄n ` αn

?
nH̄´1

n

´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯
›

›

›

2

H̄n

`
1

2

ÿ

jPEYI
λ̄nj

›

›u` β0 ´ β̄n
›

›

2

Ḡnj

+

“ arg min
uPpC˚´β0q

#

1

2

›

›u` β0 ´ β̄n
›

›

2

H̄n
`

1

2

ÿ

jPEYI
λ̄nj

›

›u` β0 ´ β̄n
›

›

2

Ḡnj
` o˚pp1q

+

“ β̄n ´ β0 ` opp1q “ opp1q

Note that since C˚ is already a linearized constraint set, the linearized feasible direction set is

simply

Σ˚n “
 

h : fj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

“ 0 for j P E ,

fj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

ď 0 for j P I
(

“

#

h :
fj

`

β̄n
˘

αn
` F̄ 1njh` F̄

1
nj

ˆ

β0 ´ β̄n
αn

˙

“ 0 for j P E ,

fj
`

β̄n
˘

αn
` F̄ 1njh` F̄

1
nj

ˆ

β0 ´ β̄n
αn

˙

ď 0 for j P I

+

Using the local parameter h P C˚´β0
αn

, we can derive the asymptotic distribution of the proximal

bootstrap.

β̂˚n ´ β0

αn
“ arg min

hPΣ˚n

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

H̄n

`
1

2

ÿ

jPEYI
λ̄nj

›

›β0 ´ β̄n ` αnh
›

›

2

Ḡnj

+

“ arg min
hPΣ˚n

#

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+

`
1

2

ÿ

jPEYI
λ̄nj

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

Ḡnj

+

“ arg min
hPΣ˚n

#

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`

1

2

ÿ

jPEYI
λ̄njh

1Ḡnjh` o
˚
P p1q

+
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P
ù
W

arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh

+

“ J

where the last line follows from the following arguments. First, note that under the envelope

integrability assumption 3, Lemma 4.2 in Wellner and Zhan (1996) implies that for any compact

K Ă Rd,

›

›

?
n pP ˚n ´ Pnq

`

g
`

¨, β̄n
˘

´ g p¨, β0q
˘›

› “ o˚p
`

1`
?
n
›

›β̄n ´ β0

›

›

˘

“ o˚pp1q

This bootstrap equicontinuity result implies
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

and
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

have

the same asymptotic distribution. Additionally, since H̄n
p
Ñ H0, Ḡnj

p
Ñ G0j for all j, max

jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ

0, and and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K Ă Rd,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`

1

2

ÿ

jPEYI
λ̄njh

1Ḡnjh

“ h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh` oP p1q

P
ù
W

h1W0 `
1

2
h1H0h`

1

2

ÿ

jPEYI
λ0jh

1G0jh

“ h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd.

For the proximal bootstrap constraint set, note that fjpβ̄nq
αn

p
Ñ´8 for j P IzI˚ while fjpβ̄nq

αn
“

?
npfjpβ̄nq´fjpβ0qq

?
nαn

“ oP p1q for j P E YI˚. Additionally, F̄ 1nj
´

β0´β̄n
αn

¯

“ oP p1q and F̄nj “ F0j ` oP p1q

for all j P E Y I. Then, by a modification of the bootstrap argmin continuous mapping lemma

14.2 in Hong and Li (2020) that replaces weak convergence with epi-convergence, arg min
h

Ĝ˚n phq
p
Ñ
e´d

arg min
h

G0 phq for

Ĝ˚n phq “ h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`

1

2

ÿ

jPEYI
λ̄njh

1Ḡnjh`81 ph R Σ˚nq
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G0 phq “ h1W0 `
1

2
h1H0h`

1

2

ÿ

jPE
λ0jh

1G0jh`81 ph R Σq

Here, p
Ñ
e´d

denotes epi-convergence of the conditional law of Ĝ˚n to G0, which can be equivalently

stated as supfPBL1
|EWf

´

Ĝ˚n
¯

´ Ef pG0q |
p
ÝÑ 0 and EWf

´

Ĝ˚n
¯˚

´ EWf
´

Ĝ˚n
¯

˚

p
ÝÑ 0 for all

f P BL1, where BL1 is the class of Lipschitz norm 1 functions with respect to the metric of

epi-convergence defined as d
´

Ĝ˚n,G0

¯

“
´8

0 max
!ˇ

ˇ

ˇ
depi Ĝ˚n pvq ´ depi G0 pvq

ˇ

ˇ

ˇ
: |v| ď ρ

)

exp p´ρq dρ

, where dC pvq “ inf t|v ´ u| : u P Cu for a non-empty closed subset of Rd`1, and epi G phq “

tph, αq : G phq ď αu is the epigraph of G : Rd ÞÑ R.

�

5.1.2 Proof of Theorem 2

Consider any sequence tPn P P : n ě 1u that determines βn “ β pPnq and the laws of all random

variables. If LICQ is satisfied and l pβ0q “ 0, then λ0j “ 0 for all j P E Y I so that Assumption 5

implies that uniformly over h P Bδn ,

nQ̂n

ˆ

βn `
h
?
n

˙

´ nQ̂n pβnq “ h1
?
n
´

l̂n pβnq ´ l pβnq
¯

`
1

2
h1H0h` oPnp1q

ù h1W0 `
1

2
h1H0h

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any

compact K Ă Rd. These results in combination with the continuous mapping results in Lemma

10.11 of Kosorok (2007) imply that for q phq ” h1W0 `
1
2h
1H0h,

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

ˆ

βn `
h
?
n

˙˙

“ ´ inf
hPBδn

n

ˆ

Q̂n

ˆ

βn `
h
?
n

˙

´ Q̂n pβnq

˙

` oPnp1q

“ ´ inf
hPBδn

"

?
n
´

l̂n pβnq ´ l pβnq
¯1

h`
1

2
h1H0h

*

` oPnp1q

ù ´ inf
hPBκ

q phq
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where Bκ “
 

h P Rd : }h} ď κ
(

for
?
nδn Ñ κ P p0,8s. We already showed in the proof of Theorem

1 that

Ẑ˚n pβn ` αnhq

α2
n

“ h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh` o

˚
Pnp1q

P
ù
W

h1W0 `
1

2
h1H0h

Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply

´

inf
βPB

Ẑ˚n pβq

α2
n

“ ´

inf
hPB´βn

αn

Ẑ˚n pβn ` αnhq

α2
n

“ ´ inf
hP B´βn

αn

"

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1

h`
1

2
h1H̄nh

*

` oPnp1q

P
ù
W
´ inf
hPRd

q phq

Therefore, lim sup
nÑ8

sup
PPP

sup
xPR

|Jn px, P q ´ J px, P q| “ 0, and since tJ p¨, P q : P P Pu is equicontin-

uous at J´1
n p1´ α, P q, we have for any Pn and ε small enough, Jn pxn, Pnq ´ J pxn, Pnq “ op1q

where xn “ J´1
n p1´ α´ ε, Pnq. Similarly, lim sup

nÑ8
sup
PPP

P

ˆ

sup
xPR

ˇ

ˇJ˚αn px, P q ´ J
˚ px, P q

ˇ

ˇ ą ε

˙

“ 0

for all ε ą 0, and since tJ˚ p¨, P q : P P Pu is equicontinuous at J´1
n p1´ α, P q, for any Pn and ε

small enough, J˚αn pxn, Pnq ´ J˚ pxn, Pnq “ oPnp1q. Note that ´ inf
hPthPRd:}h}ďκu

q phq ď ´ inf
hPRd

q phq

for any realizations of the random variables in the limiting distributions. Then, for all ε ą 0

and n large enough, there exists δ ą 0 such that Pn
`

J˚αn pxn, Pnq ´ Jn pxn, Pnq ą ε
˘

ď δ. If

J˚αn pxn, Pnq ´ Jn pxn, Pnq ď ε, then J´1
n p1´ α´ ε, Pnq ď J˚´1

αn p1´ α, Pnq. Take tεnu8n“1 and

tδnu
8
n“1 to be positive sequences such that εn Ñ 0 and δn Ñ 0. Then, using arguments similar to

those in Lemma A.1 (vi) of Romano and Shaikh (2012), for all ε ą 0 and n large enough,

Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

ˆ

βn `
h
?
n

˙˙

ď J˚´1
αn p1´ α, Pnq

˙

ě Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

ˆ

βn `
h
?
n

˙˙

ď J˚´1
αn p1´ α, Pnq X J

˚
αn pxn, Pnq ´ Jn pxn, Pnq ď ε

˙

ě Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

ˆ

βn `
h
?
n

˙˙

ď J´1
n p1´ α´ ε, Pnq X J

˚
αn pxn, Pnq ´ Jn pxn, Pnq ď ε

˙
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ě Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

ˆ

βn `
h
?
n

˙˙

ď J´1
n p1´ α´ ε, Pnq

˙

´ Pn
`

J˚αn pxn, Pnq ´ Jn pxn, Pnq ą ε
˘

ě 1´ α´ ε´ δ

Since ε and δ can be arbitrarily small, lim inf
nÑ8

Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

´

βn `
h?
n

¯

˙

ď ĉ˚1´α

˙

ě

1 ´ α. For ρ “ lim inf
nÑ8

inf
PPP

P

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

´

βn `
h?
n

¯

˙

ď ĉ˚1´α

˙

, we can find a sequence

tPn P Pu such that ρ “ lim inf
nÑ8

Pn

ˆ

n

ˆ

Q̂n pβnq ´ inf
hPBδn

Q̂n

´

βn `
h?
n

¯

˙

ď ĉ˚1´α

˙

. Find a subse-

quence nk of n for which βn converges, with its limit denoted β. The same arguments above applied

to such a subsequence imply lim inf
nkÑ8

Pnk

˜

nk

˜

Q̂n pβnkq ´ inf
hPBδnk

Q̂n

´

βnk `
h?
nk

¯

¸

ď ĉ˚1´α

¸

ě 1´α.

Since tPnk , βnku is a subsequence of tPn, βnu,

ρ “ lim inf
nkÑ8

Pnk

˜

nk

˜

Q̂n pβnkq ´ inf
hPBδnk

Q̂n

´

βnk `
h?
nk

¯

¸

ď ĉ˚1´α

¸

ě 1´ α.

�

5.1.3 Proof of Theorem 3

Using similar arguments to Theorem 2.1 of Shapiro (1988) and Lemma 3.1 of Shapiro (1989),

when β̂n lies in a neighborhood of β0, β̂n is almost surely the minimizer of L̃n pβq “ Q̂n pβq `

ř

jPEYI λ0jfnj pβq over C pλ0q “
 

β P B : fnj pβq “ 0 for j P E Y I˚n,` pλ0q , fnj pβq ď 0 for j P I˚n,0 pλ0q
(

,

where I˚n,` pλ0q ” tj P I˚n : λ0j ą 0u, I˚n,0 pλ0q ” tj P I˚n : λ0j “ 0u, and I˚n ” tj P I : fnj pβ0q “ 0u.

We assumed in condition (iii) that I˚n,` pλ0q “ ∅, which means I˚n “ I˚n,0 pλ0q, and C pλ0q “

tβ P B : fnj pβq “ 0 for j P E , fnj pβq ď 0 for j P I˚nu.

Denote the feasible direction set by

Fn “
"

h : fnj

ˆ

β0 `
h
?
n

˙

“ 0 for j P E , fnj
ˆ

β0 `
h
?
n

˙

ď 0 for j P I˚n
*

Denote the linearized feasible direction set by

Σn “
 

h :
?
nfnj pβ0q ` Fnj pβ0q

1 h “ 0 for j P E ,
?
nfnj pβ0q ` Fnj pβ0q

1 h ď 0 for j P I˚n
(

LICQ implies the linearized feasible direction set is sufficient to capture the geometry of the con-

straints near β0 so that
?
n
´

β̂n ´ β0

¯

is asymptotically equivalent to the minimizer of the La-
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grangian over Σn:

?
n
´

β̂n ´ β0

¯

“ arg min
hPΣn

"

nL̃n
ˆ

β0 `
h
?
n

˙

´ nL̃n pβ0q

*

` oP p1q

“ arg min
hPΣn

#

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

+

` oP p1q

ù arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

+

“ J

where the convergence result follows from the following arguments. First note that Assumption 51

implies that for any δn Ñ 0, and Bδn “
!

h P Rd : }h}?
n
ď δn

)

,

sup
hPBδn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

nL̃n
´

β0 `
h?
n

¯

´ nL̃n pβ0q ´ h1
?
n
´

l̂n pβ0q ´ l pβ0q
¯

´ 1
2
h1H0h´

ř

jPEYI λ0j

`?
n pFnj pβ0q ´ F0jq

1 h` 1
2
h1G0jh

˘

1` }h}2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q

Therefore, uniformly in h P Bδn ,

nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

“ h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

?
n pFnj pβ0q ´ F0jq

1 h`
1

2
h1G0jh

˙

` oP p1q

Recall
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
ř

jPEYI λ0j
?
n pFnj pβ0q ´ F0jq ù W0`

ř

jPEYI λ0jV0j , and λ0j “ 0

for all j P IzI˚` pλ0q, where we have assumed I˚` pλ0q “ ∅. and λ0j “ 0 for all j P IzI˚` pλ0q.

Since the last line is a convex function of h, pointwise convergence implies uniform convergence over

compact sets K Ă Rd (Pollard (1991)). Therefore,

h1
?
n
´

l̂n pβ0q ´ l pβ0q

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

?
n pFnj pβ0q ´ F0jq

1 h`
1

2
h1G0jh

˙

` oP p1q

ù h1W0 `
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

“ h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact
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K Ă Rd.

Now consider the constraints.
?
nfnj pβ0q ` Fnj pβ0q

1 h
p
Ñ ´8 for j P IzI˚, so the nonactive

inequality constraints do not affect the asymptotic distribution. Additionally,
?
nfnj pβ0q ù U0j ,

jointly, for all j P E Y I˚, and Fnj pβ0q “ F0j ` oP p1q. Condition (i) is a second order sufficient

condition and guarantees that the argmin of h1W0 `
1
2h
1H0h `

ř

jPE λ0j

`

h1V0j `
1
2h
1G0jh

˘

over

Σ is unique. Then by the argmin continuous mapping theorem (Theorem 1 of Knight (1999)),

arg min
h

Ĝn phq Ñe´d arg min
h

G0 phq, where

Ĝn phq “ nQ̂n

ˆ

β0 `
h
?
n

˙

´ nQ̂n pβ0q `
ÿ

jPEYI
λ0jn

ˆ

fnj

ˆ

β0 `
h
?
n

˙

´ fnj pβ0q

˙

`81 ph R Σnq

G0 phq “ h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

`81 ph R Σq

Σ “
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

(

Note that since C˚ is already a linearized constraint set, the linearized feasible direction set is simply

Σ˚n “
 

h : fnj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

“ 0 for j P E

fnj
`

β̄n
˘

` F̄ 1nj
`

β0 ´ β̄n ` αnh
˘

` αn
?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

ď 0 for j P I
(

“

#

h :
fnj

`

β̄n
˘

αn
` F̄ 1njh`

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

“ 0 for j P E ,

fnj
`

β̄n
˘

αn
` F̄ 1njh`

?
n
`

f˚nj
`

β̄n
˘

´ fnj
`

β̄n
˘˘

` F̄ 1nj

ˆ

β0 ´ β̄n
αn

˙

ď 0 for j P I

+

Using the local parameter h P C˚´β0
αn

, we can derive the asymptotic distribution of the proximal

bootstrap.

β̂˚n ´ β0

αn
“ arg min

hPΣ˚n

"

αn
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
`

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

H̄n

`
ÿ

jPEYI
λ̄nj

ˆ

αn
?
n
`

F̄ ˚nj ´ F̄nj
˘1 `

β0 ´ β̄n ` αnh
˘

`
1

2

›

›β0 ´ β̄n ` αnh
›

›

2

Ḡnj

˙

+

“ arg min
hPΣ˚n

#

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯1
ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

H̄n

+
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`
ÿ

jPEYI
λ̄nj

˜

?
n
`

F̄ ˚nj ´ F̄nj
˘1

ˆ

β0 ´ β̄n
αn

` h

˙

`
1

2

›

›

›

›

β0 ´ β̄n
αn

` h

›

›

›

›

2

Ḡnj

¸+

“ arg min
hPΣ˚n

"

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

`
ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

+

` o˚P p1q

P
ù
W

arg min
hPΣ

#

h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

+

“ J

where the last line follows from the following arguments. First, note that since H̄n
p
Ñ H0, Ḡnj

p
Ñ G0j

for all j, and the proximal bootstrap Lagrangian is convex in h, we have that uniformly over compact

sets K Ă Rd,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

“h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1G0jh

˙

` oP p1q

Next, note that Assumption 3, max
jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0, and sup

}β´β0}ďop1q

?
n pF ˚n pβq ´ Fn pβq ´ F

˚
n pβ0q ` Fn pβ0qq “

o˚P p1q imply
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
ř

jPEYI λ̄nj
?
n
´

F̄ ˚nj ´ F̄nj

¯

P
ù
W
W0 `

ř

jPEYI λ0jV0j because

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
ÿ

jPEYI
λ̄nj
?
n
`

F̄ ˚nj ´ F̄nj
˘

“
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

´

´

l̂˚n pβ0q ´ l̂n pβ0q

¯¯

`
ÿ

jPEYI
λ0j

?
n
`

F ˚nj pβ0q ´ Fnj pβ0q
˘

`
ÿ

jPEYI

`

λ̄nj ´ λ0j

˘?
n
`

F̄ ˚nj ´ F̄nj
˘

`
ÿ

jPEYI
λ0j

?
n
`

F̄ ˚nj ´ F̄nj ´
`

F ˚nj pβ0q ´ Fnj pβ0q
˘˘

“
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ÿ

jPEYI
λ0j

?
n
`

F ˚nj pβ0q ´ Fnj pβ0q
˘

` o˚P p1q

and we assumed
?
n
´

l̂˚n pβ0q ´ l̂n pβ0q

¯

`
ř

jPEYI λ0j
?
n
´

F ˚nj pβ0q ´ Fnj pβ0q

¯

P
ù
W
W0`

ř

jPEYI λ0jV0j .

Additionally, max
jPEYI

ˇ

ˇḠnj ´G0j

ˇ

ˇ

p
Ñ 0 and max

jPEYI

ˇ

ˇλ̄nj ´ λ0j

ˇ

ˇ

p
Ñ 0 imply that

ř

jPEYI λ̄njḠnj
p
Ñ

ř

jPEYI λ0jG0j . By convexity of the bootstrap Lagrangian in h, pointwise convergence implies
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uniform convergence over compact sets K Ă Rd; therefore,

h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H0h`

ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1G0jh

˙

P
ù
W

h1W0 `
1

2
h1H0h`

ÿ

jPEYI
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

“ h1W0 `
1

2
h1H0h`

ÿ

jPE
λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

as a process indexed by h in the space of bounded functions on compact sets `8 pKq for any compact

K Ă Rd.

Note that fnjpβ̄nq
αn

p
Ñ´8 for j P IzI˚ while fnjpβ̄nq

αn
“

?
npfnjpβ̄nq´f0jpβ0qq

?
nαn

“

?
npfnjpβ̄nq´fnjpβ0qq

?
nαn

`
?
npfnjpβ0q´f0jpβ0qq?

nαn
“ oP p1q for j P EYI˚. Additionally, F̄ 1nj

´

β0´β̄n
αn

¯

“ oP p1q and F̄nj “ F0j`oP p1q

for all j P EYI. Since
?
n pf˚n pβ0q ´ fn pβ0qq

P
ù
W

U0 and sup
}β´β0}ďop1q

?
n pf˚n pβq ´ fn pβq ´ f

˚
n pβ0q ` fn pβ0qq “

o˚P p1q, it follows that
?
n
`

f˚n
`

β̄n
˘

´ fn
`

β̄n
˘˘ P

ù
W

U0. Then, by the bootstrap argmin continuous

mapping lemma 14.2 in Hong and Li (2020) (after replacing weak convergence with epi-convergence),

arg min
h

Ĝ˚n phq
p
Ñ
e´d

arg min
h

G0 phq for

Ĝ˚n phq “ h1
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

`
1

2
h1H̄nh

`
ÿ

jPEYI
λ̄nj

ˆ

h1
?
n
`

F̄ ˚nj ´ F̄nj
˘

`
1

2
h1Ḡnjh

˙

`81 ph R Σ˚nq

G0 phq “ h1W0 `
1

2
h1H0h`

ÿ

jPEYI˚`pλ0q

λ0j

ˆ

h1V0j `
1

2
h1G0jh

˙

`81 ph R Σq

Σ “
 

h : U0j ` F
1
0jh “ 0 for j P E , U0j ` F

1
0jh ď 0 for j P I˚

(

�

5.2 Verification of Assumptions

We first verify that Assumptions 2 and 3 are satisfied for the boundary constrained GMM ex-

ample (example 2). In this example, l̂n
`

β̄n
˘

“ Ĝ1nπ̂n
`

β̄n
˘

, l̂˚n
`

β̄n
˘

“ Ĝ˚
1

n π̂
˚
n

`

β̄n
˘

, π̂n pβq “
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“

1
n

řn
i“1 1 pyi ď βq ´ 0.5, 1

n

řn
i“1 yi ´ β

‰1, π̂˚n pβq “
“

1
n

řn
i“1 1 py˚i ď βq ´ 0.5, 1

n

řn
i“1 y

˚
i ´ β

‰1, and

Ĝn “

»

—

–

1
nh

řn
i“1Kh

´

yi ´ β̂n

¯

´1

fi

ffi

fl

, Ĝ˚n “

»

—

–

1
nh

řn
i“1Kh

´

y˚i ´ β̂n

¯

´1

fi

ffi

fl

, G “

»

—

–

fpβ0q

´1

fi

ffi

fl

,

where f p¨q is the density of y and Kh pxq “ K px{hq for some kernel function K p¨q and bandwidth

h. We can express
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

as

?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

“
?
n
´

Ĝ˚
1

n π̂
˚
n

`

β̄n
˘

´ Ĝ1nπ̂n
`

β̄n
˘

¯

“ G1
?
n
`

π̂˚n
`

β̄n
˘

´ π̂n
`

β̄n
˘˘

`

´

Ĝ˚n ´G
¯1?

n
`

π̂˚n
`

β̄n
˘

´ π̂˚n pβ0q
˘

´

´

Ĝn ´G
¯1?

n
`

π̂n
`

β̄n
˘

´ π̂n pβ0q
˘

`

´

Ĝ˚n ´G
¯1?

n pπ̂˚n pβ0q ´ π̂n pβ0qq

`

´

Ĝ˚n ´ Ĝn

¯1?
n pπ̂n pβ0q ´ π pβ0qq

“ G1
?
n pP ˚n ´ Pnqπ p¨, β0q `G

1
?
n pP ˚n ´ Pnq

`

π
`

¨, β̄n
˘

´ π p¨, β0q
˘

` opp1q

where we have used
?
n
`

π̂˚n
`

β̄n
˘

´ π̂˚n pβ0q
˘

“ Opp1q,
?
n
`

π̂n
`

β̄n
˘

´ π̂n pβ0q
˘

“ Opp1q,
?
n pπ̂˚n pβ0q ´ π̂n pβ0qq “

Opp1q,
?
n pπ̂n pβ0q ´ π pβ0qq “ Opp1q, Ĝ˚n ´ G “ opp1q, and Ĝ˚n ´ G “ opp1q. We can express

G1
`

π
`

¨, β̄n
˘

´ π p¨, β0q
˘

“ f pβ0q
`

1
`

yi ď β̄n
˘

´ 1 pyi ď β0q
˘

`
`

β̄n ´ β0

˘

“ g
`

¨, β̄n
˘

´ g p¨, β0q for

g p¨, βq “ f pβ0q p1 pyi ď βq ´ τq ´ pyi ´ βq. Note that GR ” tg p¨, βq ´ g p¨, β0q : |β ´ β0| ď Ru is a

Donsker class for some R ą 0 because t1 pyi ď βq : |β ´ β0| ď Ru and t1 pyi ď β0qu are bounded

Donsker classes, f pβ0q is bounded between 0 and 1, and β ´ β0 is bounded between ´R and R on

GR. Using the Donsker preservation properties for sums and products of bounded Donsker classes,

GR is a Donsker class. Additionally, P |g p¨, βq ´ g p¨, β0q|
2
Ñ 0 as β Ñ β0 because

P |g p¨, βq ´ g p¨, β0q|
2

ďf pβ0q
2E |1 pyi ď βq ´ 1 pyi ď β0q|

2
` |β ´ β0|

2
` 2E |1 pyi ď βq ´ 1 pyi ď β0q| |β ´ β0|

“f pβ0q
2E |1 pyi ď βq ´ 1 pyi ď β0q| ` |β ´ β0|

2
` 2E |1 pyi ď βq ´ 1 pyi ď β0q| |β ´ β0|

ďf pβ0q
2
pE |1 pβ0 ď yi ď βq| ` E |1 pβ ď yi ď β0q|q ` 2 |β ´ β0|

“f pβ0q
2
pP pβ0 ď yi ď βq ` P pβ ď yi ď β0qq ` 2 |β ´ β0|
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The envelope integrability condition in Assumption 3 is satisfied because f pβ0q
`

1
`

yi ď β̄n
˘

´ 1 pyi ď β0q
˘

is bounded between -1 and 1, which implies sup
gp¨,βqPGδn

ˇ

ˇ

ˇ

gp¨,βq´gp¨,β0q
1`
?
n}β´β0}

ˇ

ˇ

ˇ
ď 1 for any n ą 1. Therefore,

G1
?
n pP ˚n ´ Pnq

`

π
`

¨, β̄n
˘

´ π p¨, β0q
˘

“ opp1q, and
?
n
´

l̂˚n
`

β̄n
˘

´ l̂n
`

β̄n
˘

¯

converges to the same

asymptotic distribution as
?
n
´

l̂n pβ0q ´ l pβ0q

¯

.

We can also check Assumptions 2 and 3 are satisfied for the conditional logit example (exam-

ple 3) under additional assumptions. In that example, l̂n pβq “ 1
nJ

řn
i“1

řJ
j“1 pyij ´ Pij pβqqxij “

Png p¨, βq and l̂˚n pβq “
1
nJ

řn
i“1

řJ
j“1

´

y˚ij ´ P
˚
ij pβq

¯

x˚ij “ P ˚n g p¨, βq for g p¨, βq “
1
J

řJ
j“1 pyij ´ Pij pβqqxij

and Pij pβq ”
exppβxijq

ř

l exppβxilq
, where J ! n is fixed. IfE |xij |4 ă 8, we can show that P |g p¨, βq ´ g p¨, β0q|

2
Ñ

0 as β Ñ β0 because

P |g p¨, βq ´ g p¨, β0q|
2
ď

1

J

J
ÿ

j“1

E |Pij pβ0q ´ Pij pβq|
2
|xij |

2

ď
1

J

J
ÿ

j“1

b

E |Pij pβ0q ´ Pij pβq|
4E |xij |

4

If E
ˆ

sup
b

1
J

řJ
j“1

ˇ

ˇ

ˇ
P 1ij pbqxij

ˇ

ˇ

ˇ

˙2

ă 8, GR ” tg p¨, βq ´ g p¨, β0q : |β ´ β0| ď Ru is a Donsker class for

someR ą 0 because |g p¨, βq ´ g p¨, β0q| “

ˇ

ˇ

ˇ

1
J

řJ
j“1 pPij pβ0q ´ Pij pβqqxij

ˇ

ˇ

ˇ
ď sup

b

1
J

řJ
j“1

ˇ

ˇ

ˇ
P 1ij pbqxij

ˇ

ˇ

ˇ
|β ´ β0|

is Lipschitz with a square-integrable Lipschitz constant. The envelope integrability condition will be

satisfied if the envelope function for GR is uniformly integrable or if the xij are uniformly bounded.
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