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1 Introduction

This paper studies estimators defined by the solution to a constrained optimization problem
with non-random inequality and/or equality constraints and a possibly nonsmooth and
nonconvex sample objective function. We are interested in conducting inference on the
parameter defined as the solution to the population analog of the sample optimization
problem. In particular, we are interested in conducting inference that is uniformly valid
across different types of parameters, those that are on the boundary of the constraint set,
those that are drifting towards the boundary, and those that are in the interior of the
constraint set. It is well known (see e.g. Geyer (1994), Andrews (1999),Andrews (2000),
and Andrews (2002)) that when the parameters are on or drifting towards the boundary of
the constraint set, the asymptotic distribution of the constrained estimator is non-standard,
and traditional inference procedures such as the standard bootstrap will not be pointwise
or uniformly valid. Alternative inference procedures such as subsampling (Politis et al.
(1999)), the numerical bootstrap (Hong and Li (2020)), or the m-out-of-n bootstrap (Bickel
and Sakov (2008)) will be pointwise, but not uniformly valid because they will not produce
correct coverage when the parameters are drifting towards the boundary of the constraint
set (Andrews and Guggenberger (2010)). They will only be valid when the parameter is
either in the interior or exactly on the boundary of the constraint set.

We propose a uniformly valid inference method using a simultaneous confidence set con-
structed by inverting a test statistic based on a local expansion of the constrained minimal
value of the objective function around a shrinking neighborhood of the parameter of inter-
est. We benchmark the test statistic against critical values obtained from bootstrapping
consistent estimates of the components of the limiting distribution of the objective’s local

expansion. This method of bootstrapping components of the limiting distribution takes in-



spiration from Cattaneo et al. (2020), but we differ from them in that we use test inversion
to conduct uniformly valid inference for the constrained argmin of the population problem,
while they are interested in pointwise valid inference for the unconstrained argmin.

Our procedure can handle constrained M-estimators with a possibly nonsmooth, non-
convex sample objective function as well as constrained GMM estimators with either cor-
rectly specified or globally misspecified nonsmooth sample moments. By globally misspec-
ified, we mean that the population moments are equal to fixed nonzero constants that do
not approach zero as n — c0. Under global misspecification, Hong and Li (2023) show that
GMM estimators with nonsmooth moments exhibit the cubic-root rate of convergence to a
nonstandard limiting distribution. We show how to extend the pointwise valid procedure
for unconstrained GMM estimators in Hong and Li (2023) to conduct uniformly valid in-
ference under constraints. We allow for both fixed and estimated weighting matrices which
can converge at various rates to their probability limits.

The statistics literature contains many papers on constrained estimation such as Shapiro
(1988), Shapiro (1989), Shapiro (1990), Geyer (1994), Knight (2001), and Knight (2006).
While several of these papers derive the non-standard asymptotic distributions of vari-
ous constrained estimators, they did not propose a practical inference procedure as we
do. Within econometrics, examples of relevant papers include Andrews (2001), Moon and
Schorfheide (2009), Kaido and Santos (2014), Kaido (2016), Gafarov (2016), Chen et al.
(2018), Ketz (2018), Kaido et al. (2019), Kaido et al. (2021), Horowitz and Lee (2019),
Fang and Seo (2021), Hsieh et al. (2022), Fan and Shi (2023), Ketz and McCloskey (2023),
and Chernozhukov et al. (2023). Some of these papers (e.g. Andrews (2001), Fang and
Seo (2021), Fan and Shi (2023)) are concerned with testing the validity of the constraints.

Instead, we are instead interested in conducting inference on the solution to the population



constrained optimization problem, allowing for the possibility that the constraints mat-
ter for identification. Additionally, some of these papers (e.g. Gafarov (2016), Hsieh et
al. (2022), Horowitz and Lee (2019), Fan and Shi (2023) ) are concerned with linear con-
straints or quadratic objective functions, but our method covers a large class of constrained
extremum estimators with possibly nonsmooth, nonconvex objective functions and nonlin-
ear constraints. Additionally, papers such as Geyer (1994), Moon and Schorfheide (2009),
and Ketz (2018) require the parameter of interest to be a solution of the unconstrained pop-
ulation optimization problem. In contrast, we allow for the possibility that the constraints
matter for identification of the parameter, which means the solution of the unconstrained
population optimization problem will differ from the solution of the constrained problem.
However, we do not allow for partial identification because we require that there be a unique
solution to the population constrained optimization problem. Additionally, we require that
the objective function be defined at every value in R, which is in contrast to Ketz (2018)
who point out that the objective function for random coefficient models cannot be defined
for negative values of the variances.

The outline of our paper is as follows. Subsection 1.1 contains examples of constrained
estimators and Subsection 1.2 contains the notation. Section 2 demonstrates how to con-
duct uniformly valid inference for constrained M-estimators, while Section 3 demonstrates
how to conduct uniformly valid inference for constrained GMM estimators. Section 4 con-
tains Monte Carlo simulation evidence demonstrating the uniform validity of our proposed
confidence set for a boundary constrained nonsmooth GMM model. Section 5 concludes,

and the Appendix contains proofs of the theorems.



1.1 Examples of Constrained Extremum Estimators

Example 1. An example of a constrained estimator with a non-random constraint set is
the boundary constrained maximum likelihood estimator in Andrews (2000). Suppose we

have a simple location model with i.i.d data:
Yi = Bo+e, € ~N(0,1)

The maximum likelihood estimator subject to the constraint that 6 > 0 is

n

A . 1 9
6, = arg min 2—2 (y; — 0)

0=0 n:=
It is well-known that 6, 2 6, = max (B0, 0).

Example 2. Another example is a constrained modal estimator similar to Example 3.2.13

in van der Vaart and Wellner (1996). Suppose we have the same simple location model

as in the previous example. Define 6, = arg max= > " 1(0—1<y; <0+1) as the non-
=0

negative center of an interval of length 2 that contains the largest possible fraction of

observations. It is well-known that 6, 2 6, = max (5o, 0).

Example 3. Another example is a nonsmooth GMM estimator with a non-negativity
constraint. Our model is

vi = Po+e€, € ~N(0,1)

For 7 (6) = [P (y; < 0) =7, Ey; — 0] and 70, (6) = [2 30, Ly < 0) =7 2 0w — 0]

i=1 i=1

- 1
0, = argmin ~7, (0)' 7, (0)
60 2



If 7 = 0.5, the moments are correctly specified and 6,, converges to f, = arg min im(0) 7 (0)
=0

at the y/n-rate. If additionally, 5y > 0, meaning the constraint is correctly specified,

0y = Po. However, if 7 # 0.5, and 7 is not drifting towards 0.5, then the moments are

globally misspecified and 0, is cubic-root consistent for f, which is different from Bo even

if By = 0. We will study this example in the Monte Carlo simulations.

1.2 Notation

Consider a random sample X, = (Xi, Xy, ..., X;,) of independent draws from a probability
measure P on a sample space X'. Define the empirical measure P, = % >, 0x,, where 4, is
the measure that assigns mass 1 at  and zero everywhere else. Denote the bootstrap em-
pirical measure by P* = %ZLI Wpi0x,, which can refer to the multinomial, wild, or other
exchangeable bootstraps. An exchangeable bootstrap requires that W,, = (W,1,..., Wy,)
is an exchangeable vector of nonnegative weights which sum to 1. For the multinomial
bootstrap, W, is a multinomial random vector (independent of the data) with probabil-
ities (1/n,...,1/n). For the wild bootstrap, P¥ = %Z?:l (fl/fn) dx,, where §; are non-
negative i.i.d. random variables (independent of the data) with finite third moments and
&y = %Z?:l &. Weak convergence is defined in the sense of Kosorok (2007): Z, v~ Z in
the metric space (D, d) if and only if supscpy, [E*f(Z,) — Ef(Z)| — 0 where BL; is the
space of functions f : D — R with Lipschitz norm bounded by 1. E*f(Z,) is the outer
expectation of f(Z,), which is the infimum over all EU where U is measurable, U > f(Z,),
and EU exists. Conditional weak convergence is also defined in the sense of Kosorok (2007):
Zn % Z in the metric space (I, d) if and only if supsep;, |Ewf(Z,) — Ef(Z)| - 0 and

Ewf(Z,)*—EBwf(Z,)« == 0forall f € BL,, where BL, is the space of functions f : D — R

with Lipschitz norm bounded by 1, Ew denotes expectation with respect to the bootstrap



weights W conditional on the data, and f(Z,)* and f(Z,). denote measurable majorants
and minorants with respect to the joint data (including the weights W). Let X* = o}, (1)
if P(|X}| > ¢€|lX,) = op(1) for all € > 0. Also define M = O% (1) (hence also Op (1)) if

lim,, o limsup,,,, P (P (|M}]| > m|X,) > ¢€) =0 Ve > 0.

2 Constrained M-estimator

Suppose we are interested in conducting inference on the parameter given by the presumed

to be unique solution to the population constrained optimization problem:

0o = ar%;élin {m(0) = Pr (-,0)}

where the constraint set C' < © is a subset of the parameter space © < R? for fixed d. We
assume C' is Chernoff regular at 6y, which means C' is well-approximated by a cone K at 6,
in the sense that llurellf( [(0 —6y) —w| = o(]|0 — ) for all § € C, and élelé [(0—6y) —w| =
o(|w]) for all w € K (see Theorem 2.1 of Geyer (1994) for more details). We allow for
Oy to lie either in the interior or on the boundary of C, and we will estimate 6, using a

constrained M-estimator given by

0, = argmin {7, () = P, (-,0)}
oeC

where 7, (#) may be nonsmooth and/or nonconvex as in Example 2.

It is well known (see e.g. Andrews (2000)) that applying a standard bootstrap procedure
to estimate the distribution of the constrained M-estimator is inconsistent when 6, lies on
the boundary of the constraint set C' or is drifting towards the boundary at some rate.

Alternative inference procedures such as subsampling or the m-out-of-n bootstrap will be

7



consistent when 6, is on the boundary, but will not be consistent for parameters that are
drifting towards the boundary because they will not be able to consistently estimate the
nonstandard limiting distribution of 6, (Andrews and Guggenberger (2010)). Instead of
estimating the distribution of én, we will instead try to estimate the distribution of a scaled
difference between two terms involving the objective function 7, (-). We will show that our

procedure is uniformly asymptotically valid over all rates of drift for 6.

Assumption 1. There exists p € (0,1] and v = ﬁ such that the following conditions

hold:
. ) 2 . . —2v
(i) Pyr ( ,en) < nf P (-, 6) + 0, (7).

(it) QEC:||19r£f90“>6p7T (-,0) > P (-,6y) for all e > 0.

(iii) sup|P,m(-,0) — Pr(-,0)|| = op(1).
0c©
(iv) C is Chernoff reqular at 6.
Assumption 2. There ezists p € (0,1] and v = ﬁ such that g (-,0) = 7 (-,0) — 7 (-, 00)
satisfies the following conditions:

(i) The class Gr = {g (-,0) : |0 — 0| < R} for R near zero is uniformly manageable for

the envelope function Gg () = sup |g(-,0)|.
9€GRr

(ii) PG% = O(R*) for R — 0.

(iii) For each n > 0, there exists a K such that PGE1{Gr > K} < nR* for R near 0.

() If p =1, 7 (-,0) is Lipschitz continuous in 0 with a stochastically bounded Lipschitz

constant.

(v) $y(s,t) = lima*Pg (-, 00+ £) g (-, 00 + %)/ exists for each s,t in RZ.
a—00
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(vi) lim a® P|g (-, 6y + ﬁ)’Q 1{|g(-,00 + £)| > ea® =)} = 0 for each € > 0 and t € R?.
a—0
(vii) Plg(-61) = g(-02)| = O (|61 = 02|*) for 61 — 6] — 0.

Vi) = Pr (4 18 twice differentiable at 6y with Jacobian ) = =7 (6y) an
) = Pr (0 diff ble at Gy with Jacobian L (6 27 (0) and

. 2
Hessian Hy = %w (0o).

Assumption 1 is needed to show consistency of 0, for 0, while Assumption 2 is needed
to derive the asymptotic distribution of 0, and other statistics which are required for our
inference procedure. We assume that the researcher knows the rate of convergence coeffi-
cient . The square-root rate of convergence is obtained when Assumption 2 is satisfied for
v =1/2 and p = 1, which occurs for Example 1, while the cubic-root rate of convergence is
obtained when Assumption 2 is satisfied for v = 1/3 and p = 1/2, which occurs for Example
2. Manageable classes are defined in Definition 4.1 of Pollard (1989), and an example is
all Euclidean classes. A manageable class for a constant envelope is a universal Donsker
class in the sense of Dudley (1987). Uniform manageable classes are manageable classes
for which a uniform upper bound exists in the maximal inequalities for the corresponding
empirical processes. As discussed after Corollary 3.2 of Kim and Pollard (1990), we need to
assume Ggr are uniformly manageable in order to demonstrate stochastic equicontinuity of
certain processes that appear in the expansion of the objective function. We demonstrate
stochastic equicontinuity by applying the maximal inequalities in Lemma 3.1 of Kim and
Pollard (1990) over the classes G for all values of R near zero, rather than a particular
value of R.

We will impose an additional an envelope integrability condition needed to demon-
strate the validity of bootstrapping certain statistics which appear in the benchmarking

distribution of our inference procedure. Specifically, the condition is needed to show boot-



strap equicontinuity results so that we can replace 6y by 6, in the bootstrapped empirical

processes.

Assumption 3. For some p € (0,1] and~y = 2(2—1—,7)’ define my, (-,0,h) =n? (7 (50 + L) — 7 (-;0)).

For any €, — 0 and any compact set H < R,

1+ n7)0 — 6

AD®O psoo =N heH,||6—bo|<en

n‘797h - n'veah
lim lim supsupt? P{ sup 7n ) = mal, 0o )H > t} = 0.

We need Assumption 3 to make use of Lemma 4.2 in Wellner and Zhan (1996), which
states that stochastic equicontinuity implies bootstrap equicontinuity under a relatively
mild envelope (square) integrability assumption (their Assumption A.5). A strong sufficient
condition for Assumption 3 is that the envelope is uniformly bounded. For all sufficiently

large n such that €, — 0 and any compact H < R¢, there exists some constant K > 0 such

that sup < K. In the Appendix, we verify that Assumption 3

1+n7[0—0
he,|0—6o|<en n76=0ol

)mn(-,e,h)—mn(~,90,h) H

is satisfied for Examples 1 through 3.
We first consider the case where the constraints are not necessary for identification of
0y, which means that the constrained minimizer is the same as the unconstrained minimizer

of the population objective.

Assumption 4. [ (6y) = S (6) = 0.

This assumption requires that the sum of the Lagrange multipliers times the constraint
gradients must be zero at 6. Suppose C' = {0 ©: f; () =0for je &, f;(8) <O for j e I}.
The first order KKT condition says that 6, solves the population constrained optimization
problem if [ () + X;ce 7 Ao f; (fo) = 0. By imposing [ (fy) = 0, we are requiring that

Yjecoz Aojf; (o) = 0. If we further assume linear independence constraint qualification
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(LICQ), then I (6y) = 0 implies \g; = 0 for all j € £ U Z*. The reason is as follows. LICQ

of;(9)
00

says that the gradients of the active constraints f; (6h) = for j € £ UZ*, where

0=0o

I* ={jeI: f;j(0y) = 0}, are linearly independent. LICQ implies that f; (6y) # 0 for all
j € & v I*, which means that > ;. 7 Aojfj (6o) = 0 will imply Ag; = 0 for all j € £ U Z*.
The constraints which are non-active have zero Lagrange multipliers and the weakly active
constraints also have zero Lagrange multipliers. However, under LICQ, the strongly active
constraints have positive Lagrange multipliers and must be ruled out in order for the first
order KKT condition to reduce down to the condition /() = 0. In Examples 1-2, the
constraint 6 > 0 will be strongly active at 6y = max (f3y,0) if Sy < 0. Assumption 4 allows
for weakly active and inactive constraints at 6y. In Examples 1-2, the constraint § > 0 will
be weakly active at 6y = max (fy,0) if 5y = 0 and inactive if Sy > 0.

The main idea of our inference procedure is that we will benchmark a test statistic

n*v (frn () — inf 7, (6 + %)) against the conditional quantiles of — inf I, (h), where
heBs,, n heRd

nvy

Bs, = {h eRe: 1A < 5n} is a shrinking neighborhood, 6, — 0 satisfies n?d,, — k for

I{G(0,00],and
~ (h)_RQV(P*_P) T é_}_i _7T<0A> _|__h/Ah ()
]HIn n n »Yn n »VYn 9 H ) 1

where H % H, and the bootstrap empirical measure P can refer to either the multinomial,
wild, or other exchangeable bootstraps. The intuition behind the test statistic is that if 4 is
the unconstrained minimizer of the population objective, then the sample objective should
achieve its minimum close to 6 even if we perturb 6 by small deviations that shrink to
zero as n — o0. We are able to ignore the constraints when constructing our test statistic
because the troublesome term n?h’l (fy) in the asymptotic expansion of the test statistic

disappears when [ (6p) = 0. Since the constraints are not present in the test statistic, our

11



benchmarking distribution also does not need to use the constraints.

Let ¢_,, be the 1 — « conditional quantile of — infd]ﬂln (h). We will show that C;__, =
heR

{0 :n?y (frn (0) — hi%f o (0 + %)) < é}‘_a} is a uniformly asymptotically valid nominal
€ Sn

1 — « confidence set for 6 (P) = 6. By uniformly valid inference, we mean inference that
is uniformly valid across parameters that are either in the interior or on the boundary of
the constraint set or are drifting towards the boundary of the constraint set at arbitrary
rates. For Examples 1-2, this means that we can handle parameters of the form 6y = ¢/7,

where ¢ > 0 is some constant and 7,, — o0 as n — 0.
In the next theorem, J, (-, P) denotes the CDF of n* (frn (00) — hi%f T (00 + :7))
€Ds,,

under P, and J (-, P) denotes the CDF of its limiting distribution under P. Similarly,

J% (-, P) denotes the conditional CDF of — inf H, (k) under P, and J* (-, P) denotes the

on heRd

CDF of its limiting distribution under P.

Theorem 1. (Uniformly valid inference when constraints are not necessary for identi-
fication) Let P be a class of distributions for which Assumptions 1-/ are satisfied uni-
formly in P € Pt and {J(-,P): PeP} and {J* (-, P): P € P} are equicontinuous at

J 1 (1 — a, P). Then lim inf in7fDP (0(P)eCt_,) =1— o, where

n—o Pe

h
* . o2y [ 4 . ~ %
.= {«9 n (ﬂ'n (0) hérégnwn (9 + _n7)> < Cla} ,

Bs, = {h eRd: 1A < 5n}, 0, — 0 satisfies 76, — k for k € (0,0], and &_,, is the 1 — «

~

conditional quantile of — inf H, (h).
heRd

'We define X,, = op (1) uniformly in P € P if if supP (|X,,| > €) = 0 Ve > 0. We define M,, = Op (1)
PeP
uniformly in P € P if limy, .o limsup,,_,, supP (|M,| >m) = 0. Similarly, X = o}, (1) uniformly
PeP

in P e Pif if supP (| X} >¢€lX,) = op(1) for all e > 0. M} = O% (1) uniformly in P € P if
pPepP

lim,;, o0 lim sup,,_,., sup P (P (|M*| > m|X,,) > €) =0 Ve > 0.
PeP

12



Remark 1. Although our current setup has assumed C' is a fixed (non-random) constraint
set, the result in Theorem 1 allows for the constraints to be estimated using the data as
long as the sample constrained estimator én is consistent for the population constrained
argmin 6y. The reason is that Theorem 1 does not use the constraints in any way except
through the consistency of 6,, for 0. There are many cases where 6,, will remain consistent
even when the constraints are estimated. For example, Knight (1999) states on page 13
that if the sample constraint set is constructed using convex, finite-valued functions that
converge to their population limits, then the indicator function for the sample constraint
set will epi-converge in distribution to the indicator function for the population constraint
set. If, additionally the sample objective converges uniformly to the population objective,
then Theorem 1 in Knight (1999) will imply the sample constrained argmin converges in
probability to the population constrained argmin. Other cases where consistency holds are
given in Dupacova and Wets (1988), Shapiro (1990), Robinson (1996), and Bonnans and

Shapiro (2013), among other papers.

Remark 2. In theory, any choice of k € (0,00] will achieve uniformly valid coverage,
but if 7, (f) is nonsmooth or nonconvex, in practice setting £ < oo can help the solver
more easily find the solution to hieréfnﬁn <9 + \%) The choice of k can also affect the
conservativeness of the confidence set’s coverage, with larger values of k typically leading
to less conservative coverage asymptotically. The reason is that the test statistic’s limiting
distribution —{hERgﬁ}fl Hén}HO (h) is closer to — hingdH” (h)’s limiting distribution — ggﬂg’dHo (h)
for larger values of k. In our Monte Carlo simulations we saw that x = 1 leads to more
conservative coverage than x = 5, but there is very little difference in coverage between

k =5 and k = oo. Additionally, the average interval length is shorter for some parameters

when we use k = 5 instead of x = 0. Therefore, we recommend that practitioners use a

13



moderate sized, finite value of k such as k = 5.

Remark 3. If we would like to construct a nominal 1—a confidence set for a subvector vy =
a'fy, where a is a known vector, we could use projection: C]ffzj = [ in*f a'f, sup o 9].
0eCi_q geC

The uniform asymptotic validity of these projection intervals follows directly from the

uniform asymptotic validity of Cf_,.

Now we relax Assumption 4 to allow for possibility that the unconstrained minimizer
differs from the constrained minimizer of the population problem (I (6y) = S (6p) # 0).
Now we allow for possibility that the unconstrained minimizer differs from the constrained
minimizer of the population problem (I (6y) = 5Q (6y) # 0). Under LICQ, I (6y) # 0
implies that some constraint(s) are strongly active at 6, and are therefore necessary for
identification of ;. We will modify our test statistic to n?Y (frn (0) — inf 7, (9 + %)),

hec§
where C} = {h en’(C—0): L'%” < 5n}, and §,, — 0 satisfies n76,, — & for k € (0,00]. In
theory, any choice of k € (0, 00] will achieve uniformly valid coverage, but if 7, (¢) is non-
smooth and/or nonconvex, in practice setting k£ < o helps the solver find the solution to
hlelég Tn (0 + n%) The intuition behind the test statistic is that if # is the constrained min-
on
imizer of the population objective, then the sample objective should achieve its minimum
close to 6 even if we perturb 6 by small deviations while still satisfying the constraints.
We minimize over the constrained neighborhood an when constructing our test statistic
because the troublesome term nYh'l (fy) in the asymptotic expansion of the test statistic
can only be signed when we minimize over the constraint set instead of the entire parameter
space. We will need to use the sign to find another statistic that stochastically dominates

the test statistic and has a well-defined limiting distribution. We can then compare this

other statistic to the benchmarking statistic used to form critical values and demonstrate
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uniform validity of our inference procedure.

Let ¢_,, be the 1 — « conditional quantile of — mde (h). We will show that
heR

Ciia = {9 :n? <ﬁ-n (0) — hlerclg T (0 + )) < é’fa} is a uniformly asymptotically valid
nominal 1 — « confidence set for 6 (P) = 6. We are still benchmarking the test statistic
against the unconstrained minimum of H, (h) because we cannot uniformly consistently
estimate the tangent cone of the constraint set at ;. Since we do not observe 6y, we
would have to replace 6y by 6, and use a sequence 7, — o0 satisfying 7,,/n? — 0 in order
to remove the additional noise caused by centering the constraint set at 0, instead of 0o,
which introduces an additional n” (én — 90> term. However, this procedure would only be
pointwise valid because the convergence of n” (én — 60) to its limiting distribution is not
uniform over P.
In the next theorem, J, (-, P) denotes the CDF of

To= oot A7 (Pa= P) (7 (00 + 55) =7 (-,60)) + 3/ Hoh} under P, and J (:, P)
denotes the CDF of T,,’s limiting distribution under P. Here, Tt (6) is the tangent cone
of C at 6y: Tc (6p) = limsup“="2. Additionally, J* (-, P) denotes the conditional CDF of

710

— infd]I:]In (h) under P, and J* (-, P) denotes the CDF of its limiting distribution under P.
heR

Theorem 2. (Uniformly valid inference when constraints may be necessary for identi-
fication) Let P be a class of distributions for which Assumptions 1-3 are satisfied uni-
formly in P € P, and {J(-,P): Pe P} and {J*(-,P): P € P} are equicontinuous at

J (1 — «, P).Then lim inf mfP (6(P)eCi.,) =1—a, where

n—o0

Ci ., = {9 :n2 (frn (0) — inf 7, (9 + i)) < éT_a} )
heC(sn ny

Cy = {h en’(C—0): L <5, }, o, — 0 satisfies n76,, — Kk for k € (0,0], and ¢f_,, is
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the 1 — o quantile of — inf H, (h).
heRd

Remark 4. When Assumption 4 holds, both the confidence set in Theorem 2 and the
confidence set in Theorem 1 will be valid. In this case, we find that the confidence set
in Theorem 1 tends to be less conservative than the confidence set in Theorem 1 because
the limiting distribution of the test statistic n?” (frn (60) — inf 7, (6’0 + 7%)) is closer to

heBs,,

the limiting distribution of — infd]l:]ln (h). However, if the researcher is unsure of whether
heR

Assumption 4 holds, we recommend using the confidence set in Theorem 2.

3 Constrained GMM

We can extend our uniformly valid inference method to constrained GMM estimators with
either smooth or nonsmooth moments and which are either correctly specified or globally
misspecified. As shown in Hong and Li (2023), GMM estimators with nonsmooth (non-
directionally differentiable) moments have the cubic-root rate of convergence when they
are globally misspecified and the square-root rate of convergence when they are correctly
specified. Throughout the paper, we presume that the user knows the rate of convergence,
which can typically be accomplished by first testing for misspecification using a J-test. The
reason we require knowing the rate of convergence is because we are interested in conduct-
ing uniformly valid inference, which is inference that is uniformly valid across parameters
drifting towards the boundary of the constraint set at arbitrary rates. If we were not in-
terested in uniformly valid inference, we could use an alternative pointwise valid procedure

that does not require knowing the rate of convergence. Details are in Section 3.3.
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3.1 Fixed Weighting Matrix

We first consider the case of a fixed weighting matrix W which is assumed to be symmetric
positive definite. Define the moment function 7 : X x © — R™, sample moments 7, (0) =
P,m (+,0), and population moments 7 () = P (-,6). The constrained GMM estimator and

the pseudo-true parameter are given by

~

oeC

oeC

0y = arg min {Q 0) = ~7 (0) Wr (9)} .

We will propose a uniformly valid inference procedure that will be able to handle the
case of correctly specified moments 7 (6y) = 0, where 6, can be either on the boundary
of the constraint set or drifting towards the boundary of the constraint set at arbitrary
rates. We also allow for the possibility that 7 (6y) = ¢ for some fixed constants ¢ # 0,
meaning that the moments are globally misspecified. However, we do not allow for locally
misspecified models where 7 (6y) = ¢/+/n is drifting towards zero at the y/n rate. It remains
an open question whether we can conduct uniformly valid inference for locally misspecified
constrained GMM models.

We will slightly modify Assumptions 1 and 2 to handle constrained GMM estimators:

Assumption 5. There exists some p € {%,1} and v = ) such that the following

_1
2(2—p
conditions are satisfied:

(i) Qu (62) < 0EQn (0) + 0, (n27).

(i) 960:||19n—f00H>eQ (0) > Q (6y) for all e > 0.

(i) supl|P,w(-.6) = Pr(-,0)] = op(1).
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(iv) supP |m(-,0)] < c0.
0e©

(v) C is Chernoff regular at 6.

Assumption 6. There exists some p € {3,1} and v = ﬁ such that g (-,0) = (-,0) —

7 (+,00) satisfies the following conditions:

(1) The classes of functions Gg = {g;(-,0) : |0 — 6| < R,j =1,...,m} for R near zero

are uniformly manageable for the envelope functions Gg (-) = sup |g;(-,0)|.
9;€GR

(ii) PG% = O(R?") for R — 0.
(iii) For each n > 0, there exists a K such that PGE1{Gr > K} < nR* for R near 0.

() If p =1, 7 (-,0) is Lipschitz continuous in 0 with a stochastically bounded Lipschitz

constant.
(v) X,(s,t) = iiiI;OQQPPg (0o+2)g (- 00+ ﬁ)/ exists for each s,t in RZ.
(vi) O}LHC}OQZPPHg (.60 + L) [21{]g(-, 60 + L)| > ea®=P} = 0 for each € > 0 and t € RY.
(vii) Plg(-,01) = g(-,02)| = O (|61 = 6[*") for |61 — 62] — 0.

(ix) Pg(-,0) is twice differentiable at 0y with full rank Jacobian matriz G = S (6,) and

finite Hessian matrices H; = 006_52(9'79 (0g) forj=1...m.

Similar to Kim and Pollard (1990), the cubic-root rate of convergence is obtained when
Assumptions 5 and 6 are satisfied for v = 1/3 and p = 1/2. In particular, this amounts to
a linear rate of decay of PG%. Usually the linear rate of decay arises when 7 (-, 6) is not
directionally differentiable, such as the ones that appear in the GMM formulation of IV

quantile regression (Chernozhukov and Hansen (2005)) or simulated method of moments
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(McFadden (1989) and Pakes and Pollard (1989)). Other types of nonsmooth moments
that are directionally differentiable, such as in dynamic censored regression (Honore and
Hu (2004)), do not have this linear rate of decay and therefore retain the \/n rate of
convergence. More details about IV quantile regression, simulated method of moments,
and dynamic censored regression can be found in Hong and Li (2023).

We will now describe our inference procedure. We first consider the case when the
constraints are not necessary for identification of 6y, which means that the constrained

minimizer of the population objective is the same as the unconstrained minimizer.
Assumption 7. G'Wr (6y) = 0, where G = 5 (6).

Assumption 7 will rule out strongly active constraints at 6y when LICQ holds. In

1r(0) m(0) if

Example 3, the constraint § > 0 will be strongly active at 6y = argmin 3

6=0

argmin 37 (0) 7 (0) # argmin 17 ()" 7 (6). If 7 = 0.5, Assumption 7 implies that 6y = o,

0=0 (SN

so that both the moments and the non-negativity constraint are correctly specified.

We will benchmark the test statistic n?? (Qn( ) — inf Qn ( n—)) against the con-

5
heB Sn

ditional quantiles of — 1nfdA (h), where B;, = {h e R%: ”h” 6n} is a shrinking neighbor-
heR

hood, 0,, — 0 satisfies n7¢,, — & for x € (0, 0], and

G is a consistent estimate of G, and ﬁj is a consistent estimate of H; = (6y) for

aeaef 7TJ

7 = 1...m. The intuition behind the test statistic is that if # is the unconstrained mini-
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mizer of the population objective, then the sample objective should achieve its minimum
close to 0 even if we perturb 6 by small deviations that shrink to zero as n — 0. We
are able to ignore the constraints when constructing our test statistic because the trouble-
some term nh'G'Wr (p) in the asymptotic expansion of the test statistic disappears when
G'W (0p) = 0. Since the constraints are not present in the test statistic, our benchmarking
distribution also does not need to use the constraints. Let ¢j__, be the 1—a conditional quan-
tile of — hingdAn (h). We will show that C_, = {9 : 2 (Qn( ) — hénann (6 + )) < a;k_a}
is a uniformly asymptotically valid nominal 1 — « confidence set for 6 (P) = 6,.

We will impose an additional assumption to show bootstrap equicontinuity results which

are necessary to demonstrate the validity of our inference procedure when the GMM esti-

mator is y/n-consistent. This assumption is also used in Hong and Li (2023).

Assumption 8. If Assumptions 5 and 6 are satisfied for v = 1/2, p = 1, then for any

7(-,0)—m(-00)
1++/nfl6—0o]

€, — 0, lim lim supsupt? P{ sup } = 0. Additionally, for each ¢ > 0

A=0 pooo t=A [6—60]<en

and t € R?, lim P

n—oo

x/ﬁg(ewf Vg (- 90+I) .

(-0 (,60)

In the next theorem, J, (-, P) denotes the CDF of n* (Qn (6) — hi%f Qn (60 + %))

€ Sn
under P, and J (-, P) denotes the CDF of its limiting distribution under P. Similarly,
J* (-, P) denotes the conditional CDF of — inf A, (h) under P, and J* (-, P) denotes the

on heRd

CDF of its limiting distribution under P.

Theorem 3. (Uniformly valid inference when constraints are not necessary for identifi-
cation) Let P be a class of distributions for which Assumptions 3, 5-7 and 8 are satisfied

uniformly in P € P, and {J(-,P): PP} and {J* (-, P) : P € P} are equicontinuous at
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J ' (1= a,P). Then liminfinf P (0 (P) € Cf_,) = 1 — a, where

n n—ow PeP

. R h
* _ . a2y o Ak
1 {6’ 'n (Qn (9) hé%ann (9 + _n"Y)) < cl_a} ,

Bs, = {h eRd: 1A < 5n}, 0, — 0 satisfies n76,, — Kk for ke (0,0], and ¢f_,, is the 1 — «

~

conditional quantile of — inf A, ().
heRd

Now suppose the constraints may be necessary for identification of 6y so that Assump-

0
heC S

tion 7 may not hold. We will modify our test statistic to n?” (Qn () — inf Qn (9 + n%)) ,

where C = {h en? (C—10): H%H < 5n}, and 0, — 0 satisfies n?9,, — & for k € (0,0]. The
intuition behind the test statistic is that if # is the constrained minimizer of the population
objective, then the sample objective should achieve its minimum close to 8 even if we per-
turb 6 by small deviations while still satisfying the constraints. In theory, the choice of
does not matter for achieving uniformly valid coverage, but if Q,, () is nonsmooth and/or
nonconvex, in practice setting x < oo helps the solver find the solution to hgég Qn (9 + %)
on

We cannot ignore the constraints when constructing our test statistic because the trou-
blesome term n"h'G'Wr (6y) in the asymptotic expansion of the test statistic can only be
signed when we minimize over the constraint set instead of the entire parameter space.
We will need to use the sign to find another statistic that stochastically dominates the
test statistic and has a well-defined limiting distribution. We can then compare this other
statistic to the benchmarking statistic used to form critical values and demonstrate uniform
validity of our inference procedure.

Let ¢i_,, be the 1 — a conditional quantile of — Jgﬂ{dﬁn (h). We are still benchmarking

against the unconstrained minimum of A, (h) because we cannot uniformly consistently

estimate the tangent cone of the constraint set at 6,. Since we do not observe 6, we
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would have to replace 6y by 6, and use a sequence 7, — o0 satisfying 7,,/n” — 0 in order
to remove the additional noise caused by centering the constraint set at 0, instead of 0o,
which introduces an additional n” <én — 9()) term. However, this procedure would be only
pointwise valid because the convergence of n” (én — 00> to its limiting distribution is not
uniform over P.

We will show that Cf_, = {0 :n?Y (Qn 0) — hlerég Qn (0 + %)) < éf_a} is a uniformly

on

asymptotically valid nominal 1— « confidence set for  (P) = . Our inference procedure is
uniformly valid across parameters that are either in the interior or on the boundary of the

constraint set or are drifting towards the boundary at arbitrary unknown rates. Let J, (-, P)

heCDFof $, =~ inf ~ {n?(Q Y 4 G L)) + Sn'n|

be the CDF of S he{heTcl(%o):HhHsN} n’ ( Qo (90 + m) + Q3 (90 + m) + 5h'Hh ; under

P, where Q,(-) and Qs(-) are defined in 6, and let J (-, P) denote the CDF of S,’s limiting

distribution under P. Additionally, let J; (-, P) denote the conditional CDF of — infdfln (h)
heR

under P, and let J* (-, P) denote the CDF of its limiting distribution under P.

Theorem 4. (Uniformly valid inference when constraints may be necessary for identifi-
cation) Let P be a class of distributions for which Assumptions 3, 5-6 and 8 are satisfied
uniformly in P € P, and {J (-, P): P € P} and {J* (-, P) : P € P} are equicontinuous at

J ' (1=, P).Then liminfinf P (0 (P) € C_,) = 1 — a, where

n n—o PeP

. . h
% _ 2 . s
Ci. = {6’ - nY (Qn (9) hgclgnQ" (9 + _n7)> < cl_a} ,

Cf = {he n (C—6): < 5n}, dp — 0 satisfies n76,, — K for k € (0,0], and ¢f_,, is

nYy

the 1 — o conditional quantile of — inf A, (h).
heRd
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3.2 Estimated Weighting Matrix

We now consider the case of an estimated weighting matrix where the 2-step GMM esti-

mator is 6, = argmin {Qn (0) = 17 (0) W7 (0)} It can be that the estimated weight-
0eC

ing matrix W, = W, (91> depends on the unconstrained 1-step GMM estimator él =

arg mini# (6)' Wi (6), or it can be that W,, = W, (éf) depends on the constrained 1-step
0e©
GMM estimator S = arg minl# (6) Wi# (0). Note that we need to redefine the presumed

oeC

to be unique pseudo-true parameter to be 6y = argmini (6) Wr (6) where W depends on

2
oeC

the presumed to be unique 1-step GMM pseudo-true parameter using some fixed weighting
matrix Wi. If we are using the unconstrained 1-step GMM estimator, then W = W (6,),
where 6, = argmingr (6) Wi (9). If we are using the constrained 1-step GMM estima-

0e©

tor, then W = W (6¢), where 6{ = argminir (6)' Wir (). The choice of which W to
0eC

use can be determined by whether the constraints matter for identification of the param-
eters. If G{Wim () = 0, where Gy = S (6¢), then 6 = 6; and both W = W (6;) and
W =W («910) lead to the same pseudo-true parameter 6,. However, if G'W;n (910) # 0,
meaning that the constraints matter for identification, then §¢ will differ from 6, and de-
pending on whether we set W = W (6;) or W = W (6{'), we can obtain different values of
0. Because we would like to enforce the constraints to identify the parameters, we would
typically use W =W (910) in this case.

The presence of the estimated weighting matrix adds an additional source of variation
which needs to be accounted for when constructing our confidence set. We will bench-
mark the test statistic n?” <Qn( ) — inf O (9 + )) against the conditional quantiles

heC
of — inf B, (h), where

B, (h) = n', (én)'wn (P*—P) (7r ( b, + %) o ( 9)> (3)
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W is the bootstrap analog of the weighting matrix and depends on a consistent bootstrap
analog of the 1-step estimator using a fixed weighting matrix W;. If we are using the

constrained 1-step estimator, then W = W* (élc*), where
. RN .
67 = argmin {wn (09) Wi Pz = P (7 (,0) = (,0F)) (4)

0L 1 g¢
% (9 90> (lel i i 1jk7Tnk: < > fA[j) (9 — éf)

(o ne( ).

and 7, — o0 is a sequence that satisfies 1,/n” — 0. The purpose of this sequence is to
remove the additional noise caused by centering the constraint set around élc instead of the
unknown 6¢'.

If we are using the unconstrained 1-step estimator, then W} = W (éi“), where

o :ar%elélin{frn (9) W, (P —P)( (,(9)—7?(-,él>> (5)
Lo-ay (G/WI + 35w )ﬁj) (0-0)
+ (9 . é1>'é’wl (P*— P (91>}

l\DIn—

We will impose an additional assumption regarding the allowable rates of convergence of

the estimated weighting matrix. For a given rate of convergence of the estimator, we allow
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for the weighting matrix to converge at either the same rate or a faster rate. We also

require joint weak convergence assumptions for terms involving the estimated weighting

matrix and the empirical processes that appear from expanding the moments. The joint

weak convergence assumptions are also used in Hong and Li (2023).

Assumption 9. v, W,, and W} can fall into one of the following cases:
(i) v =1/2, W, =W =0, (n™1%) and W} — W, = o} (n""2).
(i) v =1/2, W =W = O, (n"2) and W = W, = O (n™V?).
(iii) v =1/3, Wy =W =0, (n™3) and W} = W, = o% (n='/3).
(iv) v =1/3, W, =W = O, (n"Y3) and W} = W, = O (n™V3).

Furthermore, If v = 1/2, W,, = W = O,, (n"'?) and W} — W, = Oz (n=Y%), then

7 (60) Wan (P, — P) g (-, 00 + n=/2h) 7 (60) W21 (h)
WG Wyn/n (P, — P)7 (-, 60) > WG WU, and
G (W, — W) () WG W,
f (én>/Wnn (Pr =P (7 (w0 + &) =7 (00)) 7 (00) W Zo. (1)
WGWon (Py = P (,0,) o WGWU,
WG (WE — W) 7, (en) WG W,

i the

product space of locally bounded functions {Bloc (Rd) }3 for some tight random vector W.

Here, Uy ~ N (0, P ( (-,00) — 7 (60)) (7 (-,60) — 7 (60))") and Zy1 (h) is a mean zero Gaus-

sian process with covariance kernel 3 (s,t) = lim a?Pg (-, Oy + %) g (', Oy + é)/
a—>0

Ify=1/3, W, =W = O, (n™3) and W} —W,, = O} (n™'/3), then
7 (60) Wn*® (P, — P)g (', o + n_l/3h) 7 (6o)" W 24172 (h) p
s an

WG (W, — W) (6)) WG W,
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(s (90), Wn2/3 (P: — Pn) g (', 90 + n_1/3h) P ™ ((90), WZOJ/Q (h)
o i the product
R'G'nY3 (W — W,) 7 (6o) N G'"Wy

space of locally bounded functions {Bzoc (Rd)}2 for some tight random vector W,. Here,

Zo,1/2 (h) is a mean zero Gaussian process with covariance kernel

21/2(S7t) = lim OéPg ('790 + i) g ('700 + é)/.

a—00

Let ¢j_,, be the 1 — « conditional quantile of — inden (h). We will show that
heR

Ci ., = {6 : n? <Qn 0) — inf Qn (0 + %)) < é’l"a} is a uniformly asymptotically valid
heCs

nominal 1 — « confidence set for § (P) = 6. In the next theorem, we let J, (-, P) denote

the CDF of R, = — {n®Q, (6o + &) + IWHh} under P, where Q,(-) is

inf
he{heTc (0o):|hll<k}
defined in equation 9, and let J (-, P) denote the CDF of R,’s limiting distribution under
P. Additionally, let J¥ (-, P) denote the conditional CDF of — inden (h) under P, and let
heR

J* (-, P) denote the CDF of its limiting distribution under P.

Theorem 5. (Uniformly valid inference when constraints may be necessary for identifica-
tion) Let P be a class of distributions for which Assumptions 3, 5-6 and 8-9 are satisfied
uniformly in P € P, and {J (-, P): P e P} and {J* (-, P): P € P} are equicontinuous at

J. ' (1= a,P).Then liminfinf P (0 (P) € Cf_,) = 1 — a, where

n n—ow PeP

. . h
x ) . s
Ci, = {0 :nY ((;)n 9) hlerégnQ" (6’ + _n7)> < Cl—a} ,

Cy = {he n (C—6): < (5n}, o, — 0 satisfies n76,, — K for k € (0,0], and ¢f_,, is

n

the 1 — o conditional quantile of — inf B, (h).
heRd
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3.3 Pointwise Valid Rate-Adaptive Inference for Constrained GMM

If we were only interested in pointwise valid, rather than uniformly valid inference for

0o = argmini (§)' W (6), we can conduct rate-adaptive inference, which does not require

oeC

knowing the rate of convergence . In other words, if we are willing to assume that 6,
is away from the boundary of C, then we can be agnostic about whether the model is
correctly specified or globally misspecified (we have to exclude the possibility of local mis-
specification). Our pointwise valid procedure for constrained GMM with a fixed weighting

matrix is as follows:

1. Compute 0, = argminiz, (0) W, (), #, (én> =15t <Xi,én>, G, f[j for j =

5 - 1
oeC "

1...m. Pick 1, — oo which is a sequence that satisfies 1, /n'/? — 0.

2. Repeat for B bootstrap iterations: draw a bootstrap sample X7, ..., X* and compute

0* = argmin {frn (én>/W (%Zn: (7r (X5,0)—m (Xl*,én>) — %Zn: <7T (Xi,0) — 7 (Xi,

fe C=On +én
m

3. Fork =1,...,d, compute the 1 —a/2 and «/2 percentiles of the empirical distribution

~

of é;';k — Oni- Call them ¢ 12 and ¢ o 0.

A nominal 1 — a two-sided equal-tailed confidence interval for 6. can be formed by
[énk — Ck71_a/2,énk — Ck,a/g:l. A nominal 1 — « confidence interval for p(6y), where p :

© — R, can be formed using the 1 — «/2 and a/2 percentiles of the empirical distribution

of p (é;’;) —p (én), denoted ¢, 1_q/2 and ¢, o /o: [p (én) — Cpi—a/2, P (én> — Cp’a/2:|.
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We will show that the proposed bootstrap procedure will pointwise consistently estimate
the distribution of 6,, without having to know the rate of convergence coefficient 7. Since
we know that v > 1/3 for the class of GMM estimators we consider, the sequence 7, will
satisfy 7,/n” — 0 and remove the additional noise caused by centering the constraint set

around 6,, instead of the unknown 0o.

Theorem 6. Suppose Assumptions 3, 5-6 and 8 hold, G 5 G, and lf[j LN H; for j =
L...m. Also suppose H = G'WG + 3" S\" Wi (60) H; is positive definite. Then,

n’ (én - 60> wo argmin Ag (), n” (é* — én> o argmin Ay (h)

heT ¢ (0o) w heTe(6o)

where H = G'WG+]", Y Wirm (60) Hy, Te (60) = lin:ﬁ)up@l, Ao (h) =7 (6p) W20, (h)+
WG'WUy + W Hh for v = 1/2, and Ay (h) = w(60) W Zo1)2 (h) + 1R Hh when v = 1/3.
Here, Uy ~ N (0, P (7 (+,00) — 7 (60)) (7 (-,00) — 7 (60))"), Z0.1 (k) is a mean zero Gaussian
process with covariance kernel 31 (s,t) = O][.i_l;I;)OZQ.Pg (-, 0o + i) g (-, Oy + é),, and Zy1/2 (h) is

a mean zero Gaussian process with covariance kernel Xy 5(s,t) = lim aPg (-, Oy + i) g (-, 0o + é)/
a—0

4 Monte Carlo

4.1 Nonsmooth Location Model

Consider a simple location model with i.i.d data,

yi=ﬁ0+ei,2’=1,...,n, €i~N<O,1>.

28



For 7 (-,0) = [1 (y; < 0) — 7;y; — 0], the population moments are 7 (8) = [P (y; < 0) — 7; Ey; — 0]
The model cannot be correctly specified as long as 7 # 0.5, and the nonsmoothness of the
moments leads to a cubic-root rate of convergence under global misspecification, meaning
that 7 = ¢ # 0.5 for some fixed constant c¢. As demonstrated in Hong and Li (2023),
the standard bootstrap will undercover the parameter of interest whenever 7 # 0.5, with
the undercoverage becoming more severe as 7 moves further away from 0.5. Additionally,
if 7 = 0.5, Li (2023) has shown that the standard bootstrap and subsampling percentile
intervals will under-cover drifting values of 5, when we impose a non-negativity constraint.
The rate-adaptive bootstrap in Hong and Li (2023) can conduct pointwise valid inference
for misspecified GMM models without constraints, but here we would like to be able to
conduct inference that is uniformly valid across all drifting parameters while imposing a
non-negativity constraint.

We first use a fixed weighting matrix W = I, and consider the following GMM criterion

function and its probability limit:

We are interested in conducting uniformly valid inference on the pseudo true value given

by 0y = argmin@ (¢), where the constraint set is C' = {# : 0 > 0}. We call 0, the pseudo
0eC

true value because it will not be equal to 5y if 7 # 0.5 or Sy < 0.

We will examine the empirical coverage and average width of the confidence set Ci_, =

{9 .2 (Qn (6) — inf Q, (6 + %)) < é’l"_a}, where C? = {hem (C—0): 1 < 5n},
he(,’[;n

0, — 0 satisfies n’9, — k for k € (0,00], and & __, is the 1 — a empirical quantile of
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- infdfln (h) for A, (h) given in equation 2. In all of our simulations, we used x = 5 and
heR

Matlab’s patternsearch routine to compute our estimators. Additionally, we estimate G

and H using kernel estimators:

Gn = i i K (yi a é") i o iz 21 I, (yz - én)

-1 0

Ky, (z) = K (z/h), K (z) = (27) * exp(—2%/2), K| (z) = K’ (z/h) and
K'(z) = — (27) Yz exp(—22/2), where h is Silverman’s rule-of-thumb bandwidth i =
1.06n~5. We also tried different bandwidth values and the results were not affected.

Table 1 shows the empirical coverage frequencies and average interval lengths (in paren-
theses) of a nominal 95% confidence set when 5, > 0. We consider a range of different
values of By € {0,n™!,n~Y2 n=Y3 n=Y4 n=Y6 1} where n € {100,500, 1000,5000}. We
consider three different values of 7 € {0.1,0.3,0.5}, where the first two values of 7 corre-
spond to misspecified models with the cubic-root rate of convergence and the last value
corresponds to a correctly specified model with the square-root rate of convergence. We use
B = 1000 bootstrap iterations, and R = 2000 Monte Carlo simulations. The coverage is
above the nominal level for values of 3y close to zero (when the constraint becomes weakly
active), but approaches the nominal level as 3, becomes more positive (when the constraint
becomes inactive). For any given sample size, the average interval length is fairly small
and does not change much across the different values of f.

Table 2 shows the empirical coverage frequencies and average interval lengths (in paren-
theses) of a nominal 95% confidence set when 8y < 0. We consider a range of different values
of By € {—n~t, —n7V2 —n7V3 —p7M4 —n716 —1}. Because negative values of 3, violate

the non-negativity constraint, the non-negativity constraint is misspecified and therefore
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Table 1: Coverage Frequencies and Average Interval Lengths, k = 5

B 0 n-1 n—1/2 n—1/3 n—1/4 n—1/6 1
7=0.1
n =100 1.000 1.000  0.990 0.979 0.964 0.956  0.945
(0.559) (0.543) (0.472) (0.430) (0.424) (0.421) (0.420)
n =>500 1.000 1.000 1.000 0.991 0.964 0.963 0.960
(0.369) (0.360) (0.303) (0.232) (0.211) (0.211) (0.211)
n = 1000 1.000 1.000 1.000 0.999 0.980  0.957  0.958
(0.328) (0.327) (0.276) (0.195) (0.161) (0.159) (0.159)
n = 5000 1.000 1.000 1.000 1.000 0.999 0.969 0.970
(0.291) (0.289) (0.264) (0.186) (0.103) (0.085) (0.086)
7=0.3
n=100 0.996 0994 0971 0.960 0.952  0.947  0.945
(0.464) (0.452) (0.410) (0.393) (0.393) (0.392) (0.393)
n =500 1.000 1.000  0.995 0.978 0.959 0.956 0.954
(0.253) (0.246) (0.210) (0.186) (0.184) (0.184) (0.185)
n = 1000 1.000 1.000  0.998 0.977 0957 0942 0.953
(0.205) (0.204) (0.168) (0.137) (0.135) (0.135) (0.135)
n = 5000 1.000 1.000 1.000 0.999 0.957  0.955  0.969
(0.157) (0.155) (0.132) (0.078) (0.066) (0.066) (0.067)
7=20.5
n=100 0.976 0.977 0.962 0.950 0.945 0.944 0.942
(0.408) (0.401) (0.386) (0.381) (0.382) (0.383) (0.383)
n=>500 0974 0972 0.965 0.964 0.955 0.959 0.953
(0.185) (0.183) (0.175) (0.174) (0.174) (0.174) (0.174)
n = 1000 0.974 0973 0.970 0.952 0.955 0.945 0.954
(0.131) (0.131) (0.124) (0.123) (0.123) (0.124) (0.124)
n=>5000 0976 0973 0974 0.944 0.948 0.956  0.956
(0.059) (0.058) (0.056) (0.056) (0.056) (0.056) (0.056)

strongly active (binding) at 6y = argmin@ (#), which leads to the coverage for 6y being
6=0

quite conservative. However, the average interval lengths are not particularly wide because
we are covering the pseudo-true parameter 0y rather than the true parameter 5.

We also examined the coverage of the confidence set constructed using the unconstrained
minimum of the objective function: Df_, = {9 :n?7 (Qn (0) — hérlgné)n (0 + %)) < éi‘_a},

where Bs, = {h e R?: @ < (5n} is a shrinking neighborhood and §,, — 0 satisfies n79,, — &
for k = 5. This confidence set is only valid when Assumption 7 holds, which rules out sev-

eral drifting parameters when 7 # 0.5. If we have correctly specified moments and correctly

31



Table 2: Coverage Frequencies and Average Interval Lengths, k = 5

Bo ol pt2 it A 16 _1
7=0.1
n =100 1.000 1.000 1.000 1.000 1.000 1.000
(0.566) (0.674) (0.839) (0.990) (1.095) (1.091)
n =>500 1.000 1.000 1.000 1.000 1.000 1.000
(0.368) (0.435) (0.570) (0.642) (0.644) (0.635)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.330) (0.380) (0.486) (0.513) (0.510) (0.504)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.283) (0.295) (0.299) (0.297) (0.296) (0.294)
7=03
n =100 0.996 1.000 1.000 1.000 1.000 1.000
(0.467) (0.554) (0.708) (0.876) (1.048) (1.087)
n =500 1.000 1.000 1.000 1.000 1.000 1.000
(0.252) (0.307) (0.441) (0.582) (0.641) (0.633)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.206) (0.249) (0.368) (0.490) (0.508) (0.503)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.156) (0.181) (0.263) (0.296) (0.295) (0.293)
7=20.5
n=100 0.980 0.998 1.000 1.000 1.000 1.000
(0.407) (0.452) (0.516) (0.544) (0.537) (0.515)
n=>500 0.969 0.998 1.000 1.000 1.000 1.000
(0.184) (0.204) (0.242) (0.240) (0.233) (0.226)
n =1000 0.974  0.998 1.000 1.000 1.000 1.000
(0.131) (0.144) (0.173) (0.169) (0.164) (0.160)
n =>5000 0.979  0.999 1.000 1.000 1.000 1.000
(0.059) (0.065) (0.077) (0.074) (0.072) (0.071)

specified constraints, which means 7 = 0.5 and By = 0, then Assumption 7 will hold. As

*
l—«

shown in Table 3, if 7 = 0.5, the coverage of D is less conservative than the coverage

of Cf

¥ ., and the average interval lengths are also shorter. The reason is that the limit-

ing distribution of n?7 (Qn 0) — hi%f Qn (0 + %)) is closer to the limiting distribution of
€ Sn
— infdfln (h). However, when 7 # 0.5, the coverage of the confidence set is far below the
heR
nominal level for Sy = 0 and also for several of the drifting values of 5y. The faster the

rate at which g, drifts towards zero, the more severe the undercoverage, and furthermore,

the undercoverage worsens with larger values of n.
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Table 3: Coverage Frequencies and Average Interval Lengths using Unconstrained Objective

B 0 n-1 n—1/2 n-1/3 n—1/4 n—1/6 9
7=0.1
n=100 0.783 0.805 0.943 0.953 0.941  0.947 0.938
(0.379) (0.377) (0.371) (0.365) (0.368) (0.365) (0.364)
n=>500 0.256 0.282 0.600 0.953 0.953 0.943 0.959
(0.201) (0.200) (0.198) (0.194) (0.190) (0.190) (0.190)
n = 1000 0.058  0.057 0.232 0.854 0.953 0.935 0.945
(0.153) (0.153) (0.151) (0.148) (0.144) (0.144) (0.144)
n = 5000 0.000 0.000 0.000 0.025 0.849  0.950 0.950
(0.084) (0.084) (0.083) (0.080) (0.078) (0.077) (0.077)
7=0.3
n=100 0.898 0.920 0.947 0.948 0945 0946  0.942
(0.354) (0.352) (0.347) (0.346) (0.347) (0.346) (0.345)
n=>500 0.699 0.724  0.928 0.957 0.951 0943 0.961
(0.177) (0.176) (0.174) (0.172) (0.171) (0.171) (0.173)
n = 1000 0.493 0509 0.824 0.953 0.950 0.937  0.949
(0.130) (0.130) (0.128) (0.126) (0.126) (0.126) (0.126)
n = 5000 0.013 0.011 0.071 0.908 0.947  0.944  0.957
(0.065) (0.065) (0.064) (0.062) (0.062) (0.061) (0.062)
7=20.5
n=100 0954 0949 0947 0.952 0.942  0.947 0.945
(0.342) (0.341) (0.342) (0.341) (0.342) (0.340) (0.342)
n=>500 0946 0.942 0.944 0.963 0.958 0.948  0.959
(0.166) (0.166) (0.166) (0.166) (0.166) (0.165) (0.166)
n = 1000 0.952 0.942 0.948 0.945 0.952  0.945 0.959
(0.120) (0.120) (0.119) (0.119) (0.119) (0.120) (0.119)
n=>5000 0.956 0.952 0.948 0.945 0.954 0.957 0.954
(0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055)

Now we consider the case of an estimated weighting matrix. The variance-covariance

matrix of the moments is

Fy (9) - Fy (6)2 _fy (‘9)

—fy (9) 1

E(m(-.0)—7(0) (7 (-,0) — 7 (8)) =

We consider using an estimate of the inverse of the variance-covariance matrix of the
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moments as our weighting matrix:

where §¢ = arg mings 17, (0)' #, (0) is the constrained 1-step estimator using the identity

~

weighting matrix, f, (éf) = L3 K, (yZ — 91C>, and F), (éf) =iyl (yl < élc)

The bootstrapped weighting matrix is computed using the multinomial bootstrap:

i ) = | 0B E) )
n \Y1 - _fy* <é10*> X

where élc* is the constrained bootstrap estimate in equation 4 using W; = I and n,, = n'/4,

A*A*:_ﬂ: hyfk_A*’an A*A*:_@: y?"gA*. e use the
fr (05) = & K (ur —07%), and By (67%) = L3701 (yr < 0F%). We use th
same Silverman’s Rule of Thumb bandwidth as before h = 1.06std (y)n~'/.

We want to conduct uniformly valid inference on the pseudo true value given by

F(69) — F, (69)° —f,(6°) |
0y = argmingz (0)' W (67) 7 (9) where W (67) = v (O7) = B, (07)" 1, (07)

=0 —f Yy (910) 1
and 0 = argminiw ()" 7 (9). Our uniformly asymptotically valid nominal 1—« confidence
6=0
setis i, = {9 .02 (Qn (6) — inf Q. (6 + %)) < éi‘_a}, where Q, (8) = L4, (6)' W, (éf) 7 (0),
heCy |

cl = {h en’(C—0): ‘%H < 5n}, 0, — 0 satisfies n76,, — k, and ¢§_, is the 1 — a condi-

tional quantile of — infdén (h) for B, () given in equation 3.
heR
Tables 4 and 5 show the empirical coverage frequencies and average interval lengths (in
parentheses) of nominal 95% confidence intervals when x = 5. We consider a range of differ-

ent values of By € +{0,n"!,n~Y2 n=V3 n=14 n=16 1} where n € {100,500, 1000, 5000}.

We consider three different values of 7 € {0.1,0.3,0.5} and use B = 1000 bootstrap itera-
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Table 4: Coverage Frequencies and Average Interval Lengths, k = 5

B 0 n-1 n—1/2 n—1/3 n—1/4 n—1/6 1
7=0.1
n=100 0.987 0.983 0.985 0.986 0.975 0.961 0.977
(1.462) (1.490) (1.435) (1.460) (1.533) (1.498) (1.513)
n=>500 098  0.982 0.986 0.972 0.970 0.963 0.957
(0.901) (0.888) (0.864) (0.871) (0.861) (0.903) (0.881)
n = 1000 0.977 0.980 0.983 0.981 0.969  0.960 0.959
(0.705) (0.712) (0.681) (0.685) (0.687) (0.698) (0.704)
n=>5000 0.983 0.979 0.986 0.975 0.964 0.961  0.956
(0.401) (0.400) (0.396) (0.379) (0.384) (0.383) (0.397)
7=0.3
n=100 0.980 0.981 0.971 0.956 0.930 0.930 0.933
(0.855) (0.885) (0.814) (0.781) (0.808) (0.786) (0.774)
n =500 0.981 0.980  0.981 0.958 0.935 0.929 0.938
(0.501) (0.499) (0.471) (0.452) (0.437) (0.440) (0.436)
n=1000 0.975 0.979 0.980 0.963 0.938 0.928  0.926
(0.401) (0.400) (0.382) (0.368) (0.362) (0.354) (0.358)
n =>5000 0.982 0.978  0.982 0.959 0.942  0.952  0.946
(0.251) (0.250) (0.242) (0.230) (0.225) (0.222) (0.224)
7=20.5
n=100 0.969 0.968 0.954 0.935 0.924 0.924 0.916
(0.410) (0.414) (0.395) (0.400) (0.401) (0.404) (0.406)
n=>500 0.966 0.963 0.960 0.950 0.945 0.940 0.948
(0.191) (0.189) (0.182) (0.185) (0.186) (0.185) (0.185)
n = 1000 0.970 0.963 0.961 0.936 0.950 0.939 0.947
(0.136) (0.136) (0.131) (0.133) (0.133) (0.133) (0.133)
n=>5000 0.973 0976 0.966 0.946 0.947  0.955  0.951
(0.062) (0.062) (0.060) (0.060) (0.061) (0.061) (0.061)

tions and R = 2000 Monte Carlo simulations. For the positive values of 3y, the coverage is

close to the nominal level for sufficiently large values of n and is less conservative when [,

is further away from the boundary of the constraint set. For the negative values of 3y, the

non-negativity constraint is misspecified and therefore strongly active at 6y = ar% IglinQ (0).
>

This misspecification causes the coverage for 6y to be quite conservative. However, the av-

erage interval lengths are not particularly wide because we are covering the pseudo-true

parameter # rather than the true parameter §,. Additional Monte Carlo simulations for

the cases of kK = o0 and k = 1 are in the Appendix Section 6.3.
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Table 5: Coverage Frequencies and Average Interval Lengths, k = 5

Bo ol pt2 it A 16 _1
7=0.1
n=100 0.984 0.989 0.999 0.999 1.000 1.000
(1.246) (1.300) (1.393) (1.447) (1.470) (1.524)
n=>500 0.984 0.992 0.996 0.996  0.999 1.000
(0.818) (0.841) (0.887) (0.895) (0.846) (0.760)
n=1000 0.984 0.986 0.996 0.999 1.000 1.000
(0.682) (0.682) (0.720) (0.720) (0.660) (0.572)
n =>5000 0.980 0.991 0.993 0.999 1.000 1.000
(0.401) (0.406) (0.415) (0.407) (0.366) (0.315)
7=03
n=100 0.979 0.993 0.999 0.999 1.000 1.000
(0.823) (0.906) (1.014) (1.140) (1.246) (1.322)
n=>500 0.981 0.991 0.999 1.000 1.000 1.000
(0.498) (0.526) (0.601) (0.689) (0.709) (0.677)
n=1000 0.980 0.989 0.998 1.000 1.000 1.000
(0.402) (0.420) (0.486) (0.562) (0.564) (0.535)
n =>5000 0.982  0.992 0.997 1.000 1.000 1.000
(0.252) (0.259) (0.298) (0.341) (0.325) (0.304)
7=20.5
n=100 0.970 0.996 0.999 1.000 1.000 1.000
(0.419) (0.467) (0.557) (0.655) (0.783) (1.437)
n=>500 0.964 0.998 1.000 1.000 1.000 1.000
(0.191) (0.211) (0.280) (0.355) (0.495) (1.174)
n = 1000 0.967  0.997 1.000 1.000 1.000 1.000
(0.136) (0.150) (0.208) (0.279) (0.413) (1.132)
n =>5000 0.977  0.999 1.000 1.000 1.000 1.000
(0.062) (0.068) (0.106) (0.163) (0.284) (1.071)

5 Conclusion

We have proposed an inference procedure for parameters defined by the solution to con-
strained optimization problems with non-random constraints. We allow the sample objec-
tive to be nonsmooth, nonconvex, and the rate of convergence of the constrained estimator
to be different from the y/n rate, thus allowing for constrained M-estimators with nonstan-
dard limiting distributions as well as globally misspecified nonsmooth constrained GMM

estimators. We have demonstrated that our confidence set has uniformly valid coverage
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across a range of different parameters which can be either in the interior or on the boundary

of the constraint set or are drifting towards the boundary at arbitrary rates.

6 Appendix

6.1 Proofs of Theorems
6.1.1 Proof of Theorem 1

Consider any sequence {P(”) eP:n= 1} that determines 6, = 0 (P(")) and the laws of
all random variables. Denote the empirical measure as P, and the bootstrap empirical
measure as P*. Consistency of 6,, for 6, follows from Assumption 1 and constraining 6 to
lie in C' when applying Corollary 3.2.3 in van der Vaart and Wellner (1996). We already
showed in the proof of Theorem 4.1 of Hong and Li (2020) that under Assumption 2,
n?" (Pn — P(")) (7r (-, 0,, + T%) — 7 (s Qn)) converges in finite dimensional distribution to a
mean zero Gaussian process Z , (h) with covariance kernel

t /

a—00

Additionally, n?*P™ (7 (-, 0, + ) — 7 (-,6,)) = W'n71(6,)+5h' Hoh+o(1) = $h' Hoh+o(1)

since we assumed in Assumption 4 that [ (6,,) = 0. Therefore,

n 7, <0n + ﬁ) —n* %, (6,)
n”

h 1
n27 (Pn — P(n)) (7‘(’ <-’ Gn + H) — T ('7 Qn)) + éh/H()h + OP(n)(l)

l
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as a process indexed by h in the space of locally bounded functions B, (Rd) equipped
with the topology of uniform convergence on compacta.

Theorem 3.6.13 in van der Vaart and Wellner (1996) or Theorem 2.6 in Kosorok (2007)
then implies that the bootstrapped process n?? (P* — B,) (7r (-, 0, + 7%) —7 (- Hn)) is con-
sistent for the same limiting process as n* (Pn — P(”)) (7T (-, 0, + n%) — (- Hn)):

n® (P* — P,) (7? (-,en + %) —7 (-,en)) v Zo, (h).

w

Next we show that for every sequence of positive numbers {e,} converging to zero,

n*7 sup ’(Pn — P(")) d‘ = opm (1),
de2(n)

where Z(n) = {d (-,0,, h1,ha) = g (30, +n "hy) — g (;6,, + n~7hs) such that
max(||hy ], [|he]) < M and |h; — ha| < €,}. Note that Z(n) has envelope function D,, =
2G g(n) where R(n) = Mn™7.

The maximal inequality states that

n®* sup P,d?

2y p(n) _ p) ). /o2 p N2 e (n)
b diggw)MP" P )d‘gP ¥ B Dy J n* P, D2

Note that P™"n?"*P,D? = O <n2w (n‘”)%) = O(1). Next, for each K > 0, P™ sup P,d* <

de2(n)
PM™P, sup d*1{D, > K} + KP"™ sup P,|d| < P"™P,D?1{D,, > K} + K sup P™)|d|
deP(n) de2(n) deP(n)
+KP™ sup ‘Pn|d| — P(")|d||. For the first term, for large enough K, there exists some
deP(n)
n > 0 such that P™P,D?1{D, > K} < ngn~2". For the second term, K sup P™|d| =
deP(n)
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O (n=%¢,) = o (n=2"). For the third term, if p < 1,

KpP™ sup |P ] — P™1d|| < Kn~"?J(1)/ P™ D2

de9(

-0 (n—(7p+1/2)) =0 (n—%) =0 (n_ZW’)

In the case where p = 1 and v = 1/2, because we assumed in Assumption 2 that = (-, 0)
is Lipschitz in # with a stochastically bounded Lipschitz constant, we have that D, =

Opn (n_l/ Zen). We can then use the maximal inequality in Section 3.1 of Kim and Pollard

(1990) to show KP™sup |P,|d;| — P™|d;|| < Kn~2J(1)\/P™D2 = O(n = o(n71).
Z(n)
Therefore, P™nsupP,d? = o(1).
We have shown n?’ sup ‘(Pn — P(”)) d‘ = 0pm) (1), which implies that

de2(n)

. h . h
2 _ p0) . S R i _ ) [ R
nViEE (pn P )(W(,Qn—k?ﬂ) W(,Qn) (W(,9n+n7) 71'(,9”))>‘
= 0p(n) (1 +n7 én -0, > = opm (1)

mn(-,0,h)—m
1+n“/H9 GnH

Since lim lim supsupt? { sup h)‘ > t} = 0 for any ¢, — 0 and any

A0 noo A heM,|0—0n||<en

compact set H = R? by Assumption 3, Lemma 4.2 in Wellner and Zhan (1996) implies that

(P}~ P,) (W (0o 22 ) = m () = (7 (0t ) =m0

= Oﬁ(n) (1 + n’ > = OP(”) (1)

n*Tsup
heH

Therefore, since H 5 H,
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P 1
V%’VS/) ZO,p (h) + §h/H0h = Ho (h)

Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply — infd]l:]ln (h) v%%»
heR

— indeo (h). Also by the continuous mapping theorem,
heR

h
n* <7?n (0,) — inf 7, <9n + —>> v — inf Hy (h)
heBs,, ny he{heR%:|h|<K}
Since J (-, P™) is equicontinuous at J,* (1 — o, P™)), we have for z,, = J;* (1 — a — ¢, PM™),
In (:vn, P(”)) —J (xn,P(")) = o(1) for any P™ and e > 0 small enough. Since J* (',P(”))
is also equicontinuous at J,! (1 — a, P(”)), we have for any P™ and e small enough,

T2 (0, P) = J* (20, P™) = 0pin (1),
Note that — inf Hy (k) < — inf H (h) for any realizations of the random vari-
he{heRd:||h| <k} heRd
ables, which means J* (:pn, P(”)) <J (mn, P(”)) for all n large enough. Then, for all ¢ > 0
and n large enough, there exists § > 0 such that P (J;jn (:cn, P(”)) —Jn (mn, P(”)) > e) <
5. If J* (2, P™) — Jp (¥4, P™) < ¢, then J,' (1—a—¢€,P™) < J* 1 (1 —a, PM).
)

Then, using arguments similar to those in Lemma A.1 (vi) of Romano and Shaikh (2012 ,

for all € > 0 and n large enough,

h
(n) (27 (4 _ inf 4 L < J¥1(1_ (n)
P (n (ﬂ'" (0,) hérégnﬂ'n (Gn + n7>> < Ji, (1 a, P )>

i (0) — inf 7, (en +
hEB,;n

hGBgn

> p) <n27 (m (0,) — inf 7, <9n +

Since € and ¢ can be arbitrarily small, lim inf P (n27 (frn (0,) — inf 7, (9 + )) < éi‘_a) =

n—00 heBs,,
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1 — a. For p = liminfinf P < (frn (6,) — inf 7, (6, + )> < éTa>, we can find a se-

n—o PeP heBs,,

quence {P € 77} such that p = lim inf P ( (frn (0,) — inf 71, (9 + )> < é’l"_a>.

n—00 heBs,,

Find a subsequence ny of n for which 6, converges, with its limit denoted #. The same

arguments as above applied to such a subsequence imply

lim inf P(") ( (frnk (0,) — inf m,, (9% + )) < é’l"_a) > 1 — «. Since {P(”k),enk}

nj—>00 hEBgnk

is a subsequence of { P, 6, }, p = liminf P("*) ( > (ﬁnk (0,,) — inf 7, (an + )) < ¢ ) >
k

l—«
nj—>00 hEB(gnk

1-—oa.

6.1.2 Proof of Theorem 2

Recall that n?? P (7 (-, 00 + ) — 7 (-,60)) = h'n"l(6)+1h'Hoh+0(1). Additionally, Cher-
noff regularity implies that +o01 (h ¢ n? (C' — 6y)) > +ow0l (h ¢ Te (6y)), where Ti (6p) =
lim sup

710
Otherwise, there would exist some descent direction h € T¢ (6p) that reduces the value of

€=f Note that when 0, is the constrained minimizer, Al () = 0 for all h € T¢: (6y).

the objective function and 6y would not be the constrained minimizer anymore. A proof of

this result is on pages 325-326 of Nocedal and Wright (2006). Then, for any ¢ € R,

h
limsupsup P | n?7 | #, (6p) — inf 7, <90 + ) >c
n—w PeP hecy® ny
—n"mf P - P) 9+£ —7(,00) ) +P (7|06 —I—i —7m(,00) | >c
hec o0 Y0 ny » V0 » V0 ny > V0

, h , 1,
<limsupsup P’ | — inf n (P, — P) s+ — | =7 (,00) | +A'nY1(6) + §h Hohp > c
n

=lim supsup P

n—ow PeP

n—oo PeP hEC

h 1
(p,-P : — | =n( —h'H,
{hETc(9o) |nl <k} {” (P = P) (ﬂ ( S m) m{ ’90)) 3l Oh} g c)

Therefore, n? <7Tn (0o) — mf T (90 + )) is asymptotically first order stochastically

<lim supsup P
n—o PeP

heCy 0

dominated by — inf n* (P, — P 0+ L) — 7 (-,60)) + LW Hyh}. Because
Y {heTC(Qo):HhHSn}{ ( )(W( 0 ”7) ™ 0)) 27 0 }

41



the test statistic n?” (ﬂ'n (6o) — inf 7, (60 + )) may not have a well-defined limiting
heCy 0

distribution when h'nl () # 0, we W1ll instead define J,, (-, P) as the CDF of
— n*' (P, — P 00+ L) — 7 (-,00) + LW HhY under P, and J (-, P) as
M (o +55) = m (2 0)) + 2 Hoh} ()

the CDF of its limiting distribution — inf Hy (k) under P. The definition of
{heTc(0o):|h] <k}

J* (-, P) remains the same as in Theorem 1, denoting the conditional CDF of — inf H, (h)

Qn

heRd
under P, and J* (-, P) still denotes the CDF of its limiting distribution — inf - Ho (h) under
heRd
P. Note that — inf Hy (h) is stochastically dominated by — inf Hy (h). The result
{heTo (00):|h]<r} heRd

follows from modifying the proof of Theorem 1 to incorporate the new definitions of J, (-, P)

and J (-, P), and replacing n?? (ﬁn (6,) — inf 7, (6, + )) by n? (frn (0,) — inf 7, (0, + )>
hEBgn hec9n

6.1.3 Proof of Theorem 3

Consider any sequence {P eP:n= 1} that determines 6, = 0 (P(”)) and the laws of
all random variables. Consistency of 6,, for 6, follows from constraining 6 to lie in C' when
applying Corollary 3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der
Vaart (2000) since the equation array in the proof of Theorem 2.6 in Newey and McFadden
(1994) in combination with Assumptions 5(iii) and (iv) imply sgug Qn(0) — Q(0)| = 0p(1).
€

Define G, 0) = /n (Pn — P(”)) g(-,0), G0 = P,g(-,0), and g(0) = P™g(-,0).

Then 7, (6) = g(0) + u () + fn (), where 7, () = 2=G,, (0). Recall that Q, (6) =

N

7 (0) Wt (8). Write Q. (0) — Qu (6,) = Q1 (6) + Q2 (6) + Q3 (6), where

l\')l»—A

Q1 (6) =50 (6) Wy (8) + 9 (0) Wr (6,), Qs (6) = (6.) Wi (0)
Q2 (6) =g (6 Wit (6) + 9.6) W (i (60) — 7 (8.)) + 9 (6 Wi (6) + (i (60) — 7 (6,)) W, (6).

(6)
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We showed in Theorems 1 and 5 of Hong and Li (2023) that under Assumptions 5 - 6,
n? <Qn (0, + n7h) — Qn (Qn)> =n?Q, (0, + n7h)+n* (QQ (0, + n7h) + Qs (6, + n‘”h))
where n?’ (@ (O, +nh) + Qs (0, + n—m)) o 7 (0) W 20102 (h) if 4 = 1/3 and
n2" (Qz (O, +nh) + Qs (0, + nﬂh)) o 0 (0,) W 2o (B) + WG WUy if y = 1/2. Addi-

tionally,

_ 01 (Qn) 1.,0%°Q, (Qn)
2y v e N i R LTy N i L SV
n Ql(Qn—i—n h) n'h 30 —|—2h 2000 h+o(1)
=n"WG'Wr(6,) + %h’ﬁh +o0(1)

1 _
= Eh/Hh + 0(1)

since @ (6) achieves the minimal value of 0 at ,, when the constraints are not necessary

for identification of #,,. Therefore,

n* <Qn (Qn + n’”h) — Q. (Hn)>
R . 1 -
— 2 (Qz (60, +n7h) + Qs (6, + n”h)) + §h'Hh + 0p(m (1)
T (6,) WZo1/0 (h) + sWHh if v=1/3
v Ao (h) =
T (0,) W20 (h) + WGWUy + AWHh  if v =1/2

as a process indexed by h in the space of locally bounded functions By, (Rd) equipped
with the topology of uniform convergence on compacta.
We already showed in Theorems 2 and 6 of Hong and Li (2023) that under Assumptions

3,5-8, A, (h) \?‘%» Ap (h), where
) N/ . R
o294 * . A T .
Ay () =027, (00) W (PF = Py) <w(,en+ m) w(,en))
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Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply — infd/ln (h) Vé%
heR

—inf Ag (h). Additionally,

heRd

n® (Qn (6,) — inf Q, <9n + %)) wo — inf Ay (h)

heBs,, he{heR4:|h| <K}
Since J (-, P(")) is equicontinuous at J ! (1 -, P(”)), we have for z,, = J ! (1 —a—¢, P(”)),
In (xn,P(“)) —J (xn,P(”)) = o(1) for any P™ and ¢ small enough. Since J* (-,P("))
is also equicontinuous at J* (1 — a, P(")), we have for any P™ and e small enough,
JE (20, P™) = J* (2, P™) = 0pim (1).
Note that — inf Ay (h) < — hiélRfdAO (h) for any realizations of the random vari-

he{heRd:|h| <k}
ables, which means J* (xn, P(”)) <J (:L‘n, P(”)) for all n large enough. Then, for all € > 0

and n large enough, there exists 6 > 0 such that P (J;‘n (a:n, P(”)) —Jn (xn, P(")) > e) <
6. It J (xn, P™) = Jy (2, P™) < ¢, then J;' (1 —a—¢,P™) < J21 (1 —a,P™).
Then, using arguments similar to those in Lemma A.1 (vi) of Romano and Shaikh (2012),

for all e > 0 and n large enough,
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Since € and 6 can be arbitrarily small, lim inf P (n27 (Qn (0,) — hi%f Qn (6, + %)) < éi‘a) >
n—0o0 E€DSs,,

1—a. For p = liminf mfP ( (Qn (6,) — inf Q. (6, + )) < éT_a), we can find a se-

n—oo heBs,,

quence {P € 73} such that p = lim inf P (n g (Qn (0,) — mf Qn (9 + )) < éj‘_a>.

n— 00 heB,

Find a subsequence n, of n for which 6, converges, with its limit denoted 6. The same

arguments as above applied to such a subsequence imply

lim inf P(™) ( (Qn( On,) — hie%E Qn <0nk + %)) < éf_a> > 1—a. Since {P(”k), an} is a

N —00

subsequence of { P 6, }, p = lim inf P(") < il <Qn (0n,,) — hi%f Qn ((%k + %)) < éTa> >
€bs,, k

ng—0

1—a.

6.1.4 Proof of Theorem 4

Recall n*Qq (6 + n"h) = n"h'G'Wr (6p) + s/ Hh+ 0 (1). Additionally, Chernoff regular-
ity implies that +001 (h ¢ nY (C' — 6y)) = +o0l (h ¢ Tc (6y)), where Te (6) =

710

When 6y is the constrained minimizer, ’'G'Wr (6p) = 0 for all h € T (6y). Otherwise,
there would exist some descent direction h € T¢ (6y) that reduces the value of the objective

function and 6y would not be the constrained minimizer anymore. Then, for any c € R,

lim supsup P < <Qn (6o) — 1nf O (90 + h)) > c)
n—ow PeP hecyo o n”Yy
N h A h h
(—n 7 inf {Qz <90+) +0Qs (90+> +Q1 (90+>} >c>
hecy! %0 ny ny ny
: 2 S h A h Vol 1 1 17
—inf {n*" [ Q20+ — ) +Q3|6+— +n"WGWr(0y) + =h'Hhy > ¢
hEC?g nv ny 2
. . 9 A h A h 1,
< limsupsupP | — inf n T Q2|0+ —)+Q3|0+— +-hWHh};>c
n—ow PeP he{heTc (00):|| k| <k} nYy ny 2

= lim supsup P

n—oo PeP

< lim supsup P
n—o0 PeP

Therefore n?Y

Qn (0o) — mf Qn (90 + )) is asymptotically first order stochastically
heCy 0

: B : 2 (6 AN, AN
dominated by he{heTclg(}f):\\h\\gn} {n (Qg (90 + m) + Q3 (90 + m)) + sh Hh}. Because
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the test statistic n?? <Qn (6o) — ing Qn (90 + T%)) may not have a well-defined limit-
heC;s?

ing distribution when A'nYG'Wr (6y) # 0, we will instead define J, (-, P) as the CDF

of — {nz'V <Q2 (90 + %) + Qs (90 + %)) + %h’ﬁh} under P, and J (-, P)

inf
he{heTc (0o):||h| <k}

as the CDF of its limiting distribution — Ap (h) under P. The definition of

inf
{heTc(o):|h] <k}

J* (-, P) remains the same as in Theorem 3, denoting the conditional CDF of — inf A, (h)

an heRd

under P, and J* (-, P) still denotes the CDF of its limiting distribution — inf A (h) under
heR

P. Note that — inf Ay (h) is stochastically dominated by — inf Ag (k). The result
{heTc (60):|h]<r} heR4

follows from modifying the proof of Theorem 3 to incorporate the new definitions of J, (-, P)

heB

and J (-, P), and replacing n?? (Qn (6,) — inf Qn (6. + n%)) by n? (Qn (6,) — inf Q, (6, + )
on

On
heC o

6.1.5 Proof of Theorem 5

Consistency of 6, for 6, follows from constraining 6 to lie in C' when applying Corollary
3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der Vaart (2000) since the

equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in combination

A~

with Assumptions 5(iii) and (iv) and W,, — W = op(1) imply sup |@,(0) — Q(8)| = op(1).
0eC

Under Assumptions 3, 5-6 and 8-9, we showed in Theorems 4 and 8 of Hong and Li

(2023) that B, (h) af;} By (h), where

NG (W = W,) <9n) .
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If W, =W = Op(n™) and W — W,, = O%(n™7), then By (h) = 7 (6y) WZy1(h) +
WGWUy + sh'Hh + WG'Wj for p =1 and By (h) = 7 (60) W 20,12 (h) + s/ Hh + W'G'W,
when p = 1/2. If W,, = W = op(n™) and W* — W,, = o} (n~7), then By (h) =
7 (60) WZ51 (h) + WG'WUy + LW Hh for p = 1 and By (h) = 7 (60) W 25152 (h) + W Hh
when p = 1/2.

We showed in Theorem 3 of Hong and Li (2023) that

n?’y (Qn (90 + %) - Qn (90))
h

g(0) Wg(0)+g(0) Wr(6), Qs(0)=m(6) Wi, (9)

n (0) Wi (0) + g (0)' W (7 (60) — 7 (60)) + g (0) Wi (0) + (7 (60) — 7 (6)) Wil (6)

NI~ N~ N~
3>

g (0) (W = W) g (0) + g (0) (Wa — W) (6)

~

Qs (0) =g (0)" (W = W) (7n (60) — 7 (60))

+9 (9)/ (W = W) (0) + (7 (60) — 7 (90))/ (W = W) i (6)
R 1

Qs (0) =m (00)/ (W = W) (0) + 57771 (0)/ (W = W) (6) .

Recall n7Q1 (6 + n7h) = n"W'G'Wr (6p) + 31’ Hh+o0 (1). Additionally, Chernoff regu-

larity implies that +001 (h ¢ nY (C' — 6y)) = +o0l (h ¢ T¢ (6p)), where T¢: (6) = limsup<=2.
710

When 6y is the constrained minimizer, h’'G'Wr (6y) = 0 for all h € T (6p). Otherwise, there
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would exist some descent direction h € T¢ (0) that reduces the value of the objective func-

tion and 6, would not be the constrained minimizer anymore. Define

Qn(eo—i'%)EQz(Qo—i‘%)+Q3<60+£)+Q4<90+%)- 9)

Then, for any c € R,

h
lim supsup P < (Qn (6o) — mf Qn (90 + —>> > c)
n—o PeP heCy O n’
. 9 h h
= lim supsupP’ | —n*" mf O+ — ) +Q1 |6+ — > c
n—w PeP heC! 0 ny nY

1 -
< lim supsup P ( 1nf n*Q,, (00 + %) +n"WG'Wr (0y) + Eh/Hh} > c)
n

n—ow PeP heCy 0

_ h 1 -
< lim supsup P nQ, [0y + — | + —h'Hh} > c)
n—»ocpPe7Ig ( he{heTC(Go) [hll<x} { © ( ‘ nv) 2

heCy O
limiting distribution when A'n?G'Wr (6y) 75 0, we will instead define J, (-, P) as the

Because the test statistic n?Y (Qn (6o) — mf Qn (90 + )) may not have a well-defined

CDF of — inf 2Q, (60 + =) + LW’ HR} under P, and J (-, P) as the CDF
O e (heTo (Bo: b <) {n?Qn (60 + %) + 3 } under P, and J (-, P) as the

of its limiting distribution — inf By (h) under P. Let J* (-, P) denote the con-
{heTo(00):|hl<r} "

ditional CDF of — inden (h) under P and let J* (-, P) denote the CDF of its limiting
heR

distribution — inf By (h) under P. Note that — inf By (h) is stochastically dom-
heRd {heTe (80): k| <k}

inated by —inf By (h). The result follows from modifying the proof of Theorem 3 to
heR

incorporate the new definitions of J, (-, P), J (-, P), J& (-, P), J* (-, P), and replacing

[e%

n? (Qn (6,) — inf Q, (6. + )) by n* (Qn( ) — inf Q, (0, + %))

heB Sn
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6.1.6 Proof of Theorem 6

Recall Q, (6) — Q (6) = Q1 (8) + Q2 (8) + Qs (A), where

QO

=

—
<

S~—
|

590 Wa(6) + g (6) Wr (), Qs(6) = (80) Wiy (9

; %nn (O) Wi (0) + g (6) W (7 (60) — 7 (60)) + g (0) Wi (0) + (7n (60) — 7 (60)) Wi (6) -

O

[\

—
>

~—
I

Consistency of 6, for 6 follows from constraining # to lie in C' when applying Corollary
3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der Vaart (2000) since the
equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in combination
with Assumptions 5(iii) and (iv) imply saug Qn(0) — Q(0)| = op(1).

e

Apply Kim and Pollard (1990) Lemma 4.1 to 7}, (4), and in turn Qs (#): Ve > 0,

AM,, 5 = Op (1) such that

Q3 (6) | < 6 — 60> +n~>7 M.

The 1st, 3rd, and 4th terms in Q, (A) are all of the form op (1)7), (A), hence are also
bounded by €6 — > +n~27M2,. For the 2nd term in @, (¢), for n large enough, Ve > 0,

AM,, 99 = Op (1) such that

10 — 6o
NG

19.(0) W (5 (6) — 7 (80)) | = O ( ) < € — Bol]2 + P2

Therefore, Ye > 0, IM,, = Op (1) such that |Qy (8) + Qs (0) | < €] — 05> + n~27 M2,
Taylor expanding Q1 (f) around 6, while constraining 6 to lie in C, Q1 (0) = @ (6p) +

(0 — 6o) L) 4 19— gy) T (9 — g5) + 0 (|0 — 6)2) = (6 — 6p) G'Wr (6)

+1(0—6o) (H+0(1)) (0 — ) since &Qé—(geo) = G'Wr (6y) and 02(%3%(20) = H. Because H is
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positive definite and (6 — 6y)’ G'Wr (6y) = 0 for all § € C, there exists K > 0 and a small
enough neighborhood of  such that Q; (0) = K |6 — 6y|*>. By consistency of 6, for 6,

~ N 2
with probability approaching 1, Qs <en) > K6, — 00H . Then,

o <én) + Qz (én) + Q3 (én> = Qn (én> — Qn (00) < I <én> — inf Qn (0) < op (n_27) )
Choose € so that K — e > 0. Then,

. . 2
op (n_h) > () (9n> —ellf, — 90H —n2 M2

> (K —€) |0, — 80H2 —n M2

—

0, — (90H2 < (K —e)'n™ M2 + op (n™) =0p (n™).

It follows that n” (én - 90> = Op (1).

Using the arguments in Theorems 2 and 6 of Hong and Li (2023), A, (h) % Ay (h),

where

A

At = 7 (00) ez = 2 (7 (a2 ) =5 (6))

+ \/ﬁmph/ (G/W@ + 3 i Wik Tk <én) H}-) h

2n2v

+ %h’@’wﬁ(Pi —F)m (en) :

For ﬁ = G/WG + Z;’lzl ZZL:I V[/jkﬂ-k (‘90) Hj, AO (h) =T (90)/ WZ(]’l (h) + h/G/WU() + %h/Hh
for p =1 and Ag (h) = 7 (60) W Zo,1/2 (h) + 3h'Hh when p = 1/2.

Chernoff regularity implies that for any sequence a(n) — o0, +o01 (h ¢ a (n) (C' — 6y)) >

50



+01 (h ¢ Tc (0o)). Since n/n, — « and n? (én - 90) =0p (1),

(0, —0
= ot [ €= ()

n

Mn Tin
— ol <h¢ M o, (1))

< w(h) = +ool (h ¢ Te (6)) .

where T¢ (6y) = lim sup@. By a bootstrap in probability version of Theorem 4 in Knight
710

(1999),
A (h) + w) (h) 5 Ao (h) +w (h).

where £>d denotes epi-convergence of the conditional law of GZ to Gy, which can be equiva-
lently stated as sup gy, [Ewf (@,”;) ~Ef(Gy)| % 0and Bwf <@;’;> —Ewf (G;) 250
*

for all f € BL, where BL is the class of Lipschitz norm 1 functions with respect to the met-

ric of epi-convergence defined as d (G,’i, G()) = fooo max {

Qo G (V) = depi G, (v)‘ o] < p} exp (—p) dp,
where d¢ (v) = inf {|v — u| : u € C} for a non-empty closed subset of R4*1 and epi G (h) =
{(h,a) : G (h) < a} is the epigraph of G : R? — R. Lemma 2.6 in Kim and Pollard (1990)
implies that the Gaussian processes Z1/; (h) and 2y, (h) have a unique minimum. In
combination with the fact that %h’ Hb is a convex function of h, there is a unique h that
minimizes Ag (h) + w (h). By a modification of the bootstrap argmin continuous mapping
lemma 14.2 in Hong and Li (2020) that replaces weak convergence with epi-convergence,
n? (é;‘; - én> = argmin {fln (h) + wi (h)} v%» arg min {Ag (h) +w (h)}, which coincides

heRd heRd
with the limiting distribution of n” (én — 490).
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6.2 Verification of Assumption 3

For the Andrews (2000) example, 7 (-, 8) = (y; — 0)>, m,, (-,6,h) = \/n ((yl —0— %)2 — (y; — 0)2),
and
mn( 707h) — My ('790ah)
=v/n -0+i — 7 (0)— 9+i — 7 (-, 6o)
=V Ty \/ﬁ ™ ™ » V0 \/ﬁ ™\ bo
ho\’ h\?
=v/n ((y 0 \/ﬁ) (y: — ) ((y 0 \/ﬁ) (yi — bo) ))
h
Z\/ﬁ< 2 (yz 90—\/—ﬁ> +2(?Ji—00)) (0 — 6o)
—2h (6 — 6y)
sup mn(-ﬁf;ﬂﬁ%&lf‘)’h) H < K will be satisfied if we take K = 2suplh|.

heH,|0—0o |<en heH

Another way Assumption 3 can be satisfied is if &/ [ sup Tt Bla60]

m’ﬂ('797h)_mn('7907h) H2+6 <
hE’H7H9—90H<€n

oo for all n and any 6 > 0. For Example 2, there exists some constant C' > 0 such that

| w (0, 1) = m, (-, 00, h) P
E sup m ( s Uy ) m ( » V0, )
| het, |9—60] <en 1+ n70 — o
© n'Blr (50 + hn='3) — 7 (0) — (7 (-, 00 + hn~ ) — 7 (-, 90))‘%6
= sup
| et Jo—tol <en (1+nl/3 6 — 6o])""
[ n B0+ Ly 1<y, <0+-L54+1)—1(0-1<y;<0+1
<E sup ’ ( i/3 Y i3 )2+5 ( Y )|
| he#, 060 ]<en (1+n'3)6 —6)
B | n1/3\1(90+#—1<y¢<6’0+n1—"/3+1)—1(90—1<yi<90+1)\
sup
| he#, 000 |<en (1 +n'3 6 — 6o])*°
Ch
< sup 575 < ©

heH,|0—6o]<en (1 + n1/3 |0 — Bgl)

For Example 3, m,, (-,0,h) =n" [1 (i <O+ hn™") —7,9, — 0 —hn™ "] —n7 [1 (y; < 0) — 7,9, — 0] =

n[1(y; <O+ hn™) —1(y; <0),—hn~"] = [mn (,0,h) ,mpa (-,0,h)], where v = 1/2 if
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7 =0.5and v =1/3 if 7 # 0.5. We can verify E [ sup o0

heH,[|6—bo||<en

246
‘mn(.ﬂ,h)—mn(-ﬁo,h)” ]<oo

for all n and any § > 0 because there exists some constant C' > 0 such that

2+6]

T (g <O+ hn") — 1 (y; < 0
| M@0 1 <0)
| hett, 10— ]<en (14+nv[0—6)

Y . -7 — .
cB| sp PGSOt hn) 1(yz<90>\]

| heH,|0—0o<en (14776 — o)

Ch
< sup
heH,|0—0o]<en (1 + 17 |0 — Bol|)

mnpa ('7 97 h’) — Mn1 ('a 907 h)
1+ n7)60 — 6

E sup
het,|6—0o|<en

75 ~ X

1+n7]|0—00|

Additionally, F sup
heH, | 0—00|<en

mn2(~,9,h)_mn2('?907h) ‘2+6] = 0

6.3 Additional Monte Carlo Simulations

We now examine the coverage frequency and average interval length using x = oo in the
fixed weighting matrix setup. In the case of fy > 0, Table 6 shows that the coverage
frequencies and average interval lengths are similar to the case of kK = 5.

In the case of 5y < 0, Table 7 shows that the coverage is not affected, but the average
interval length can be longer when we use k = o0, especially for the more negative values
of fBy. This suggests that it is better to use a finite K < oo, although if the value of x is too
small, the coverage can be more conservative, as the next table shows.

We next examine the coverage frequency and average interval length using x = 1 in the
fixed weighting matrix setup. In the case of Sy = 0, Table 8 shows that the coverage can
be more conservative than in the case of kK = 5. For example, when 7 = 0.5, all values of
Bo lead to coverage that is above 98% when x = 1, but the coverage was under 98% when

k = 5. For the other values of 7, the coverage is similar between x = 1 and k = 5. Even
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Table 6: Coverage Frequencies and Average Interval Lengths, x = o0

B 0 n-1 n—1/2 n-1/3 n—1/4 n—1/6 1
7=0.1
n =100 1.000 1.000  0.992 0.980 0.961  0.962  0.946
(0.515) (0.503) (0.432) (0.388) (0.384) (0.379) (0.377)
n =>500 1.000 1.000 1.000 0.992 0.968 0.955  0.967
(0.358) (0.352) (0.296) (0.223) (0.202) (0.200) (0.200)
n = 1000 1.000 1.000 1.000 0.999 0.978  0.953 0.958
(0.323) (0.321) (0.271) (0.189) (0.155) (0.153) (0.153)
n = 5000 1.000 1.000 1.000 1.000 1.000 0.971  0.970
(0.289) (0.288) (0.262) (0.183) (0.102) (0.083) (0.084)
7=0.3
n=100 0.996 0994 0971 0.959 0.950 0.952 0.944
(0.421) (0.412) (0.370) (0.353) (0.354) (0.352) (0.352)
n =500 1.000 1.000  0.994 0.974 0.956  0.949 0.961
(0.242) (0.239) (0.203) (0.177) (0.175) (0.176) (0.177)
n = 1000 1.000 1.000  0.998 0.974 0.954 0.945 0.956
(0.200) (0.199) (0.164) (0.132) (0.129) (0.130) (0.130)
n = 5000 1.000 1.000 1.000 0.996 0.953 0.958  0.967
(0.155) (0.154) (0.131) (0.076) (0.065) (0.065) (0.065)
7=0.5
n=100 0976 0975 0.963 0.951 0.943 0.948 0.943
(0.365) (0.361) (0.345) (0.341) (0.342) (0.341) (0.342)
n=>500 0972 0965 0.965 0.964 0.959 0.946  0.958
(0.177) (0.175) (0.167) (0.166) (0.166) (0.166) (0.166)
n=1000 0.976 0971 0.964 0.946 0.951 0.944 0.957
(0.126) (0.127) (0.121) (0.119) (0.119) (0.120) (0.119)
n=>5000 0.978 0976  0.968 0.944 0.953 0.955 0.955
(0.058) (0.058) (0.055) (0.055) (0.055) (0.055) (0.055)

though the coverage can be more conservative for k = 1, the average interval lengths can
also be shorter, especially for values of 3, that are closer to zero. For example, when 7 = 0.1
and By = n~!, the average interval length is 0.066 when £ = 1 and 0.289 when x = 5. In
the case of 5y < 0 and 7 = 0.5, Table 9 shows that the coverage is more conservative when
using k = 1, but the average interval lengths are shorter for all values of 7.

Some intuition for why coverage can be more conservative when x = 1 comes from
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Table 7: Coverage Frequencies and Average Interval Lengths, x = oo

Bo ol pt2 it A 16 _1
7=0.1
n =100 1.000 1.000 1.000 1.000 1.000 1.000
(0.525) (0.634) (0.802) (0.985) (1.238) (2.237)
n =>500 1.000 1.000 1.000 1.000 1.000 1.000
(0.358) (0.427) (0.570) (0.728) (1.006) (2.247)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.325) (0.375) (0.501) (0.652) (0.917) (2.249)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.289) (0.315) (0.401) (0.520) (0.760) (2.245)
7=03
n =100 0.996 1.000 1.000 1.000 1.000 1.000
(0.426) (0.515) (0.669) (0.846) (1.095) (2.114)
n =500 1.000 1.000 1.000 1.000 1.000 1.000
(0.243) (0.298) (0.433) (0.589) (0.868) (2.125)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.202) (0.245) (0.364) (0.513) (0.779) (2.126)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.155) (0.180) (0.264) (0.383) (0.624) (2.124)
7=20.5
n=100 0.980 0.998 1.000 1.000 1.000 1.000
(0.367) (0.424) (0.551) (0.713) (0.957) (1.986)
n=>500 0.969 0.998 1.000 1.000 1.000 1.000
(0.176) (0.202) (0.305) (0.451) (0.730) (1.999)
n = 1000 0.975  0.998 1.000 1.000 1.000 1.000
(0.127) (0.144) (0.233) (0.376) (0.642) (2.001)
n =>5000 0.978  0.999 1.000 1.000 1.000 1.000
(0.058) (0.066) (0.130) (0.245) (0.486) (1.999)

examining the stochastic dominance argument in the proof of Theorem 4. For ' > k,

. h A h 1, =
lim supsup P (— inf {712V (Q2 (90 + —) + Q3 (00 + —>) + —h’Hh} > c)
n—wo PeP he{heTe (00):| k| <k} ny ny 2

. h A h 1., -
<lim supsupP (— inf {n27 <Q2 (90 + —) + Q3 <(90 + —)) + —h'Hh} > c)
n—ow PeP he{heTc (0):|hl<x'} ny ny 2

So the limiting distribution of — inf {ng7 (Qg (90 + r%) + Qs (90 + n%)) + %h’ﬁh},

he{heTe (6o): b <x'}

inf Ap (h), is closer to the benchmarking statistic’s asymptotic distri-

which is — 1
{heTc (60):|hl<r}

bution — infdAo (h) when k' > k. However, because this comparison is between limiting
heR
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Table 8: Coverage Frequencies and Average Interval Lengths, k = 1

B 0 n-1 n—1/2 n—1/3 n—1/4 n—1/6 1
7=0.1
n =100 1.000 1.000  0.992 0.980 0.962 0.963  0.949
(0.318) (0.323) (0.357) (0.386) (0.398) (0.396) (0.393)
n =>500 1.000 1.000 1.000 0.993 0.968  0.959  0.969
(0.163) (0.164) (0.176) (0.200) (0.205) (0.205) (0.205)
n = 1000 1.000 1.000 1.000 0.999 0.977  0.954 0.959
(0.126) (0.126) (0.133) (0.152) (0.156) (0.156) (0.156)
n = 5000 1.000 1.000 1.000 1.000 1.000 0971 0971
(0.066) (0.066) (0.067) (0.072) (0.086) (0.085) (0.085)
7=0.3
n=100 0.996 0.993 0.973 0.963 0.950 0.952  0.947
(0.322) (0.324) (0.345) (0.354) (0.357) (0.356) (0.355)
n =500 1.000 1.000  0.994 0.972 0.956  0.949 0.962
(0.168) (0.168) (0.177) (0.177) (0.176) (0.176) (0.177)
n = 1000 1.000 1.000  0.998 0.974 0.956  0.943 0.955
(0.130) (0.130) (0.136) (0.131) (0.130) (0.130) (0.130)
n = 5000 1.000 1.000 1.000 0.997 0.954 0957 0.967
(0.067) (0.067) (0.069) (0.072) (0.065) (0.064) (0.065)
7=20.5
n=100 0.992 0.987 0.979 0.982 0.976  0.981 0.977
(0.315) (0.324) (0.387) (0.429) (0.439) (0.439) (0.439)
n=>500 0.989 0.988  0.986 0.988 0.983  0.987  0.990
(0.143) (0.146) (0.179) (0.207) (0.209) (0.208) (0.209)
n=1000 0.994 0990 0.981 0.985 0.981 0.981 0.987
(0.105) (0.105) (0.130) (0.149) (0.149) (0.150) (0.150)
n=>5000 0.993 0990 0.987 0.983 0.983 0.985  0.986
(0.048) (0.048) (0.059) (0.068) (0.068) (0.068) (0.068)

distributions rather than finite sample distributions, it is difficult to know for sure how
conservative the coverage will be for any finite n. For example, in the simulations above,
when k = 1, n = 5000, By = n~ 4, and 7 = 0.3, the coverage is 0.954, which slightly less
conservative than the coverage of 0.957 when k = 5. However, for 7 = 0.5, the coverage is

0.983 when x = 1, which is more conservative than the coverage of 0.948 when x = 5.
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Table 9: Coverage Frequencies and Average Interval Lengths, k = 1

Bo ol pt2 it A 16 _1
7=0.1
n =100 1.000 1.000 1.000 1.000 1.000 1.000
(0.316) (0.283) (0.255) (0.239) (0.223) (0.200)
n =>500 1.000 1.000 1.000 1.000 1.000 1.000
(0.163) (0.153) (0.143) (0.137) (0.132) (0.120)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.126) (0.122) (0.116) (0.112) (0.108) (0.102)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.066) (0.065) (0.064) (0.063) (0.061) (0.059)
7=03
n =100 0.996 1.000 1.000 1.000 1.000 1.000
(0.318) (0.286) (0.254) (0.236) (0.214) (0.200)
n =500 1.000 1.000 1.000 1.000 1.000 1.000
(0.167) (0.156) (0.141) (0.134) (0.129) (0.120)
n = 1000 1.000 1.000 1.000 1.000 1.000 1.000
(0.130) (0.123) (0.114) (0.110) (0.106) (0.100)
n = 5000 1.000 1.000 1.000 1.000 1.000 1.000
(0.067) (0.066) (0.063) (0.061) (0.060) (0.059)
7=20.5
n=100 0.991  0.999 1.000 1.000 1.000 1.000
(0.308) (0.234) (0.169) (0.138) (0.111) (0.100)
n =500 0.990 1.000 1.000 1.000 1.000 1.000
(0.142) (0.106) (0.066) (0.054) (0.048) (0.040)
n = 1000 0.992 1.000 1.000 1.000 1.000 1.000
(0.104) (0.079) (0.048) (0.039) (0.035) (0.030)
n = 5000 0.990 1.000 1.000 1.000 1.000 1.000
(0.048) (0.036) (0.020) (0.017) (0.015) (0.014)
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