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1 Introduction

This paper studies estimators defined by the solution to a constrained optimization problem

with non-random inequality and/or equality constraints and a possibly nonsmooth and

nonconvex sample objective function. We are interested in conducting inference on the

parameter defined as the solution to the population analog of the sample optimization

problem. In particular, we are interested in conducting inference that is uniformly valid

across different types of parameters, those that are on the boundary of the constraint set,

those that are drifting towards the boundary, and those that are in the interior of the

constraint set. It is well known (see e.g. Geyer (1994), Andrews (1999),Andrews (2000),

and Andrews (2002)) that when the parameters are on or drifting towards the boundary of

the constraint set, the asymptotic distribution of the constrained estimator is non-standard,

and traditional inference procedures such as the standard bootstrap will not be pointwise

or uniformly valid. Alternative inference procedures such as subsampling (Politis et al.

(1999)), the numerical bootstrap (Hong and Li (2020)), or the m-out-of-n bootstrap (Bickel

and Sakov (2008)) will be pointwise, but not uniformly valid because they will not produce

correct coverage when the parameters are drifting towards the boundary of the constraint

set (Andrews and Guggenberger (2010)). They will only be valid when the parameter is

either in the interior or exactly on the boundary of the constraint set.

We propose a uniformly valid inference method using a simultaneous confidence set con-

structed by inverting a test statistic based on a local expansion of the constrained minimal

value of the objective function around a shrinking neighborhood of the parameter of inter-

est. We benchmark the test statistic against critical values obtained from bootstrapping

consistent estimates of the components of the limiting distribution of the objective’s local

expansion. This method of bootstrapping components of the limiting distribution takes in-
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spiration from Cattaneo et al. (2020), but we differ from them in that we use test inversion

to conduct uniformly valid inference for the constrained argmin of the population problem,

while they are interested in pointwise valid inference for the unconstrained argmin.

Our procedure can handle constrained M-estimators with a possibly nonsmooth, non-

convex sample objective function as well as constrained GMM estimators with either cor-

rectly specified or globally misspecified nonsmooth sample moments. By globally misspec-

ified, we mean that the population moments are equal to fixed nonzero constants that do

not approach zero as nÑ 8. Under global misspecification, Hong and Li (2023) show that

GMM estimators with nonsmooth moments exhibit the cubic-root rate of convergence to a

nonstandard limiting distribution. We show how to extend the pointwise valid procedure

for unconstrained GMM estimators in Hong and Li (2023) to conduct uniformly valid in-

ference under constraints. We allow for both fixed and estimated weighting matrices which

can converge at various rates to their probability limits.

The statistics literature contains many papers on constrained estimation such as Shapiro

(1988), Shapiro (1989), Shapiro (1990), Geyer (1994), Knight (2001), and Knight (2006).

While several of these papers derive the non-standard asymptotic distributions of vari-

ous constrained estimators, they did not propose a practical inference procedure as we

do. Within econometrics, examples of relevant papers include Andrews (2001), Moon and

Schorfheide (2009), Kaido and Santos (2014), Kaido (2016), Gafarov (2016), Chen et al.

(2018), Ketz (2018), Kaido et al. (2019), Kaido et al. (2021), Horowitz and Lee (2019),

Fang and Seo (2021), Hsieh et al. (2022), Fan and Shi (2023), Ketz and McCloskey (2023),

and Chernozhukov et al. (2023). Some of these papers (e.g. Andrews (2001), Fang and

Seo (2021), Fan and Shi (2023)) are concerned with testing the validity of the constraints.

Instead, we are instead interested in conducting inference on the solution to the population
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constrained optimization problem, allowing for the possibility that the constraints mat-

ter for identification. Additionally, some of these papers (e.g. Gafarov (2016), Hsieh et

al. (2022), Horowitz and Lee (2019), Fan and Shi (2023) ) are concerned with linear con-

straints or quadratic objective functions, but our method covers a large class of constrained

extremum estimators with possibly nonsmooth, nonconvex objective functions and nonlin-

ear constraints. Additionally, papers such as Geyer (1994), Moon and Schorfheide (2009),

and Ketz (2018) require the parameter of interest to be a solution of the unconstrained pop-

ulation optimization problem. In contrast, we allow for the possibility that the constraints

matter for identification of the parameter, which means the solution of the unconstrained

population optimization problem will differ from the solution of the constrained problem.

However, we do not allow for partial identification because we require that there be a unique

solution to the population constrained optimization problem. Additionally, we require that

the objective function be defined at every value in Rd, which is in contrast to Ketz (2018)

who point out that the objective function for random coefficient models cannot be defined

for negative values of the variances.

The outline of our paper is as follows. Subsection 1.1 contains examples of constrained

estimators and Subsection 1.2 contains the notation. Section 2 demonstrates how to con-

duct uniformly valid inference for constrained M-estimators, while Section 3 demonstrates

how to conduct uniformly valid inference for constrained GMM estimators. Section 4 con-

tains Monte Carlo simulation evidence demonstrating the uniform validity of our proposed

confidence set for a boundary constrained nonsmooth GMM model. Section 5 concludes,

and the Appendix contains proofs of the theorems.
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1.1 Examples of Constrained Extremum Estimators

Example 1. An example of a constrained estimator with a non-random constraint set is

the boundary constrained maximum likelihood estimator in Andrews (2000). Suppose we

have a simple location model with i.i.d data:

yi “ β0 ` εi, εi „ Np0, 1q

The maximum likelihood estimator subject to the constraint that θ ě 0 is

θ̂n “ arg min
θě0

1

2n

n
ÿ

i“1

pyi ´ θq
2

It is well-known that θ̂n
p
Ñ θ0 “ max pβ0, 0q.

Example 2. Another example is a constrained modal estimator similar to Example 3.2.13

in van der Vaart and Wellner (1996). Suppose we have the same simple location model

as in the previous example. Define θ̂n “ arg max
θě0

1
n

řn
i“1 1 pθ ´ 1 ď yi ď θ ` 1q as the non-

negative center of an interval of length 2 that contains the largest possible fraction of

observations. It is well-known that θ̂n
p
Ñ θ0 “ max pβ0, 0q.

Example 3. Another example is a nonsmooth GMM estimator with a non-negativity

constraint. Our model is

yi “ β0 ` εi, εi „ Np0, 1q

For π pθq “ rP pyi ď θq ´ τ, Eyi ´ θs
1 and π̂n pθq “

“

1
n

řn
i“1 1 pyi ď θq ´ τ, 1

n

řn
i“1 yi ´ θ

‰1,

θ̂n “ arg min
θě0

1

2
π̂n pθq

1 π̂n pθq
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If τ “ 0.5, the moments are correctly specified and θ̂n converges to θ0 “ arg min
θě0

1
2
π pθq1 π pθq

at the
?
n-rate. If additionally, β0 ě 0, meaning the constraint is correctly specified,

θ0 “ β0. However, if τ ‰ 0.5, and τ is not drifting towards 0.5, then the moments are

globally misspecified and θ̂n is cubic-root consistent for θ0 which is different from β0 even

if β0 ě 0. We will study this example in the Monte Carlo simulations.

1.2 Notation

Consider a random sample Xn “ pX1, X2, ..., Xnq of independent draws from a probability

measure P on a sample space X . Define the empirical measure Pn ” 1
n

řn
i“1 δXi , where δx is

the measure that assigns mass 1 at x and zero everywhere else. Denote the bootstrap em-

pirical measure by P ˚n “
1
n

řn
i“1WniδXi , which can refer to the multinomial, wild, or other

exchangeable bootstraps. An exchangeable bootstrap requires that Wn ” pWn1, . . . ,Wnnq

is an exchangeable vector of nonnegative weights which sum to 1. For the multinomial

bootstrap, Wn is a multinomial random vector (independent of the data) with probabil-

ities p1{n, . . . , 1{nq. For the wild bootstrap, P ˚n “
1
n

řn
i“1

`

ξi{ξ̄n
˘

δXi , where ξi are non-

negative i.i.d. random variables (independent of the data) with finite third moments and

ξ̄n “
1
n

řn
i“1 ξi. Weak convergence is defined in the sense of Kosorok (2007): Zn ù Z in

the metric space pD, dq if and only if supfPBL1
|E˚fpZnq ´ EfpZq| Ñ 0 where BL1 is the

space of functions f : D ÞÑ R with Lipschitz norm bounded by 1. E˚fpZnq is the outer

expectation of fpZnq, which is the infimum over all EU where U is measurable, U ě fpZnq,

and EU exists. Conditional weak convergence is also defined in the sense of Kosorok (2007):

Zn
P

ù
W

Z in the metric space pD, dq if and only if supfPBL1
|EWfpZnq ´ EfpZq|

p
ÝÑ 0 and

EWfpZnq
˚´EWfpZnq˚

p
ÝÑ 0 for all f P BL1, where BL1 is the space of functions f : D ÞÑ R

with Lipschitz norm bounded by 1, EW denotes expectation with respect to the bootstrap
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weights W conditional on the data, and fpZnq˚ and fpZnq˚ denote measurable majorants

and minorants with respect to the joint data (including the weights W). Let X˚
n “ o˚P p1q

if P p|X˚
n | ą ε|Xnq “ oP p1q for all ε ą 0. Also define M˚

n “ O˚P p1q (hence also OP p1q) if

limmÑ8 lim supnÑ8 P pP p|M
˚
n | ą m|Xnq ą εq “ 0 @ε ą 0.

2 Constrained M-estimator

Suppose we are interested in conducting inference on the parameter given by the presumed

to be unique solution to the population constrained optimization problem:

θ0 “ arg min
θPC

tπ pθq ” Pπ p¨, θqu

where the constraint set C Ď Θ is a subset of the parameter space Θ Ă Rd for fixed d. We

assume C is Chernoff regular at θ0, which means C is well-approximated by a cone K at θ0

in the sense that inf
wPK

}pθ ´ θ0q ´ w} “ o p}θ ´ θ0}q for all θ P C, and inf
θPC
}pθ ´ θ0q ´ w} “

o p}w}q for all w P K (see Theorem 2.1 of Geyer (1994) for more details). We allow for

θ0 to lie either in the interior or on the boundary of C, and we will estimate θ0 using a

constrained M-estimator given by

θ̂n “ arg min
θPC

tπ̂n pθq ” Pnπ p¨, θqu

where π̂n pθq may be nonsmooth and/or nonconvex as in Example 2.

It is well known (see e.g. Andrews (2000)) that applying a standard bootstrap procedure

to estimate the distribution of the constrained M-estimator is inconsistent when θ0 lies on

the boundary of the constraint set C or is drifting towards the boundary at some rate.

Alternative inference procedures such as subsampling or the m-out-of-n bootstrap will be
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consistent when θ0 is on the boundary, but will not be consistent for parameters that are

drifting towards the boundary because they will not be able to consistently estimate the

nonstandard limiting distribution of θ̂n (Andrews and Guggenberger (2010)). Instead of

estimating the distribution of θ̂n, we will instead try to estimate the distribution of a scaled

difference between two terms involving the objective function π̂n p¨q. We will show that our

procedure is uniformly asymptotically valid over all rates of drift for θ0.

Assumption 1. There exists ρ P p0, 1s and γ “ 1
2p2´ρq

such that the following conditions

hold:

(i) Pnπ
´

¨, θ̂n

¯

ď inf
θPC

Pnπ p¨, θq ` op pn
´2γq.

(ii) inf
θPC:}θ´θ0}ąε

Pπ p¨, θq ą Pπ p¨, θ0q for all ε ą 0.

(iii) sup
θPΘ
}Pnπp¨, θq ´ Pπp¨, θq} “ oP p1q.

(iv) C is Chernoff regular at θ0.

Assumption 2. There exists ρ P p0, 1s and γ “ 1
2p2´ρq

such that g p¨, θq “ π p¨, θq ´ π p¨, θ0q

satisfies the following conditions:

(i) The class GR ” tg p¨, θq : }θ ´ θ0} ď Ru for R near zero is uniformly manageable for

the envelope function GR p¨q ” sup
gPGR

|gp¨, θq|.

(ii) PG2
R “ OpR2ρq for RÑ 0.

(iii) For each η ą 0, there exists a K such that PG2
R1tGR ą Ku ă ηR2ρ for R near 0.

(iv) If ρ “ 1, π p¨, θq is Lipschitz continuous in θ with a stochastically bounded Lipschitz

constant.

(v) Σρps, tq “ lim
αÑ8

α2ρPg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1 exists for each s, t in Rd.
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(vi) lim
αÑ8

α2ρP
ˇ

ˇg
`

¨, θ0 `
t
α

˘ˇ

ˇ

2
1t
ˇ

ˇgp¨, θ0 `
t
α
q
ˇ

ˇ ą εα2p1´ρqu “ 0 for each ε ą 0 and t P Rd.

(vii) P |gp¨, θ1q ´ gp¨, θ2q| “ O p}θ1 ´ θ2}
2ρq for }θ1 ´ θ2} Ñ 0.

(viii) π pθq “ Pπ p¨; θq is twice differentiable at θ0 with Jacobian l pθ0q ”
B

Bθ
π pθ0q and

Hessian H0 ”
B2

BθBθ1
π pθ0q.

Assumption 1 is needed to show consistency of θ̂n for θ0 while Assumption 2 is needed

to derive the asymptotic distribution of θ̂n and other statistics which are required for our

inference procedure. We assume that the researcher knows the rate of convergence coeffi-

cient γ. The square-root rate of convergence is obtained when Assumption 2 is satisfied for

γ “ 1{2 and ρ “ 1, which occurs for Example 1, while the cubic-root rate of convergence is

obtained when Assumption 2 is satisfied for γ “ 1{3 and ρ “ 1{2, which occurs for Example

2. Manageable classes are defined in Definition 4.1 of Pollard (1989), and an example is

all Euclidean classes. A manageable class for a constant envelope is a universal Donsker

class in the sense of Dudley (1987). Uniform manageable classes are manageable classes

for which a uniform upper bound exists in the maximal inequalities for the corresponding

empirical processes. As discussed after Corollary 3.2 of Kim and Pollard (1990), we need to

assume GR are uniformly manageable in order to demonstrate stochastic equicontinuity of

certain processes that appear in the expansion of the objective function. We demonstrate

stochastic equicontinuity by applying the maximal inequalities in Lemma 3.1 of Kim and

Pollard (1990) over the classes GR for all values of R near zero, rather than a particular

value of R.

We will impose an additional an envelope integrability condition needed to demon-

strate the validity of bootstrapping certain statistics which appear in the benchmarking

distribution of our inference procedure. Specifically, the condition is needed to show boot-
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strap equicontinuity results so that we can replace θ0 by θ̂n in the bootstrapped empirical

processes.

Assumption 3. For some ρ P p0, 1s and γ “ 1
2p2´ρq

, definemn p¨, θ, hq ” nγρ
`

π
`

¨; θ ` h
nγ

˘

´ π p¨; θq
˘

.

For any εn Ñ 0 and any compact set H Ă Rd,

lim
λÑ8

lim sup
nÑ8

sup
těλ

t2 P

#

sup
hPH,}θ´θ0}ďεn

›

›

›

›

mnp¨, θ, hq ´mnp¨, θ0, hq

1` nγ}θ ´ θ0}

›

›

›

›

ą t

+

“ 0.

We need Assumption 3 to make use of Lemma 4.2 in Wellner and Zhan (1996), which

states that stochastic equicontinuity implies bootstrap equicontinuity under a relatively

mild envelope (square) integrability assumption (their Assumption A.5). A strong sufficient

condition for Assumption 3 is that the envelope is uniformly bounded. For all sufficiently

large n such that εn Ñ 0 and any compact H Ă Rd, there exists some constant K ą 0 such

that sup
hPH,}θ´θ0}ďεn

›

›

›

mnp¨,θ,hq´mnp¨,θ0,hq
1`nγ}θ´θ0}

›

›

›
ď K. In the Appendix, we verify that Assumption 3

is satisfied for Examples 1 through 3.

We first consider the case where the constraints are not necessary for identification of

θ0, which means that the constrained minimizer is the same as the unconstrained minimizer

of the population objective.

Assumption 4. l pθ0q ”
B

Bθ
π pθ0q “ 0.

This assumption requires that the sum of the Lagrange multipliers times the constraint

gradients must be zero at θ0. Suppose C ” tθ P Θ : fj pθq “ 0 for j P E , fj pθq ď 0 for j P Iu.

The first order KKT condition says that θ0 solves the population constrained optimization

problem if l pθ0q `
ř

jPEYI λ0jf
1
j pθ0q “ 0. By imposing l pθ0q “ 0, we are requiring that

ř

jPEYI λ0jf
1
j pθ0q “ 0. If we further assume linear independence constraint qualification
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(LICQ), then l pθ0q “ 0 implies λ0j “ 0 for all j P E Y I˚. The reason is as follows. LICQ

says that the gradients of the active constraints f 1j pθ0q ”
Bfjpθq

Bθ

ˇ

ˇ

ˇ

θ“θ0
for j P E Y I˚, where

I˚ ” tj P I : fj pθ0q “ 0u, are linearly independent. LICQ implies that f 1j pθ0q ‰ 0 for all

j P E Y I˚, which means that
ř

jPEYI λ0jf
1
j pθ0q “ 0 will imply λ0j “ 0 for all j P E Y I˚.

The constraints which are non-active have zero Lagrange multipliers and the weakly active

constraints also have zero Lagrange multipliers. However, under LICQ, the strongly active

constraints have positive Lagrange multipliers and must be ruled out in order for the first

order KKT condition to reduce down to the condition l pθ0q “ 0. In Examples 1-2, the

constraint θ ě 0 will be strongly active at θ0 “ max pβ0, 0q if β0 ă 0. Assumption 4 allows

for weakly active and inactive constraints at θ0. In Examples 1-2, the constraint θ ě 0 will

be weakly active at θ0 “ max pβ0, 0q if β0 “ 0 and inactive if β0 ą 0.

The main idea of our inference procedure is that we will benchmark a test statistic

n2γ

ˆ

π̂n pθq ´ inf
hPBδn

π̂n
`

θ ` h
nγ

˘

˙

against the conditional quantiles of ´ inf
hPRd

Ĥn phq, where

Bδn “
!

h P Rd : }h}
nγ
ď δn

)

is a shrinking neighborhood, δn Ñ 0 satisfies nγδn Ñ κ for

κ P p0,8s, and

Ĥn phq “ n2γ
pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

`
1

2
h1Ĥh, (1)

where Ĥ p
Ñ H0 and the bootstrap empirical measure P ˚n can refer to either the multinomial,

wild, or other exchangeable bootstraps. The intuition behind the test statistic is that if θ is

the unconstrained minimizer of the population objective, then the sample objective should

achieve its minimum close to θ even if we perturb θ by small deviations that shrink to

zero as n Ñ 8. We are able to ignore the constraints when constructing our test statistic

because the troublesome term nγh1l pθ0q in the asymptotic expansion of the test statistic

disappears when l pθ0q “ 0. Since the constraints are not present in the test statistic, our
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benchmarking distribution also does not need to use the constraints.

Let ĉ˚1´α be the 1 ´ α conditional quantile of ´ inf
hPRd

Ĥn phq. We will show that C˚1´α “
"

θ : n2γ

ˆ

π̂n pθq ´ inf
hPBδn

π̂n
`

θ ` h
nγ

˘

˙

ď ĉ˚1´α

*

is a uniformly asymptotically valid nominal

1 ´ α confidence set for θ pP q “ θ0. By uniformly valid inference, we mean inference that

is uniformly valid across parameters that are either in the interior or on the boundary of

the constraint set or are drifting towards the boundary of the constraint set at arbitrary

rates. For Examples 1-2, this means that we can handle parameters of the form θ0 “ c{τn

where c ě 0 is some constant and τn Ñ 8 as nÑ 8.

In the next theorem, Jn p¨, P q denotes the CDF of n2γ

ˆ

π̂n pθ0q ´ inf
hPBδn

π̂n
`

θ0 `
h
nγ

˘

˙

under P , and J p¨, P q denotes the CDF of its limiting distribution under P . Similarly,

J˚αn p¨, P q denotes the conditional CDF of ´ inf
hPRd

Ĥn phq under P , and J˚ p¨, P q denotes the

CDF of its limiting distribution under P .

Theorem 1. (Uniformly valid inference when constraints are not necessary for identi-

fication) Let P be a class of distributions for which Assumptions 1-4 are satisfied uni-

formly in P P P 1, and tJ p¨, P q : P P Pu and tJ˚ p¨, P q : P P Pu are equicontinuous at

J´1
n p1´ α, P q.Then lim inf

nÑ8
inf
PPP

P
`

θ pP q P C˚1´α
˘

ě 1´ α, where

C˚1´α “
"

θ : n2γ

ˆ

π̂n pθq ´ inf
hPBδn

π̂n

ˆ

θ `
h

nγ

˙˙

ď ĉ˚1´α

*

,

Bδn “
!

h P Rd : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is the 1´ α

conditional quantile of ´ inf
hPRd

Ĥn phq.

1We define Xn “ oP p1q uniformly in P P P if if sup
PPP

P p|Xn| ą εq “ 0 @ε ą 0. We define Mn “ OP p1q

uniformly in P P P if limmÑ8 lim supnÑ8 sup
PPP

P p|Mn| ą mq “ 0. Similarly, X˚n “ o˚P p1q uniformly

in P P P if if sup
PPP

P p|X˚n | ą ε|Xnq “ oP p1q for all ε ą 0. M˚
n “ O˚P p1q uniformly in P P P if

limmÑ8 lim supnÑ8 sup
PPP

P pP p|M˚
n | ą m|Xnq ą εq “ 0 @ε ą 0.
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Remark 1. Although our current setup has assumed C is a fixed (non-random) constraint

set, the result in Theorem 1 allows for the constraints to be estimated using the data as

long as the sample constrained estimator θ̂n is consistent for the population constrained

argmin θ0. The reason is that Theorem 1 does not use the constraints in any way except

through the consistency of θ̂n for θ0. There are many cases where θ̂n will remain consistent

even when the constraints are estimated. For example, Knight (1999) states on page 13

that if the sample constraint set is constructed using convex, finite-valued functions that

converge to their population limits, then the indicator function for the sample constraint

set will epi-converge in distribution to the indicator function for the population constraint

set. If, additionally the sample objective converges uniformly to the population objective,

then Theorem 1 in Knight (1999) will imply the sample constrained argmin converges in

probability to the population constrained argmin. Other cases where consistency holds are

given in Dupacová and Wets (1988), Shapiro (1990), Robinson (1996), and Bonnans and

Shapiro (2013), among other papers.

Remark 2. In theory, any choice of κ P p0,8s will achieve uniformly valid coverage,

but if π̂n pθq is nonsmooth or nonconvex, in practice setting κ ă 8 can help the solver

more easily find the solution to inf
hPBδn

π̂n

´

θ ` h?
n

¯

. The choice of κ can also affect the

conservativeness of the confidence set’s coverage, with larger values of κ typically leading

to less conservative coverage asymptotically. The reason is that the test statistic’s limiting

distribution ´ inf
thPRd:}h}ďκu

H0 phq is closer to ´ inf
hPRd

Ĥn phq’s limiting distribution ´ inf
hPRd

H0 phq

for larger values of κ. In our Monte Carlo simulations we saw that κ “ 1 leads to more

conservative coverage than κ “ 5, but there is very little difference in coverage between

κ “ 5 and κ “ 8. Additionally, the average interval length is shorter for some parameters

when we use κ “ 5 instead of κ “ 8. Therefore, we recommend that practitioners use a
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moderate sized, finite value of κ such as κ “ 5.

Remark 3. If we would like to construct a nominal 1´α confidence set for a subvector γ0 “

a1θ0, where a is a known vector, we could use projection: CIProj1´α “

«

inf
θPC˚1´α

a1θ, sup
θPC˚1´α

a1θ

ff

.

The uniform asymptotic validity of these projection intervals follows directly from the

uniform asymptotic validity of C˚1´α.

Now we relax Assumption 4 to allow for possibility that the unconstrained minimizer

differs from the constrained minimizer of the population problem (l pθ0q ”
B

Bθ
π pθ0q ‰ 0).

Now we allow for possibility that the unconstrained minimizer differs from the constrained

minimizer of the population problem (l pθ0q ”
B

Bθ
Q pθ0q ‰ 0). Under LICQ, l pθ0q ‰ 0

implies that some constraint(s) are strongly active at θ0 and are therefore necessary for

identification of θ0. We will modify our test statistic to n2γ

˜

π̂n pθq ´ inf
hPCθδn

π̂n
`

θ ` h
nγ

˘

¸

,

where Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, and δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s. In

theory, any choice of κ P p0,8s will achieve uniformly valid coverage, but if π̂n pθq is non-

smooth and/or nonconvex, in practice setting κ ă 8 helps the solver find the solution to

inf
hPCθδn

π̂n
`

θ ` h
nγ

˘

. The intuition behind the test statistic is that if θ is the constrained min-

imizer of the population objective, then the sample objective should achieve its minimum

close to θ even if we perturb θ by small deviations while still satisfying the constraints.

We minimize over the constrained neighborhood Cθδn when constructing our test statistic

because the troublesome term nγh1l pθ0q in the asymptotic expansion of the test statistic

can only be signed when we minimize over the constraint set instead of the entire parameter

space. We will need to use the sign to find another statistic that stochastically dominates

the test statistic and has a well-defined limiting distribution. We can then compare this

other statistic to the benchmarking statistic used to form critical values and demonstrate
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uniform validity of our inference procedure.

Let ĉ˚1´α be the 1´ α conditional quantile of ´ inf
hPRd

Ĥn phq. We will show that

C˚1´α “

#

θ : n2γ

˜

π̂n pθq ´ inf
hPCθδn

π̂n
`

θ ` h
nγ

˘

¸

ď ĉ˚1´α

+

is a uniformly asymptotically valid

nominal 1 ´ α confidence set for θ pP q “ θ0. We are still benchmarking the test statistic

against the unconstrained minimum of Ĥn phq because we cannot uniformly consistently

estimate the tangent cone of the constraint set at θ0. Since we do not observe θ0, we

would have to replace θ0 by θ̂n and use a sequence ηn Ñ 8 satisfying ηn{nγ Ñ 0 in order

to remove the additional noise caused by centering the constraint set at θ̂n instead of θ0,

which introduces an additional nγ
´

θ̂n ´ θ0

¯

term. However, this procedure would only be

pointwise valid because the convergence of nγ
´

θ̂n ´ θ0

¯

to its limiting distribution is not

uniform over P .

In the next theorem, Jn p¨, P q denotes the CDF of

Tn ” ´ inf
thPTCpθ0q:}h}ďκu

 

n2γ pPn ´ P q
`

π
`

¨, θ0 `
h
nγ

˘

´ π p¨, θ0q
˘

` 1
2
h1H0h

(

under P , and J p¨, P q

denotes the CDF of Tn’s limiting distribution under P . Here, TC pθ0q is the tangent cone

of C at θ0: TC pθ0q ” lim sup
τÓ0

C´θ0
τ

. Additionally, J˚αn p¨, P q denotes the conditional CDF of

´ inf
hPRd

Ĥn phq under P , and J˚ p¨, P q denotes the CDF of its limiting distribution under P .

Theorem 2. (Uniformly valid inference when constraints may be necessary for identi-

fication) Let P be a class of distributions for which Assumptions 1-3 are satisfied uni-

formly in P P P, and tJ p¨, P q : P P Pu and tJ˚ p¨, P q : P P Pu are equicontinuous at

J´1
n p1´ α, P q.Then lim inf

nÑ8
inf
PPP

P
`

θ pP q P C˚1´α
˘

ě 1´ α, where

C˚1´α “

#

θ : n2γ

˜

π̂n pθq ´ inf
hPCθδn

π̂n

ˆ

θ `
h

nγ

˙

¸

ď ĉ˚1´α

+

,

Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is
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the 1´ α quantile of ´ inf
hPRd

Ĥn phq.

Remark 4. When Assumption 4 holds, both the confidence set in Theorem 2 and the

confidence set in Theorem 1 will be valid. In this case, we find that the confidence set

in Theorem 1 tends to be less conservative than the confidence set in Theorem 1 because

the limiting distribution of the test statistic n2γ

ˆ

π̂n pθ0q ´ inf
hPBδn

π̂n
`

θ0 `
h
nγ

˘

˙

is closer to

the limiting distribution of ´ inf
hPRd

Ĥn phq. However, if the researcher is unsure of whether

Assumption 4 holds, we recommend using the confidence set in Theorem 2.

3 Constrained GMM

We can extend our uniformly valid inference method to constrained GMM estimators with

either smooth or nonsmooth moments and which are either correctly specified or globally

misspecified. As shown in Hong and Li (2023), GMM estimators with nonsmooth (non-

directionally differentiable) moments have the cubic-root rate of convergence when they

are globally misspecified and the square-root rate of convergence when they are correctly

specified. Throughout the paper, we presume that the user knows the rate of convergence,

which can typically be accomplished by first testing for misspecification using a J-test. The

reason we require knowing the rate of convergence is because we are interested in conduct-

ing uniformly valid inference, which is inference that is uniformly valid across parameters

drifting towards the boundary of the constraint set at arbitrary rates. If we were not in-

terested in uniformly valid inference, we could use an alternative pointwise valid procedure

that does not require knowing the rate of convergence. Details are in Section 3.3.
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3.1 Fixed Weighting Matrix

We first consider the case of a fixed weighting matrix W which is assumed to be symmetric

positive definite. Define the moment function π : X ˆΘ Ñ Rm, sample moments π̂n pθq ”

Pnπ p¨, θq, and population moments π pθq ” Pπ p¨, θq. The constrained GMM estimator and

the pseudo-true parameter are given by

θ̂n “ arg min
θPC

"

Q̂n pθq “
1

2
π̂n pθq

1Wπ̂n pθq

*

θ0 “ arg min
θPC

"

Q pθq “
1

2
π pθq1Wπ pθq

*

.

We will propose a uniformly valid inference procedure that will be able to handle the

case of correctly specified moments π pθ0q “ 0, where θ0 can be either on the boundary

of the constraint set or drifting towards the boundary of the constraint set at arbitrary

rates. We also allow for the possibility that π pθ0q “ c for some fixed constants c ‰ 0,

meaning that the moments are globally misspecified. However, we do not allow for locally

misspecified models where π pθ0q “ c{
?
n is drifting towards zero at the

?
n rate. It remains

an open question whether we can conduct uniformly valid inference for locally misspecified

constrained GMM models.

We will slightly modify Assumptions 1 and 2 to handle constrained GMM estimators:

Assumption 5. There exists some ρ P
 

1
2
, 1
(

and γ “ 1
2p2´ρq

such that the following

conditions are satisfied:

(i) Q̂n

´

θ̂n

¯

ď inf
θPC

Q̂n pθq ` op pn
´2γq.

(ii) inf
θPC:}θ´θ0}ąε

Q pθq ą Q pθ0q for all ε ą 0.

(iii) sup
θPΘ
}Pnπp¨, θq ´ Pπp¨, θq} “ oP p1q.
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(iv) sup
θPΘ

P |πp¨, θq| ă 8.

(v) C is Chernoff regular at θ0.

Assumption 6. There exists some ρ P
 

1
2
, 1
(

and γ “ 1
2p2´ρq

such that g p¨, θq ” π p¨, θq ´

π p¨, θ0q satisfies the following conditions:

(i) The classes of functions GR “ tgjp¨, θq : }θ ´ θ0} ď R, j “ 1, . . . ,mu for R near zero

are uniformly manageable for the envelope functions GR p¨q ” sup
gjPGR

|gjp¨, θq|.

(ii) PG2
R “ OpR2ρq for RÑ 0.

(iii) For each η ą 0, there exists a K such that PG2
R1tGR ą Ku ă ηR2ρ for R near 0.

(iv) If ρ “ 1, π p¨, θq is Lipschitz continuous in θ with a stochastically bounded Lipschitz

constant.

(v) Σρps, tq “ lim
αÑ8

α2ρPg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1 exists for each s, t in Rd.

(vi) lim
αÑ8

α2ρP }g
`

¨, θ0 `
t
α

˘

}21t}gp¨, θ0 `
t
α
q} ą εα2p1´ρqu “ 0 for each ε ą 0 and t P Rd.

(vii) P }gp¨, θ1q ´ gp¨, θ2q} “ O p}θ1 ´ θ2}
2ρq for }θ1 ´ θ2} Ñ 0.

(ix) Pgp¨, θq is twice differentiable at θ0 with full rank Jacobian matrix G “ B

Bθ
π pθ0q and

finite Hessian matrices Hj “
B2

BθBθ1
πj pθ0q for j “ 1 . . .m.

Similar to Kim and Pollard (1990), the cubic-root rate of convergence is obtained when

Assumptions 5 and 6 are satisfied for γ “ 1{3 and ρ “ 1{2. In particular, this amounts to

a linear rate of decay of PG2
R. Usually the linear rate of decay arises when π p¨, θq is not

directionally differentiable, such as the ones that appear in the GMM formulation of IV

quantile regression (Chernozhukov and Hansen (2005)) or simulated method of moments
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(McFadden (1989) and Pakes and Pollard (1989)). Other types of nonsmooth moments

that are directionally differentiable, such as in dynamic censored regression (Honore and

Hu (2004)), do not have this linear rate of decay and therefore retain the
?
n rate of

convergence. More details about IV quantile regression, simulated method of moments,

and dynamic censored regression can be found in Hong and Li (2023).

We will now describe our inference procedure. We first consider the case when the

constraints are not necessary for identification of θ0, which means that the constrained

minimizer of the population objective is the same as the unconstrained minimizer.

Assumption 7. G1Wπ pθ0q “ 0, where G “ B

Bθ
π pθ0q.

Assumption 7 will rule out strongly active constraints at θ0 when LICQ holds. In

Example 3, the constraint θ ě 0 will be strongly active at θ0 “ arg min
θě0

1
2
π pθq1 π pθq if

arg min
θě0

1
2
π pθq1 π pθq ‰ arg min

θPR

1
2
π pθq1 π pθq. If τ “ 0.5, Assumption 7 implies that θ0 “ β0,

so that both the moments and the non-negativity constraint are correctly specified.

We will benchmark the test statistic n2γ

ˆ

Q̂n pθq ´ inf
hPBδn

Q̂n

`

θ ` h
nγ

˘

˙

against the con-

ditional quantiles of ´ inf
hPRd

Ân phq, where Bδn “
!

h P Rd : }h}
nγ
ď δn

)

is a shrinking neighbor-

hood, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and

Ân phq “ n2γπ̂n

´

θ̂n

¯1

W pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

(2)

`
1

2
h1

˜

Ĝ1WĜ`
m
ÿ

j“1

m
ÿ

k“1

Wjkπ̂nk

´

θ̂n

¯

Ĥj

¸

h

` nγh1Ĝ1W pP ˚n ´ Pnq π
´

¨, θ̂n

¯

.

Ĝ is a consistent estimate of G, and Ĥj is a consistent estimate of Hj “
B2

BθBθ1
πj pθ0q for

j “ 1 . . .m. The intuition behind the test statistic is that if θ is the unconstrained mini-
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mizer of the population objective, then the sample objective should achieve its minimum

close to θ even if we perturb θ by small deviations that shrink to zero as n Ñ 8. We

are able to ignore the constraints when constructing our test statistic because the trouble-

some term nγh1G1Wπ pθ0q in the asymptotic expansion of the test statistic disappears when

G1Wπ pθ0q “ 0. Since the constraints are not present in the test statistic, our benchmarking

distribution also does not need to use the constraints. Let ĉ˚1´α be the 1´α conditional quan-

tile of´ inf
hPRd

Ân phq. We will show that C˚1´α “
"

θ : n2γ

ˆ

Q̂n pθq ´ inf
hPBδn

Q̂n

`

θ ` h
nγ

˘

˙

ď ĉ˚1´α

*

is a uniformly asymptotically valid nominal 1´ α confidence set for θ pP q “ θ0.

We will impose an additional assumption to show bootstrap equicontinuity results which

are necessary to demonstrate the validity of our inference procedure when the GMM esti-

mator is
?
n-consistent. This assumption is also used in Hong and Li (2023).

Assumption 8. If Assumptions 5 and 6 are satisfied for γ “ 1{2, ρ “ 1, then for any

εn Ñ 0, lim
λÑ8

lim sup
nÑ8

sup
těλ

t2 P

#

sup
}θ´θ0}ďεn

›

›

›

πp¨,θq´πp¨,θ0q
1`
?
n}θ´θ0}

›

›

›
ą t

+

“ 0. Additionally, for each ε ą 0

and t P Rd, lim
nÑ8

P

›

›

›

›

›

›

›

¨

˚

˝

?
ng

´

¨, θ0 `
t?
n

¯

π p¨, θ0q

˛

‹

‚

›

›

›

›

›

›

›

2

1

$

’

&

’

%

›

›

›

›

›

›

›

¨

˚

˝

?
ng

´

¨, θ0 `
t?
n

¯

π p¨, θ0q

˛

‹

‚

›

›

›

›

›

›

›

ą ε
?
n

,

/

.

/

-

“ 0.

In the next theorem, Jn p¨, P q denotes the CDF of n2γ

ˆ

Q̂n pθ0q ´ inf
hPBδn

Q̂n

`

θ0 `
h
nγ

˘

˙

under P , and J p¨, P q denotes the CDF of its limiting distribution under P . Similarly,

J˚αn p¨, P q denotes the conditional CDF of ´ inf
hPRd

Ân phq under P , and J˚ p¨, P q denotes the

CDF of its limiting distribution under P .

Theorem 3. (Uniformly valid inference when constraints are not necessary for identifi-

cation) Let P be a class of distributions for which Assumptions 3, 5-7 and 8 are satisfied

uniformly in P P P, and tJ p¨, P q : P P Pu and tJ˚ p¨, P q : P P Pu are equicontinuous at
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J´1
n p1´ α, P q.Then lim inf

nÑ8
inf
PPP

P
`

θ pP q P C˚1´α
˘

ě 1´ α, where

C˚1´α “
"

θ : n2γ

ˆ

Q̂n pθq ´ inf
hPBδn

Q̂n

ˆ

θ `
h

nγ

˙˙

ď ĉ˚1´α

*

,

Bδn “
!

h P Rd : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is the 1´ α

conditional quantile of ´ inf
hPRd

Ân phq.

Now suppose the constraints may be necessary for identification of θ0 so that Assump-

tion 7 may not hold. We will modify our test statistic to n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

,

where Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, and δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s. The

intuition behind the test statistic is that if θ is the constrained minimizer of the population

objective, then the sample objective should achieve its minimum close to θ even if we per-

turb θ by small deviations while still satisfying the constraints. In theory, the choice of κ

does not matter for achieving uniformly valid coverage, but if Q̂n pθq is nonsmooth and/or

nonconvex, in practice setting κ ă 8 helps the solver find the solution to inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

.

We cannot ignore the constraints when constructing our test statistic because the trou-

blesome term nγh1G1Wπ pθ0q in the asymptotic expansion of the test statistic can only be

signed when we minimize over the constraint set instead of the entire parameter space.

We will need to use the sign to find another statistic that stochastically dominates the

test statistic and has a well-defined limiting distribution. We can then compare this other

statistic to the benchmarking statistic used to form critical values and demonstrate uniform

validity of our inference procedure.

Let ĉ˚1´α be the 1 ´ α conditional quantile of ´ inf
hPRd

Ân phq. We are still benchmarking

against the unconstrained minimum of Ân phq because we cannot uniformly consistently

estimate the tangent cone of the constraint set at θ0. Since we do not observe θ0, we
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would have to replace θ0 by θ̂n and use a sequence ηn Ñ 8 satisfying ηn{nγ Ñ 0 in order

to remove the additional noise caused by centering the constraint set at θ̂n instead of θ0,

which introduces an additional nγ
´

θ̂n ´ θ0

¯

term. However, this procedure would be only

pointwise valid because the convergence of nγ
´

θ̂n ´ θ0

¯

to its limiting distribution is not

uniform over P .

We will show that C˚1´α “

#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

ď ĉ˚1´α

+

is a uniformly

asymptotically valid nominal 1´α confidence set for θ pP q “ θ0. Our inference procedure is

uniformly valid across parameters that are either in the interior or on the boundary of the

constraint set or are drifting towards the boundary at arbitrary unknown rates. Let Jn p¨, P q

be the CDF of Sn “ ´ inf
hPthPTCpθ0q:}h}ďκu

!

n2γ
´

Q̂2

`

θ0 `
h
nγ

˘

` Q̂3

`

θ0 `
h
nγ

˘

¯

` 1
2
h1H̄h

)

under

P , where Q̂2p¨q and Q̂3p¨q are defined in 6, and let J p¨, P q denote the CDF of Sn’s limiting

distribution under P . Additionally, let J˚αn p¨, P q denote the conditional CDF of´ inf
hPRd

Ân phq

under P , and let J˚ p¨, P q denote the CDF of its limiting distribution under P .

Theorem 4. (Uniformly valid inference when constraints may be necessary for identifi-

cation) Let P be a class of distributions for which Assumptions 3, 5-6 and 8 are satisfied

uniformly in P P P, and tJ p¨, P q : P P Pu and tJ˚ p¨, P q : P P Pu are equicontinuous at

J´1
n p1´ α, P q.Then lim inf

nÑ8
inf
PPP

P
`

θ pP q P C˚1´α
˘

ě 1´ α, where

C˚1´α “

#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

ˆ

θ `
h

nγ

˙

¸

ď ĉ˚1´α

+

,

Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is

the 1´ α conditional quantile of ´ inf
hPRd

Ân phq.
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3.2 Estimated Weighting Matrix

We now consider the case of an estimated weighting matrix where the 2-step GMM esti-

mator is θ̂n “ arg min
θPC

!

Q̂n pθq “
1
2
π̂ pθq1Wnπ̂ pθq

)

. It can be that the estimated weight-

ing matrix Wn “ Wn

´

θ̂1

¯

depends on the unconstrained 1-step GMM estimator θ̂1 “

arg min
θPΘ

1
2
π̂ pθq1W1π̂ pθq, or it can be that Wn “ Wn

´

θ̂C1

¯

depends on the constrained 1-step

GMM estimator θ̂C1 “ arg min
θPC

1
2
π̂ pθq1W1π̂ pθq. Note that we need to redefine the presumed

to be unique pseudo-true parameter to be θ0 “ arg min
θPC

1
2
π pθq1Wπ pθq where W depends on

the presumed to be unique 1-step GMM pseudo-true parameter using some fixed weighting

matrix W1. If we are using the unconstrained 1-step GMM estimator, then W “ W pθ1q,

where θ1 “ arg min
θPΘ

1
2
π pθq1W1π pθq. If we are using the constrained 1-step GMM estima-

tor, then W “ W
`

θC1
˘

, where θC1 “ arg min
θPC

1
2
π pθq1W1π pθq. The choice of which W to

use can be determined by whether the constraints matter for identification of the param-

eters. If G11W1π
`

θC1
˘

“ 0, where G1 “
B

Bθ
π
`

θC1
˘

, then θC1 “ θ1 and both W “ W pθ1q and

W “ W
`

θC1
˘

lead to the same pseudo-true parameter θ0. However, if G1W1π
`

θC1
˘

‰ 0,

meaning that the constraints matter for identification, then θC1 will differ from θ1, and de-

pending on whether we set W “ W pθ1q or W “ W
`

θC1
˘

, we can obtain different values of

θ0. Because we would like to enforce the constraints to identify the parameters, we would

typically use W “ W
`

θC1
˘

in this case.

The presence of the estimated weighting matrix adds an additional source of variation

which needs to be accounted for when constructing our confidence set. We will bench-

mark the test statistic n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

against the conditional quantiles

of ´ inf
hPRd

B̂n phq, where

B̂n phq “ n2γπ̂n

´

θ̂n

¯1

Wn pP
˚
n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

(3)
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`
1

2
h1

˜

Ĝ1WnĜ`
m
ÿ

j“1

m
ÿ

k“1

Wn,jkπ̂nk

´

θ̂n

¯

Ĥj

¸

h

` nγh1Ĝ1Wn pP
˚
n ´ Pnq π

´

¨, θ̂n

¯

` nγh1Ĝ1 pW ˚
n ´Wnq π̂n

´

θ̂n

¯

.

W ˚
n is the bootstrap analog of the weighting matrix and depends on a consistent bootstrap

analog of the 1-step estimator using a fixed weighting matrix W1. If we are using the

constrained 1-step estimator, then W ˚
n “ W ˚

n

´

θ̂C˚1

¯

, where

θ̂C˚1 “ arg min

θP
C´θ̂C

1
ηn

`θ̂C1

"

π̂n

´

θ̂C1

¯1

W1 pP
˚
n ´ Pnq

´

π p¨, θq ´ π
´

¨, θ̂C1

¯¯

(4)

`
1

2

´

θ ´ θ̂C1

¯1

˜

Ĝ1W1Ĝ`
m
ÿ

j“1

m
ÿ

k“1

W1,jkπ̂nk

´

θ̂C1

¯

Ĥj

¸

´

θ ´ θ̂C1

¯

`

´

θ ´ θ̂C1

¯1

Ĝ1W1 pP
˚
n ´ Pnq π

´

¨, θ̂C1

¯

*

,

and ηn Ñ 8 is a sequence that satisfies ηn{nγ Ñ 0. The purpose of this sequence is to

remove the additional noise caused by centering the constraint set around θ̂C1 instead of the

unknown θC1 .

If we are using the unconstrained 1-step estimator, then W ˚
n “ W ˚

n

´

θ̂˚1

¯

, where

θ̂˚1 “ arg min
θPΘ

"

π̂n

´

θ̂1

¯1

W1 pP
˚
n ´ Pnq

´

π p¨, θq ´ π
´

¨, θ̂1

¯¯

(5)

`
1

2

´

θ ´ θ̂1

¯1

˜

Ĝ1W1Ĝ`
m
ÿ

j“1

m
ÿ

k“1

W1,jkπ̂nk

´

θ̂1

¯

Ĥj

¸

´

θ ´ θ̂1

¯

`

´

θ ´ θ̂1

¯1

Ĝ1W1 pP
˚
n ´ Pnq π

´

¨, θ̂1

¯

*

We will impose an additional assumption regarding the allowable rates of convergence of

the estimated weighting matrix. For a given rate of convergence of the estimator, we allow
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for the weighting matrix to converge at either the same rate or a faster rate. We also

require joint weak convergence assumptions for terms involving the estimated weighting

matrix and the empirical processes that appear from expanding the moments. The joint

weak convergence assumptions are also used in Hong and Li (2023).

Assumption 9. γ, Wn and W ˚
n can fall into one of the following cases:

(i) γ “ 1{2, Wn ´W “ op
`

n´1{2
˘

and W ˚
n ´Wn “ o˚p

`

n´1{2
˘

.

(ii) γ “ 1{2, Wn ´W “ Op

`

n´1{2
˘

and W ˚
n ´Wn “ O˚p

`

n´1{2
˘

.

(iii) γ “ 1{3, Wn ´W “ op
`

n´1{3
˘

and W ˚
n ´Wn “ o˚p

`

n´1{3
˘

.

(iv) γ “ 1{3, Wn ´W “ Op

`

n´1{3
˘

and W ˚
n ´Wn “ O˚p

`

n´1{3
˘

.

Furthermore, If γ “ 1{2, Wn ´W “ Op

`

n´1{2
˘

and W ˚
n ´Wn “ O˚p

`

n´1{2
˘

, then
¨

˚

˚

˚

˚

˚

˝

π pθ0q
1Wnn pPn ´ P q g

`

¨, θ0 ` n
´1{2h

˘

h1G1Wn

?
n pPn ´ P q π p¨, θ0q

h1G1
?
n pWn ´W qπ pθ0q

˛

‹

‹

‹

‹

‹

‚

ù

¨

˚

˚

˚

˚

˚

˝

π pθ0q
1WZ0,1 phq

h1G1WU0

h1G1W0

˛

‹

‹

‹

‹

‹

‚

and

¨

˚

˚

˚

˚

˚

˝

π̂n

´

θ̂n

¯1

Wnn pP
˚
n ´ Pnq

´

π
´

¨, θ̂n `
h?
n

¯

´ π
´

¨, θ̂n

¯¯

h1Ĝ1Wn

?
n pP ˚n ´ Pnq π

´

¨, θ̂n

¯

h1Ĝ1
?
n pW ˚

n ´Wnq π̂n

´

θ̂n

¯

˛

‹

‹

‹

‹

‹

‚

P
ù
W

¨

˚

˚

˚

˚

˚

˝

π pθ0q
1WZ0,1 phq

h1G1WU0

h1G1W0

˛

‹

‹

‹

‹

‹

‚

in the

product space of locally bounded functions
 

Bloc
`

Rd
˘(3 for some tight random vector W0.

Here, U0 „ N
`

0, P pπ p¨, θ0q ´ π pθ0qq pπ p¨, θ0q ´ π pθ0qq
1
˘

and Z0,1 phq is a mean zero Gaus-

sian process with covariance kernel Σ1 ps, tq “ lim
αÑ8

α2Pg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1.

If γ “ 1{3, Wn ´W “ Op

`

n´1{3
˘

and W ˚
n ´Wn “ O˚p

`

n´1{3
˘

, then
¨

˚

˝

π pθ0q
1Wn2{3 pPn ´ P q g

`

¨, θ0 ` n
´1{3h

˘

h1G1n1{3 pWn ´W q π pθ0q

˛

‹

‚

ù

¨

˚

˝

π pθ0q
1WZ0,1{2 phq

h1G1W0

˛

‹

‚

and
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¨

˚

˝

π pθ0q
1Wn2{3 pP ˚n ´ Pnq g

`

¨, θ0 ` n
´1{3h

˘

h1G1n1{3 pW ˚
n ´Wnq π pθ0q

˛

‹

‚

P
ù
W

¨

˚

˝

π pθ0q
1WZ0,1{2 phq

h1G1W0

˛

‹

‚

in the product

space of locally bounded functions
 

Bloc
`

Rd
˘(2 for some tight random vector W0. Here,

Z0,1{2 phq is a mean zero Gaussian process with covariance kernel

Σ1{2ps, tq “ lim
αÑ8

αPg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1.

Let ĉ˚1´α be the 1´ α conditional quantile of ´ inf
hPRd

B̂n phq. We will show that

C˚1´α “

#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

ď ĉ˚1´α

+

is a uniformly asymptotically valid

nominal 1 ´ α confidence set for θ pP q “ θ0. In the next theorem, we let Jn p¨, P q denote

the CDF of Rn “ ´ inf
hPthPTCpθ0q:}h}ďκu

 

n2γQ̄n

`

θ0 `
h
nγ

˘

` 1
2
h1H̄h

(

under P , where Q̄np¨q is

defined in equation 9, and let J p¨, P q denote the CDF of Rn’s limiting distribution under

P . Additionally, let J˚αn p¨, P q denote the conditional CDF of ´ inf
hPRd

B̂n phq under P , and let

J˚ p¨, P q denote the CDF of its limiting distribution under P .

Theorem 5. (Uniformly valid inference when constraints may be necessary for identifica-

tion) Let P be a class of distributions for which Assumptions 3, 5-6 and 8-9 are satisfied

uniformly in P P P, and tJ p¨, P q : P P Pu and tJ˚ p¨, P q : P P Pu are equicontinuous at

J´1
n p1´ α, P q.Then lim inf

nÑ8
inf
PPP

P
`

θ pP q P C˚1´α
˘

ě 1´ α, where

C˚1´α “

#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

ˆ

θ `
h

nγ

˙

¸

ď ĉ˚1´α

+

,

Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is

the 1´ α conditional quantile of ´ inf
hPRd

B̂n phq.
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3.3 Pointwise Valid Rate-Adaptive Inference for Constrained GMM

If we were only interested in pointwise valid, rather than uniformly valid inference for

θ0 “ arg min
θPC

1
2
π pθq1Wπ pθq, we can conduct rate-adaptive inference, which does not require

knowing the rate of convergence γ. In other words, if we are willing to assume that θ0

is away from the boundary of C, then we can be agnostic about whether the model is

correctly specified or globally misspecified (we have to exclude the possibility of local mis-

specification). Our pointwise valid procedure for constrained GMM with a fixed weighting

matrix is as follows:

1. Compute θ̂n “ arg min
θPC

1
2
π̂n pθq

1Wπ̂n pθq, π̂n
´

θ̂n

¯

“ 1
n

řn
i“1 π

´

Xi, θ̂n

¯

, Ĝ, Ĥj for j “

1 . . .m. Pick ηn Ñ 8 which is a sequence that satisfies ηn{n1{3 Ñ 0.

2. Repeat for B bootstrap iterations: draw a bootstrap sample X˚
1 , . . . , X

˚
n and compute

θ̂˚n “ arg min
θPC´θ̂n

ηn
`θ̂n

#

π̂n

´

θ̂n

¯1

W

˜

1

n

n
ÿ

i“1

´

π pX˚
i , θq ´ π

´

X˚
i , θ̂n

¯¯

´
1

n

n
ÿ

i“1

´

π pXi, θq ´ π
´

Xi, θ̂n

¯¯

¸

`
1

2

´

θ ´ θ̂n

¯1

˜

Ĝ1WĜ`
m
ÿ

j“1

m
ÿ

k“1

Wjkπ̂nk

´

θ̂
¯

Ĥj

¸

´

θ ´ θ̂n

¯

`

´

θ ´ θ̂n

¯1

Ĝ1W

˜

1

n

n
ÿ

i“1

´

π
´

X˚
i , θ̂n

¯

´ π
´

Xi, θ̂n

¯¯

¸+

.

3. For k “ 1, . . . , d, compute the 1´α{2 and α{2 percentiles of the empirical distribution

of θ̂˚nk ´ θ̂nk. Call them ck,1´α{2 and ck,α{2.

A nominal 1 ´ α two-sided equal-tailed confidence interval for θ0k can be formed by
”

θ̂nk ´ ck,1´α{2, θ̂nk ´ ck,α{2

ı

. A nominal 1 ´ α confidence interval for ρ pθ0q, where ρ :

Θ ÞÑ R, can be formed using the 1´ α{2 and α{2 percentiles of the empirical distribution

of ρ
´

θ̂˚n

¯

´ ρ
´

θ̂n

¯

, denoted cρ,1´α{2 and cρ,α{2:
”

ρ
´

θ̂n

¯

´ cρ,1´α{2, ρ
´

θ̂n

¯

´ cρ,α{2

ı

.
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We will show that the proposed bootstrap procedure will pointwise consistently estimate

the distribution of θ̂n without having to know the rate of convergence coefficient γ. Since

we know that γ ě 1{3 for the class of GMM estimators we consider, the sequence ηn will

satisfy ηn{nγ Ñ 0 and remove the additional noise caused by centering the constraint set

around θ̂n instead of the unknown θ0.

Theorem 6. Suppose Assumptions 3, 5-6 and 8 hold, Ĝ p
Ñ G, and Ĥj

p
Ñ Hj for j “

1 . . .m. Also suppose H̄ “ G1WG`
řm
j“1

řm
k“1Wjkπk pθ0qHj is positive definite. Then,

nγ
´

θ̂n ´ θ0

¯

ù arg min
hPTCpθ0q

A0 phq , nγ
´

θ̂˚n ´ θ̂n

¯

P
ù
W

arg min
hPTCpθ0q

A0 phq

where H̄ “ G1WG`
řm
j“1

řm
k“1Wjkπk pθ0qHj, TC pθ0q ” lim sup

τÓ0

C´θ0
τ

, A0 phq “ π pθ0q
1WZ0,1 phq`

h1G1WU0 `
1
2
h1H̄h for γ “ 1{2, and A0 phq “ π pθ0q

1WZ0,1{2 phq `
1
2
h1H̄h when γ “ 1{3.

Here, U0 „ N
`

0, P pπ p¨, θ0q ´ π pθ0qq pπ p¨, θ0q ´ π pθ0qq
1
˘

, Z0,1 phq is a mean zero Gaussian

process with covariance kernel Σ1 ps, tq “ lim
αÑ8

α2Pg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1, and Z0,1{2 phq is

a mean zero Gaussian process with covariance kernel Σ1{2ps, tq “ lim
αÑ8

αPg
`

¨, θ0 `
s
α

˘

g
`

¨, θ0 `
t
α

˘1.

4 Monte Carlo

4.1 Nonsmooth Location Model

Consider a simple location model with i.i.d data,

yi “ β0 ` εi, i “ 1, . . . , n, εi „ Np0, 1q.
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For π p¨, θq “ r1 pyi ď θq ´ τ ; yi ´ θs
1, the population moments are π pθq “ rP pyi ď θq ´ τ ;Eyi ´ θs

1.

The model cannot be correctly specified as long as τ ‰ 0.5, and the nonsmoothness of the

moments leads to a cubic-root rate of convergence under global misspecification, meaning

that τ “ c ‰ 0.5 for some fixed constant c. As demonstrated in Hong and Li (2023),

the standard bootstrap will undercover the parameter of interest whenever τ ‰ 0.5, with

the undercoverage becoming more severe as τ moves further away from 0.5. Additionally,

if τ “ 0.5, Li (2023) has shown that the standard bootstrap and subsampling percentile

intervals will under-cover drifting values of β0 when we impose a non-negativity constraint.

The rate-adaptive bootstrap in Hong and Li (2023) can conduct pointwise valid inference

for misspecified GMM models without constraints, but here we would like to be able to

conduct inference that is uniformly valid across all drifting parameters while imposing a

non-negativity constraint.

We first use a fixed weighting matrix W “ I, and consider the following GMM criterion

function and its probability limit:

Q̂n pθq “
1

2
π̂n pθq

1 π̂n pθq “
1

2

˜

1

n

n
ÿ

i“1

1 pyi ď θq ´ τ

¸2

`
1

2

˜

1

n

n
ÿ

i“1

yi ´ θ

¸2

Q pθq “
1

2
π pθq1 π pθq “

1

2
pP pyi ď θq ´ τq2 `

1

2
pEyi ´ θq

2 .

We are interested in conducting uniformly valid inference on the pseudo true value given

by θ0 “ arg min
θPC

Q pθq, where the constraint set is C “ tθ : θ ě 0u. We call θ0 the pseudo

true value because it will not be equal to β0 if τ ‰ 0.5 or β0 ă 0.

We will examine the empirical coverage and average width of the confidence set C˚1´α “
#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

ď ĉ˚1´α

+

, where Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

,

δn Ñ 0 satisfies nγδn Ñ κ for κ P p0,8s, and ĉ˚1´α is the 1 ´ α empirical quantile of

29



´ inf
hPRd

Ân phq for Ân phq given in equation 2. In all of our simulations, we used κ “ 5 and

Matlab’s patternsearch routine to compute our estimators. Additionally, we estimate G

and H using kernel estimators:

Ĝn “

»

—

–

1
nh

řn
i“1Kh

´

yi ´ θ̂n

¯

´1

fi

ffi

fl

, Ĥn “

»

—

–

1
nh2

řn
i“1K

1
h

´

yi ´ θ̂n

¯

0

fi

ffi

fl

,

Kh pxq “ K px{hq, K pxq “ p2πq´1{2 expp´x2{2q, K 1
h pxq “ K 1 px{hq and

K 1 pxq “ ´ p2πq´1{2 x expp´x2{2q, where h is Silverman’s rule-of-thumb bandwidth h “

1.06n´1{5. We also tried different bandwidth values and the results were not affected.

Table 1 shows the empirical coverage frequencies and average interval lengths (in paren-

theses) of a nominal 95% confidence set when β0 ě 0. We consider a range of different

values of β0 P
 

0, n´1, n´1{2, n´1{3, n´1{4, n´1{6, 1
(

, where n P t100, 500, 1000, 5000u. We

consider three different values of τ P t0.1, 0.3, 0.5u, where the first two values of τ corre-

spond to misspecified models with the cubic-root rate of convergence and the last value

corresponds to a correctly specified model with the square-root rate of convergence. We use

B “ 1000 bootstrap iterations, and R “ 2000 Monte Carlo simulations. The coverage is

above the nominal level for values of β0 close to zero (when the constraint becomes weakly

active), but approaches the nominal level as β0 becomes more positive (when the constraint

becomes inactive). For any given sample size, the average interval length is fairly small

and does not change much across the different values of β0.

Table 2 shows the empirical coverage frequencies and average interval lengths (in paren-

theses) of a nominal 95% confidence set when β0 ă 0. We consider a range of different values

of β0 P
 

´n´1,´n´1{2,´n´1{3,´n´1{4,´n´1{6,´1
(

. Because negative values of β0 violate

the non-negativity constraint, the non-negativity constraint is misspecified and therefore
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Table 1: Coverage Frequencies and Average Interval Lengths, κ “ 5

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 1
τ “ 0.1

n “ 100 1.000 1.000 0.990 0.979 0.964 0.956 0.945
p0.559q p0.543q p0.472q p0.430q p0.424q p0.421q p0.420q

n “ 500 1.000 1.000 1.000 0.991 0.964 0.963 0.960
p0.369q p0.360q p0.303q p0.232q p0.211q p0.211q p0.211q

n “ 1000 1.000 1.000 1.000 0.999 0.980 0.957 0.958
p0.328q p0.327q p0.276q p0.195q p0.161q p0.159q p0.159q

n “ 5000 1.000 1.000 1.000 1.000 0.999 0.969 0.970
p0.291q p0.289q p0.264q p0.186q p0.103q p0.085q p0.086q

τ “ 0.3
n “ 100 0.996 0.994 0.971 0.960 0.952 0.947 0.945

p0.464q p0.452q p0.410q p0.393q p0.393q p0.392q p0.393q
n “ 500 1.000 1.000 0.995 0.978 0.959 0.956 0.954

p0.253q p0.246q p0.210q p0.186q p0.184q p0.184q p0.185q
n “ 1000 1.000 1.000 0.998 0.977 0.957 0.942 0.953

p0.205q p0.204q p0.168q p0.137q p0.135q p0.135q p0.135q
n “ 5000 1.000 1.000 1.000 0.999 0.957 0.955 0.969

p0.157q p0.155q p0.132q p0.078q p0.066q p0.066q p0.067q
τ “ 0.5

n “ 100 0.976 0.977 0.962 0.950 0.945 0.944 0.942
p0.408q p0.401q p0.386q p0.381q p0.382q p0.383q p0.383q

n “ 500 0.974 0.972 0.965 0.964 0.955 0.959 0.953
p0.185q p0.183q p0.175q p0.174q p0.174q p0.174q p0.174q

n “ 1000 0.974 0.973 0.970 0.952 0.955 0.945 0.954
p0.131q p0.131q p0.124q p0.123q p0.123q p0.124q p0.124q

n “ 5000 0.976 0.973 0.974 0.944 0.948 0.956 0.956
p0.059q p0.058q p0.056q p0.056q p0.056q p0.056q p0.056q

strongly active (binding) at θ0 “ arg min
θě0

Q pθq, which leads to the coverage for θ0 being

quite conservative. However, the average interval lengths are not particularly wide because

we are covering the pseudo-true parameter θ0 rather than the true parameter β0.

We also examined the coverage of the confidence set constructed using the unconstrained

minimum of the objective function: D˚1´α “
"

θ : n2γ

ˆ

Q̂n pθq ´ inf
hPBδn

Q̂n

`

θ ` h
nγ

˘

˙

ď ĉ˚1´α

*

,

where Bδn “
!

h P Rd : }h}
nγ
ď δn

)

is a shrinking neighborhood and δn Ñ 0 satisfies nγδn Ñ κ

for κ “ 5. This confidence set is only valid when Assumption 7 holds, which rules out sev-

eral drifting parameters when τ ‰ 0.5. If we have correctly specified moments and correctly
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Table 2: Coverage Frequencies and Average Interval Lengths, κ “ 5

β0 ´n´1 ´n´1{2 ´n´1{3 ´n´1{4 ´n´1{6 ´1
τ “ 0.1

n “ 100 1.000 1.000 1.000 1.000 1.000 1.000
p0.566q p0.674q p0.839q p0.990q p1.095q p1.091q

n “ 500 1.000 1.000 1.000 1.000 1.000 1.000
p0.368q p0.435q p0.570q p0.642q p0.644q p0.635q

n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000
p0.330q p0.380q p0.486q p0.513q p0.510q p0.504q

n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000
p0.283q p0.295q p0.299q p0.297q p0.296q p0.294q

τ “ 0.3
n “ 100 0.996 1.000 1.000 1.000 1.000 1.000

p0.467q p0.554q p0.708q p0.876q p1.048q p1.087q
n “ 500 1.000 1.000 1.000 1.000 1.000 1.000

p0.252q p0.307q p0.441q p0.582q p0.641q p0.633q
n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000

p0.206q p0.249q p0.368q p0.490q p0.508q p0.503q
n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000

p0.156q p0.181q p0.263q p0.296q p0.295q p0.293q
τ “ 0.5

n “ 100 0.980 0.998 1.000 1.000 1.000 1.000
p0.407q p0.452q p0.516q p0.544q p0.537q p0.515q

n “ 500 0.969 0.998 1.000 1.000 1.000 1.000
p0.184q p0.204q p0.242q p0.240q p0.233q p0.226q

n “ 1000 0.974 0.998 1.000 1.000 1.000 1.000
p0.131q p0.144q p0.173q p0.169q p0.164q p0.160q

n “ 5000 0.979 0.999 1.000 1.000 1.000 1.000
p0.059q p0.065q p0.077q p0.074q p0.072q p0.071q

specified constraints, which means τ “ 0.5 and β0 ě 0, then Assumption 7 will hold. As

shown in Table 3, if τ “ 0.5, the coverage of D˚1´α is less conservative than the coverage

of C˚1´α, and the average interval lengths are also shorter. The reason is that the limit-

ing distribution of n2γ

ˆ

Q̂n pθq ´ inf
hPBδn

Q̂n

`

θ ` h
nγ

˘

˙

is closer to the limiting distribution of

´ inf
hPRd

Ân phq. However, when τ ‰ 0.5, the coverage of the confidence set is far below the

nominal level for β0 “ 0 and also for several of the drifting values of β0. The faster the

rate at which β0 drifts towards zero, the more severe the undercoverage, and furthermore,

the undercoverage worsens with larger values of n.
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Table 3: Coverage Frequencies and Average Interval Lengths using Unconstrained Objective

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 2
τ “ 0.1

n “ 100 0.783 0.805 0.943 0.953 0.941 0.947 0.938
p0.379q p0.377q p0.371q p0.365q p0.368q p0.365q p0.364q

n “ 500 0.256 0.282 0.600 0.953 0.953 0.943 0.959
p0.201q p0.200q p0.198q p0.194q p0.190q p0.190q p0.190q

n “ 1000 0.058 0.057 0.232 0.854 0.953 0.935 0.945
p0.153q p0.153q p0.151q p0.148q p0.144q p0.144q p0.144q

n “ 5000 0.000 0.000 0.000 0.025 0.849 0.950 0.950
p0.084q p0.084q p0.083q p0.080q p0.078q p0.077q p0.077q

τ “ 0.3
n “ 100 0.898 0.920 0.947 0.948 0.945 0.946 0.942

p0.354q p0.352q p0.347q p0.346q p0.347q p0.346q p0.345q
n “ 500 0.699 0.724 0.928 0.957 0.951 0.943 0.961

p0.177q p0.176q p0.174q p0.172q p0.171q p0.171q p0.173q
n “ 1000 0.493 0.509 0.824 0.953 0.950 0.937 0.949

p0.130q p0.130q p0.128q p0.126q p0.126q p0.126q p0.126q
n “ 5000 0.013 0.011 0.071 0.908 0.947 0.944 0.957

p0.065q p0.065q p0.064q p0.062q p0.062q p0.061q p0.062q
τ “ 0.5

n “ 100 0.954 0.949 0.947 0.952 0.942 0.947 0.945
p0.342q p0.341q p0.342q p0.341q p0.342q p0.340q p0.342q

n “ 500 0.946 0.942 0.944 0.963 0.958 0.948 0.959
p0.166q p0.166q p0.166q p0.166q p0.166q p0.165q p0.166q

n “ 1000 0.952 0.942 0.948 0.945 0.952 0.945 0.959
p0.120q p0.120q p0.119q p0.119q p0.119q p0.120q p0.119q

n “ 5000 0.956 0.952 0.948 0.945 0.954 0.957 0.954
p0.055q p0.055q p0.055q p0.055q p0.055q p0.055q p0.055q

Now we consider the case of an estimated weighting matrix. The variance-covariance

matrix of the moments is

E pπ p¨, θq ´ π pθqq pπ p¨, θq ´ π pθqq1 “

»

—

–

Fy pθq ´ Fy pθq
2
´fy pθq

´fy pθq 1

fi

ffi

fl

.

We consider using an estimate of the inverse of the variance-covariance matrix of the
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moments as our weighting matrix:

Wn

´

θ̂C1

¯

“

»

—

–

F̂y

´

θ̂C1

¯

´ F̂y

´

θ̂C1

¯2

´f̂y

´

θ̂C1

¯

´f̂y

´

θ̂C1

¯

1

fi

ffi

fl

´1

,

where θ̂C1 “ arg minθě0
1
2
π̂n pθq

1 π̂n pθq is the constrained 1-step estimator using the identity

weighting matrix, f̂y
´

θ̂C1

¯

“ 1
nh

řn
i“1Kh

´

yi ´ θ̂
C
1

¯

, and F̂y
´

θ̂C1

¯

“ 1
n

řn
i“1 1

´

yi ď θ̂C1

¯

.

The bootstrapped weighting matrix is computed using the multinomial bootstrap:

W ˚
n

´

θ̂C˚1

¯

“

»

—

–

F̂ ˚y

´

θ̂C˚1

¯

´ F̂y

´

θ̂C˚1

¯2

´f̂˚y

´

θ̂C˚1

¯

´f̂˚y

´

θ̂C˚1

¯

1

fi

ffi

fl

´1

,

where θ̂C˚1 is the constrained bootstrap estimate in equation 4 using W1 “ I and ηn “ n1{4,

f̂˚y

´

θ̂C˚1

¯

“ 1
nh

řn
i“1Kh

´

y˚i ´ θ̂
C˚
1

¯

, and F̂ ˚y

´

θ̂C˚1

¯

“ 1
n

řn
i“1 1

´

y˚i ď θ̂C˚1

¯

. We use the

same Silverman’s Rule of Thumb bandwidth as before h “ 1.06stdpyqn´1{5.

We want to conduct uniformly valid inference on the pseudo true value given by

θ0 “ arg min
θě0

1
2
π pθq1W

`

θC1
˘

π pθq where W
`

θC1
˘

“

»

—

–

Fy
`

θC1
˘

´ Fy
`

θC1
˘2

´fy
`

θC1
˘

´fy
`

θC1
˘

1

fi

ffi

fl

´1

and θC1 “ arg min
θě0

1
2
π pθq1 π pθq. Our uniformly asymptotically valid nominal 1´α confidence

set is C˚1´α “

#

θ : n2γ

˜

Q̂n pθq ´ inf
hPCθδn

Q̂n

`

θ ` h
nγ

˘

¸

ď ĉ˚1´α

+

, where Q̂n pθq “
1
2
π̂n pθq

1Wn

´

θ̂C1

¯

π̂n pθq,

Cθδn “
!

h P nγ pC ´ θq : }h}
nγ
ď δn

)

, δn Ñ 0 satisfies nγδn Ñ κ, and ĉ˚1´α is the 1 ´ α condi-

tional quantile of ´ inf
hPRd

B̂n phq for B̂n phq given in equation 3.

Tables 4 and 5 show the empirical coverage frequencies and average interval lengths (in

parentheses) of nominal 95% confidence intervals when κ “ 5. We consider a range of differ-

ent values of β0 P ˘
 

0, n´1, n´1{2, n´1{3, n´1{4, n´1{6, 1
(

, where n P t100, 500, 1000, 5000u.

We consider three different values of τ P t0.1, 0.3, 0.5u and use B “ 1000 bootstrap itera-
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Table 4: Coverage Frequencies and Average Interval Lengths, κ “ 5

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 1
τ “ 0.1

n “ 100 0.987 0.983 0.985 0.986 0.975 0.961 0.977
p1.462q p1.490q p1.435q p1.460q p1.533q p1.498q p1.513q

n “ 500 0.986 0.982 0.986 0.972 0.970 0.963 0.957
p0.901q p0.888q p0.864q p0.871q p0.861q p0.903q p0.881q

n “ 1000 0.977 0.980 0.983 0.981 0.969 0.960 0.959
p0.705q p0.712q p0.681q p0.685q p0.687q p0.698q p0.704q

n “ 5000 0.983 0.979 0.986 0.975 0.964 0.961 0.956
p0.401q p0.400q p0.396q p0.379q p0.384q p0.383q p0.397q

τ “ 0.3
n “ 100 0.980 0.981 0.971 0.956 0.930 0.930 0.933

p0.855q p0.885q p0.814q p0.781q p0.808q p0.786q p0.774q
n “ 500 0.981 0.980 0.981 0.958 0.935 0.929 0.938

p0.501q p0.499q p0.471q p0.452q p0.437q p0.440q p0.436q
n “ 1000 0.975 0.979 0.980 0.963 0.938 0.928 0.926

p0.401q p0.400q p0.382q p0.368q p0.362q p0.354q p0.358q
n “ 5000 0.982 0.978 0.982 0.959 0.942 0.952 0.946

p0.251q p0.250q p0.242q p0.230q p0.225q p0.222q p0.224q
τ “ 0.5

n “ 100 0.969 0.968 0.954 0.935 0.924 0.924 0.916
p0.410q p0.414q p0.395q p0.400q p0.401q p0.404q p0.406q

n “ 500 0.966 0.963 0.960 0.950 0.945 0.940 0.948
p0.191q p0.189q p0.182q p0.185q p0.186q p0.185q p0.185q

n “ 1000 0.970 0.963 0.961 0.936 0.950 0.939 0.947
p0.136q p0.136q p0.131q p0.133q p0.133q p0.133q p0.133q

n “ 5000 0.973 0.976 0.966 0.946 0.947 0.955 0.951
p0.062q p0.062q p0.060q p0.060q p0.061q p0.061q p0.061q

tions and R “ 2000 Monte Carlo simulations. For the positive values of β0, the coverage is

close to the nominal level for sufficiently large values of n and is less conservative when β0

is further away from the boundary of the constraint set. For the negative values of β0, the

non-negativity constraint is misspecified and therefore strongly active at θ0 “ arg min
θě0

Q pθq.

This misspecification causes the coverage for θ0 to be quite conservative. However, the av-

erage interval lengths are not particularly wide because we are covering the pseudo-true

parameter θ0 rather than the true parameter β0. Additional Monte Carlo simulations for

the cases of κ “ 8 and κ “ 1 are in the Appendix Section 6.3.
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Table 5: Coverage Frequencies and Average Interval Lengths, κ “ 5

β0 ´n´1 ´n´1{2 ´n´1{3 ´n´1{4 ´n´1{6 ´1
τ “ 0.1

n “ 100 0.984 0.989 0.999 0.999 1.000 1.000
p1.246q p1.300q p1.393q p1.447q p1.470q p1.524q

n “ 500 0.984 0.992 0.996 0.996 0.999 1.000
p0.818q p0.841q p0.887q p0.895q p0.846q p0.760q

n “ 1000 0.984 0.986 0.996 0.999 1.000 1.000
p0.682q p0.682q p0.720q p0.720q p0.660q p0.572q

n “ 5000 0.980 0.991 0.993 0.999 1.000 1.000
p0.401q p0.406q p0.415q p0.407q p0.366q p0.315q

τ “ 0.3
n “ 100 0.979 0.993 0.999 0.999 1.000 1.000

p0.823q p0.906q p1.014q p1.140q p1.246q p1.322q
n “ 500 0.981 0.991 0.999 1.000 1.000 1.000

p0.498q p0.526q p0.601q p0.689q p0.709q p0.677q
n “ 1000 0.980 0.989 0.998 1.000 1.000 1.000

p0.402q p0.420q p0.486q p0.562q p0.564q p0.535q
n “ 5000 0.982 0.992 0.997 1.000 1.000 1.000

p0.252q p0.259q p0.298q p0.341q p0.325q p0.304q
τ “ 0.5

n “ 100 0.970 0.996 0.999 1.000 1.000 1.000
p0.419q p0.467q p0.557q p0.655q p0.783q p1.437q

n “ 500 0.964 0.998 1.000 1.000 1.000 1.000
p0.191q p0.211q p0.280q p0.355q p0.495q p1.174q

n “ 1000 0.967 0.997 1.000 1.000 1.000 1.000
p0.136q p0.150q p0.208q p0.279q p0.413q p1.132q

n “ 5000 0.977 0.999 1.000 1.000 1.000 1.000
p0.062q p0.068q p0.106q p0.163q p0.284q p1.071q

5 Conclusion

We have proposed an inference procedure for parameters defined by the solution to con-

strained optimization problems with non-random constraints. We allow the sample objec-

tive to be nonsmooth, nonconvex, and the rate of convergence of the constrained estimator

to be different from the
?
n rate, thus allowing for constrained M-estimators with nonstan-

dard limiting distributions as well as globally misspecified nonsmooth constrained GMM

estimators. We have demonstrated that our confidence set has uniformly valid coverage
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across a range of different parameters which can be either in the interior or on the boundary

of the constraint set or are drifting towards the boundary at arbitrary rates.

6 Appendix

6.1 Proofs of Theorems

6.1.1 Proof of Theorem 1

Consider any sequence
 

P pnq P P : n ě 1
(

that determines θn “ θ
`

P pnq
˘

and the laws of

all random variables. Denote the empirical measure as Pn and the bootstrap empirical

measure as P ˚n . Consistency of θ̂n for θn follows from Assumption 1 and constraining θ to

lie in C when applying Corollary 3.2.3 in van der Vaart and Wellner (1996). We already

showed in the proof of Theorem 4.1 of Hong and Li (2020) that under Assumption 2,

n2γ
`

Pn ´ P
pnq
˘ `

π
`

¨, θn `
h
nγ

˘

´ π p¨, θnq
˘

converges in finite dimensional distribution to a

mean zero Gaussian process Z0,ρ phq with covariance kernel

Σρ ps, tq “ lim
αÑ8

α2ρP pnqg
´

¨, θn `
s

α

¯

g

ˆ

¨, θn `
t

α

˙1

.

Additionally, n2γP pnq
`

π
`

¨, θn `
h
nγ

˘

´ π p¨, θnq
˘

“ h1nγl pθnq`
1
2
h1H0h`op1q “

1
2
h1H0h`op1q

since we assumed in Assumption 4 that l pθnq “ 0. Therefore,

n2γπ̂n

ˆ

θn `
h

nγ

˙

´ n2γπ̂n pθnq

“ n2γ
`

Pn ´ P
pnq
˘

ˆ

π

ˆ

¨, θn `
h

nγ

˙

´ π p¨, θnq

˙

`
1

2
h1H0h` oP pnqp1q

ù Z0,ρ phq `
1

2
h1H0h,
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as a process indexed by h in the space of locally bounded functions Bloc
`

Rd
˘

equipped

with the topology of uniform convergence on compacta.

Theorem 3.6.13 in van der Vaart and Wellner (1996) or Theorem 2.6 in Kosorok (2007)

then implies that the bootstrapped process n2γ pP ˚n ´ Pnq
`

π
`

¨, θn `
h
nγ

˘

´ π p¨, θnq
˘

is con-

sistent for the same limiting process as n2γ
`

Pn ´ P
pnq
˘ `

π
`

¨, θn `
h
nγ

˘

´ π p¨, θnq
˘

:

n2γ
pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θn `
h

nγ

˙

´ π p¨, θnq

˙

P
ù
W

Z0,ρ phq .

Next we show that for every sequence of positive numbers tεnu converging to zero,

n2γ sup
dPDpnq

ˇ

ˇ

`

Pn ´ P
pnq
˘

d
ˇ

ˇ “ oP pnqp1q,

where Dpnq “ td p¨, θn, h1, h2q “ g p¨; θn ` n
´γh1q ´ g p¨; θn ` n

´γh2q such that

maxp}h1}, }h2}q ďM and }h1 ´ h2} ď εnu. Note that Dpnq has envelope function Dn “

2GRpnq where Rpnq “Mn´γ.

The maximal inequality states that

n2γP pnq sup
dPDpnq

ˇ

ˇ

`

Pn ´ P
pnq
˘

d
ˇ

ˇ ď P pnq
a

n2γρPnD2
nJ

¨

˚

˝

n2γρ sup
dPDpnq

Pnd
2

n2γρPnD2
n

˛

‹

‚

.

Note that P pnqn2γρPnD
2
n “ O

´

n2γρ pn´γq2ρ
¯

“ Op1q. Next, for eachK ą 0, P pnq sup
dPDpnq

Pnd
2 ď

P pnqPn sup
dPDpnq

d21 tDn ą Ku `KP pnq sup
dPDpnq

Pn|d| ď P pnqPnD
2
n1 tDn ą Ku `K sup

dPDpnq

P pnq|d|

`KP pnq sup
dPDpnq

ˇ

ˇPn|d| ´ P
pnq|d|

ˇ

ˇ. For the first term, for large enough K, there exists some

η ą 0 such that P pnqPnD2
n1 tDn ą Ku ă ηn´2γρ. For the second term, K sup

dPDpnq

P pnq|d| “
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O pn´2γρεnq “ o pn´2γρq. For the third term, if ρ ă 1,

KP pnq sup
dPDpnq

ˇ

ˇPn|d| ´ P
pnq
|d|
ˇ

ˇ ď Kn´1{2Jp1q
b

P pnqD2
n

“ O
`

n´pγρ`1{2q
˘

“ O
`

n´2γ
˘

“ o
`

n´2γρ
˘

In the case where ρ “ 1 and γ “ 1{2, because we assumed in Assumption 2 that π p¨, θq

is Lipschitz in θ with a stochastically bounded Lipschitz constant, we have that Dn “

OP pnq

`

n´1{2εn
˘

. We can then use the maximal inequality in Section 3.1 of Kim and Pollard

(1990) to show KP pnqsup
Dpnq

ˇ

ˇPn|dj| ´ P
pnq|dj|

ˇ

ˇ ă Kn´
1
2Jp1q

a

P pnqD2
n “ Opn´1εnq “ opn´1q.

Therefore, P pnqnsup
Dpnq

Pnd
2
j “ op1q.

We have shown n2γ sup
dPDpnq

ˇ

ˇ

`

Pn ´ P
pnq
˘

d
ˇ

ˇ “ oP pnqp1q, which implies that

n2γsup
hPH

ˇ

ˇ

ˇ

ˇ

`

Pn ´ P
pnq
˘

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

´

ˆ

π

ˆ

¨, θn `
h

nγ

˙

´ π p¨, θnq

˙˙
ˇ

ˇ

ˇ

ˇ

“ oP pnq
´

1` nγ
›

›

›
θ̂n ´ θn

›

›

›

¯

“ oP pnqp1q

Since lim
λÑ8

lim sup
nÑ8

sup
těλ

t2

#

sup
hPH,}θ´θn}ďεn

ˇ

ˇ

ˇ

mnp¨,θ,hq´mnp¨,θn,hq
1`nγ}θ´θn}

ˇ

ˇ

ˇ
ą t

+

“ 0 for any εn Ñ 0 and any

compact set H Ă Rd by Assumption 3, Lemma 4.2 in Wellner and Zhan (1996) implies that

n2γsup
hPH

ˇ

ˇ

ˇ

ˇ

pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

´

ˆ

π

ˆ

¨, θn `
h

nγ

˙

´ π p¨, θnq

˙˙
ˇ

ˇ

ˇ

ˇ

“ o˚P pnq
´

1` nγ
›

›

›
θ̂n ´ θn

›

›

›

¯

“ o˚P pnq p1q

Therefore, since Ĥ p
Ñ H,

Ĥn phq “ n2γ
pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

`
1

2
h1Ĥh
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P
ù
W

Z0,ρ phq `
1

2
h1H0h ” H0 phq

Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply´ inf
hPRd

Ĥn phq
P

ù
W

´ inf
hPRd

H0 phq. Also by the continuous mapping theorem,

n2γ

ˆ

π̂n pθnq ´ inf
hPBδn

π̂n

ˆ

θn `
h

nγ

˙˙

ù ´ inf
hPthPRd:}h}ďκu

H0 phq

Since J
`

¨, P pnq
˘

is equicontinuous at J´1
n

`

1´ α, P pnq
˘

, we have for xn “ J´1
n

`

1´ α ´ ε, P pnq
˘

,

Jn
`

xn, P
pnq
˘

´ J
`

xn, P
pnq
˘

“ op1q for any P pnq and ε ą 0 small enough. Since J˚
`

¨, P pnq
˘

is also equicontinuous at J´1
n

`

1´ α, P pnq
˘

, we have for any P pnq and ε small enough,

J˚αn
`

xn, P
pnq
˘

´ J˚
`

xn, P
pnq
˘

“ oP pnqp1q.

Note that ´ inf
hPthPRd:}h}ďκu

H0 phq ď ´ inf
hPRd

H0 phq for any realizations of the random vari-

ables, which means J˚
`

xn, P
pnq
˘

ă J
`

xn, P
pnq
˘

for all n large enough. Then, for all ε ą 0

and n large enough, there exists δ ą 0 such that P pnq
`

J˚αn
`

xn, P
pnq
˘

´ Jn
`

xn, P
pnq
˘

ą ε
˘

ď

δ. If J˚αn
`

xn, P
pnq
˘

´ Jn
`

xn, P
pnq
˘

ď ε, then J´1
n

`

1´ α ´ ε, P pnq
˘

ď J˚´1
αn

`

1´ α, P pnq
˘

.

Then, using arguments similar to those in Lemma A.1 (vi) of Romano and Shaikh (2012),

for all ε ą 0 and n large enough,

P pnq
ˆ

n2γ
ˆ

π̂n pθnq ´ inf
hPBδn

π̂n

ˆ

θn `
h

nγ

˙˙

ď J˚´1
αn

´

1´ α, P pnq
¯

˙

ě P pnq
ˆ

n2γ
ˆ

π̂n pθnq ´ inf
hPBδn

π̂n

ˆ

θn `
h

nγ

˙˙

ď J˚´1
αn

´

1´ α, P pnq
¯

X J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ď ε

˙

ě P pnq
ˆ

n2γ
ˆ

π̂n pθnq ´ inf
hPBδn

π̂n

ˆ

θn `
h

nγ

˙˙

ď J´1
n

´

1´ α´ ε, P pnq
¯

X J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ď ε

˙

ě P pnq
ˆ

n2γ
ˆ

π̂n pθnq ´ inf
hPBδn

π̂n

ˆ

θn `
h

nγ

˙˙

ď J´1
n

´

1´ α´ ε, P pnq
¯

˙

´ P pnq
´

J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ą ε
¯

ě 1´ α´ ε´ δ

Since ε and δ can be arbitrarily small, lim inf
nÑ8

P pnq
ˆ

n2γ

ˆ

π̂n pθnq ´ inf
hPBδn

π̂n
`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

ě

40



1´ α. For ρ “ lim inf
nÑ8

inf
PPP

P

ˆ

n2γ

ˆ

π̂n pθnq ´ inf
hPBδn

π̂n
`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

, we can find a se-

quence
 

P pnq P P
(

such that ρ “ lim inf
nÑ8

P pnq
ˆ

n2γ

ˆ

π̂n pθnq ´ inf
hPBδn

π̂n
`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

.

Find a subsequence nk of n for which θn converges, with its limit denoted θ. The same

arguments as above applied to such a subsequence imply

lim inf
nkÑ8

P pnkq

˜

n2γ
k

˜

π̂nk pθnkq ´ inf
hPBδnk

π̂nk

´

θnk `
h
nγk

¯

¸

ď ĉ˚1´α

¸

ě 1 ´ α. Since
 

P pnkq, θnk
(

is a subsequence of
 

P pnq, θn
(

, ρ “ lim inf
nkÑ8

P pnkq

˜

n2γ
k

˜

π̂nk pθnkq ´ inf
hPBδnk

π̂nk

´

θnk `
h
nγk

¯

¸

ď ĉ˚1´α

¸

ě

1´ α.

�

6.1.2 Proof of Theorem 2

Recall that n2γP
`

π
`

¨, θ0 `
h
nγ

˘

´ π p¨, θ0q
˘

“ h1nγl pθ0q`
1
2
h1H0h`op1q. Additionally, Cher-

noff regularity implies that `81 ph R nγ pC ´ θ0qq
e
Ñ `81 ph R TC pθ0qq, where TC pθ0q ”

lim sup
τÓ0

C´θ0
τ

. Note that when θ0 is the constrained minimizer, h1l pθ0q ě 0 for all h P TC pθ0q.

Otherwise, there would exist some descent direction h P TC pθ0q that reduces the value of

the objective function and θ0 would not be the constrained minimizer anymore. A proof of

this result is on pages 325-326 of Nocedal and Wright (2006). Then, for any c P R,

lim sup
nÑ8

sup
PPP

P

˜

n2γ

˜

π̂n pθ0q ´ inf
hPCθ0δn

π̂n

ˆ

θ0 `
h

nγ

˙

¸

ą c

¸

“lim sup
nÑ8

sup
PPP

P

˜

´n2γ inf
hPCθ0δn

"

pPn ´ P q

ˆ

π

ˆ

¨, θ0 `
h

nγ

˙

´ π p¨, θ0q

˙

` P

ˆ

π

ˆ

¨, θ0 `
h

nγ

˙

´ π p¨, θ0q

˙*

ą c

¸

ďlim sup
nÑ8

sup
PPP

P

˜

´ inf
hPCθ0δn

"

n2γ pPn ´ P q

ˆ

π

ˆ

¨, θ0 `
h

nγ

˙

´ π p¨, θ0q

˙

` h1nγ l pθ0q `
1

2
h1H0h

*

ą c

¸

ďlim sup
nÑ8

sup
PPP

P

ˆ

´ inf
thPTCpθ0q:}h}ďκu

"

n2γ pPn ´ P q

ˆ

π

ˆ

¨, θ0 `
h

nγ

˙

´ π p¨, θ0q

˙

`
1

2
h1H0h

*

ą c

˙

Therefore, n2γ

˜

π̂n pθ0q ´ inf
hPCθ0δn

π̂n
`

θ0 `
h
nγ

˘

¸

is asymptotically first order stochastically

dominated by ´ inf
thPTCpθ0q:}h}ďκu

 

n2γ pPn ´ P q
`

π
`

¨, θ0 `
h
nγ

˘

´ π p¨, θ0q
˘

` 1
2
h1H0h

(

. Because
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the test statistic n2γ

˜

π̂n pθ0q ´ inf
hPCθ0δn

π̂n
`

θ0 `
h
nγ

˘

¸

may not have a well-defined limiting

distribution when h1nγl pθ0q ‰ 0, we will instead define Jn p¨, P q as the CDF of

´ inf
thPTCpθ0q:}h}ďκu

 

n2γ pPn ´ P q
`

π
`

¨, θ0 `
h
nγ

˘

´ π p¨, θ0q
˘

` 1
2
h1H0h

(

under P , and J p¨, P q as

the CDF of its limiting distribution ´ inf
thPTCpθ0q:}h}ďκu

H0 phq under P . The definition of

J˚αn p¨, P q remains the same as in Theorem 1, denoting the conditional CDF of ´ inf
hPRd

Ĥn phq

under P , and J˚ p¨, P q still denotes the CDF of its limiting distribution ´ inf
hPRd

H0 phq under

P . Note that ´ inf
thPTCpθ0q:}h}ďκu

H0 phq is stochastically dominated by ´ inf
hPRd

H0 phq. The result

follows from modifying the proof of Theorem 1 to incorporate the new definitions of Jn p¨, P q

and J p¨, P q, and replacing n2γ

ˆ

π̂n pθnq ´ inf
hPBδn

π̂n
`

θn `
h
nγ

˘

˙

by n2γ

˜

π̂n pθnq ´ inf
hPCθnδn

π̂n
`

θn `
h
nγ

˘

¸

.

�

6.1.3 Proof of Theorem 3

Consider any sequence
 

P pnq P P : n ě 1
(

that determines θn “ θ
`

P pnq
˘

and the laws of

all random variables. Consistency of θ̂n for θn follows from constraining θ to lie in C when

applying Corollary 3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der

Vaart (2000) since the equation array in the proof of Theorem 2.6 in Newey and McFadden

(1994) in combination with Assumptions 5(iii) and (iv) imply sup
θPC

ˇ

ˇ

ˇ
Q̂npθq ´Qpθq

ˇ

ˇ

ˇ
“ oP p1q.

Define Ĝn pθq “
?
n
`

Pn ´ P
pnq
˘

g p¨, θq, ĝ pθq “ Png p¨, θq, and g pθq “ P pnqg p¨, θq.

Then π̂n pθq “ g pθq ` π̂n pθnq ` η̂n pθq, where η̂n pθq “ 1?
n
Ĝn pθq. Recall that Q̂n pθq “

1
2
π̂n pθq

1Wπ̂n pθq. Write Q̂n pθq ´ Q̂n pθnq “ Q1 pθq ` Q̂2 pθq ` Q̂3 pθq, where

Q1 pθq “
1

2
g pθq1Wg pθq ` g pθq1Wπ pθnq , Q̂3 pθq “ π pθnq

1Wη̂n pθq

Q̂2 pθq “
1

2
η̂n pθq

1Wη̂n pθq ` g pθq
1W pπ̂n pθnq ´ π pθnqq ` g pθq

1Wη̂n pθq ` pπ̂n pθnq ´ π pθnqq
1Wη̂n pθq .

(6)
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We showed in Theorems 1 and 5 of Hong and Li (2023) that under Assumptions 5 - 6,

n2γ
´

Q̂n pθn ` n
´γhq ´ Q̂n pθnq

¯

“ n2γQ1 pθn ` n
´γhq`n2γ

´

Q̂2 pθn ` n
´γhq ` Q̂3 pθn ` n

´γhq
¯

where n2γ
´

Q̂2 pθn ` n
´γhq ` Q̂3 pθn ` n

´γhq
¯

ù π pθnq
1WZ0,1{2 phq if γ “ 1{3 and

n2γ
´

Q̂2 pθn ` n
´γhq ` Q̂3 pθn ` n

´γhq
¯

ù π pθnq
1WZ0,1 phq ` h

1G1WU0 if γ “ 1{2. Addi-

tionally,

n2γQ1

`

θn ` n
´γh

˘

“ nγh1
BQ1 pθnq

Bθ
`

1

2
h1
B2Q1 pθnq

BθBθ1
h` o p1q

“ nγh1G1Wπ pθnq `
1

2
h1H̄h` o p1q

“
1

2
h1H̄h` o p1q

since Q1 pθq achieves the minimal value of 0 at θn when the constraints are not necessary

for identification of θn. Therefore,

n2γ
´

Q̂n

`

θn ` n
´γh

˘

´ Q̂n pθnq
¯

“ n2γ
´

Q̂2

`

θn ` n
´γh

˘

` Q̂3

`

θn ` n
´γh

˘

¯

`
1

2
h1H̄h` oP pnqp1q

ù A0 phq ”

$

’

’

’

&

’

’

’

%

π pθnq
1WZ0,1{2 phq `

1
2
h1H̄h if γ “ 1{3

π pθnq
1WZ0,1 phq ` h

1G1WU0 `
1
2
h1H̄h if γ “ 1{2

as a process indexed by h in the space of locally bounded functions Bloc
`

Rd
˘

equipped

with the topology of uniform convergence on compacta.

We already showed in Theorems 2 and 6 of Hong and Li (2023) that under Assumptions

3, 5 - 8, Ân phq
P

ù
W

A0 phq, where

Ân phq “ n2γπ̂n

´

θ̂n

¯1

W pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙
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`
1

2
h1

˜

Ĝ1WĜ`
m
ÿ

j“1

m
ÿ

k“1

Wjkπ̂nk

´

θ̂n

¯

Ĥj

¸

h

` nγh1Ĝ1W pP ˚n ´ Pnq π
´

¨, θ̂n

¯

.

Then the continuous mapping results in Lemma 10.11 of Kosorok (2007) imply´ inf
hPRd

Ân phq
P

ù
W

´ inf
hPRd

A0 phq. Additionally,

n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

ˆ

θn `
h

nγ

˙˙

ù ´ inf
hPthPRd:}h}ďκu

A0 phq

Since J
`

¨, P pnq
˘

is equicontinuous at J´1
n

`

1´ α, P pnq
˘

, we have for xn “ J´1
n

`

1´ α ´ ε, P pnq
˘

,

Jn
`

xn, P
pnq
˘

´ J
`

xn, P
pnq
˘

“ op1q for any P pnq and ε small enough. Since J˚
`

¨, P pnq
˘

is also equicontinuous at J´1
n

`

1´ α, P pnq
˘

, we have for any P pnq and ε small enough,

J˚αn
`

xn, P
pnq
˘

´ J˚
`

xn, P
pnq
˘

“ oP pnqp1q.

Note that ´ inf
hPthPRd:}h}ďκu

A0 phq ď ´ inf
hPRd

A0 phq for any realizations of the random vari-

ables, which means J˚
`

xn, P
pnq
˘

ă J
`

xn, P
pnq
˘

for all n large enough. Then, for all ε ą 0

and n large enough, there exists δ ą 0 such that P pnq
`

J˚αn
`

xn, P
pnq
˘

´ Jn
`

xn, P
pnq
˘

ą ε
˘

ď

δ. If J˚αn
`

xn, P
pnq
˘

´ Jn
`

xn, P
pnq
˘

ď ε, then J´1
n

`

1´ α ´ ε, P pnq
˘

ď J˚´1
αn

`

1´ α, P pnq
˘

.

Then, using arguments similar to those in Lemma A.1 (vi) of Romano and Shaikh (2012),

for all ε ą 0 and n large enough,

P pnq
ˆ

n2γ
ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

ˆ

θn `
h

nγ

˙˙

ď J˚´1
αn

´

1´ α, P pnq
¯

˙

ě P pnq
ˆ

n2γ
ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

ˆ

θn `
h

nγ

˙˙

ď J˚´1
αn

´

1´ α, P pnq
¯

X J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ď ε

˙

ě P pnq
ˆ

n2γ
ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

ˆ

θn `
h

nγ

˙˙

ď J´1
n

´

1´ α´ ε, P pnq
¯

X J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ď ε

˙

ě P pnq
ˆ

n2γ
ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

ˆ

θn `
h

nγ

˙˙

ď J´1
n

´

1´ α´ ε, P pnq
¯

˙

´ P pnq
´

J˚αn

´

xn, P
pnq

¯

´ Jn

´

xn, P
pnq

¯

ą ε
¯

ě 1´ α´ ε´ δ
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Since ε and δ can be arbitrarily small, lim inf
nÑ8

P pnq
ˆ

n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

ě

1´α. For ρ “ lim inf
nÑ8

inf
PPP

P

ˆ

n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

, we can find a se-

quence
 

P pnq P P
(

such that ρ “ lim inf
nÑ8

P pnq
ˆ

n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

`

θn `
h
nγ

˘

˙

ď ĉ˚1´α

˙

.

Find a subsequence nk of n for which θn converges, with its limit denoted θ. The same

arguments as above applied to such a subsequence imply

lim inf
nkÑ8

P pnkq
ˆ

n2γ
k

ˆ

Q̂n pθnkq ´ inf
hPBδn

Q̂n

´

θnk `
h
nγk

¯

˙

ď ĉ˚1´α

˙

ě 1´α. Since
 

P pnkq, θnk
(

is a

subsequence of
 

P pnq, θn
(

, ρ “ lim inf
nkÑ8

P pnkq
ˆ

n2γ
k

ˆ

Q̂n pθnkq ´ inf
hPBδn

Q̂n

´

θnk `
h
nγk

¯

˙

ď ĉ˚1´α

˙

ě

1´ α.

�

6.1.4 Proof of Theorem 4

Recall n2γQ1 pθ0 ` n
´γhq “ nγh1G1Wπ pθ0q`

1
2
h1H̄h`o p1q. Additionally, Chernoff regular-

ity implies that `81 ph R nγ pC ´ θ0qq
e
Ñ `81 ph R TC pθ0qq, where TC pθ0q ” lim sup

τÓ0

C´θ0
τ

.

When θ0 is the constrained minimizer, h1G1Wπ pθ0q ě 0 for all h P TC pθ0q. Otherwise,

there would exist some descent direction h P TC pθ0q that reduces the value of the objective

function and θ0 would not be the constrained minimizer anymore. Then, for any c P R,

lim sup
nÑ8

sup
PPP

P

˜

n2γ

˜

Q̂n pθ0q ´ inf
hPCθ0δn

Q̂n

ˆ

θ0 `
h

nγ

˙

¸

ą c

¸

“ lim sup
nÑ8

sup
PPP

P

˜

´n2γ inf
hPCθ0δn

"

Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙

`Q1

ˆ

θ0 `
h

nγ

˙*

ą c

¸

ď lim sup
nÑ8

sup
PPP

P

˜

´ inf
hPCθ0δn

"

n2γ
ˆ

Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙˙

` nγh1G1Wπ pθ0q `
1

2
h1H̄h

*

ą c

¸

ď lim sup
nÑ8

sup
PPP

P

ˆ

´ inf
hPthPTCpθ0q:}h}ďκu

"

n2γ
ˆ

Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙˙

`
1

2
h1H̄h

*

ą c

˙

Therefore n2γ

˜

Q̂n pθ0q ´ inf
hPCθ0δn

Q̂n

`

θ0 `
h
nγ

˘

¸

is asymptotically first order stochastically

dominated by ´ inf
hPthPTCpθ0q:}h}ďκu

!

n2γ
´

Q̂2

`

θ0 `
h
nγ

˘

` Q̂3

`

θ0 `
h
nγ

˘

¯

` 1
2
h1H̄h

)

. Because
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the test statistic n2γ

˜

Q̂n pθ0q ´ inf
hPCθ0δn

Q̂n

`

θ0 `
h
nγ

˘

¸

may not have a well-defined limit-

ing distribution when h1nγG1Wπ pθ0q ‰ 0, we will instead define Jn p¨, P q as the CDF

of ´ inf
hPthPTCpθ0q:}h}ďκu

!

n2γ
´

Q̂2

`

θ0 `
h
nγ

˘

` Q̂3

`

θ0 `
h
nγ

˘

¯

` 1
2
h1H̄h

)

under P , and J p¨, P q

as the CDF of its limiting distribution ´ inf
thPTCpθ0q:}h}ďκu

A0 phq under P . The definition of

J˚αn p¨, P q remains the same as in Theorem 3, denoting the conditional CDF of ´ inf
hPRd

Ân phq

under P , and J˚ p¨, P q still denotes the CDF of its limiting distribution ´ inf
hPRd

A0 phq under

P . Note that ´ inf
thPTCpθ0q:}h}ďκu

A0 phq is stochastically dominated by ´ inf
hPRd

A0 phq. The result

follows from modifying the proof of Theorem 3 to incorporate the new definitions of Jn p¨, P q

and J p¨, P q, and replacing n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

`

θn `
h
nγ

˘

˙

by n2γ

˜

Q̂n pθnq ´ inf
hPCθnδn

Q̂n

`

θn `
h
nγ

˘

¸

.

�

6.1.5 Proof of Theorem 5

Consistency of θ̂n for θ0 follows from constraining θ to lie in C when applying Corollary

3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der Vaart (2000) since the

equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in combination

with Assumptions 5(iii) and (iv) and Wn ´W “ oP p1q imply sup
θPC

ˇ

ˇ

ˇ
Q̂npθq ´Qpθq

ˇ

ˇ

ˇ
“ oP p1q.

Under Assumptions 3, 5-6 and 8-9, we showed in Theorems 4 and 8 of Hong and Li

(2023) that B̂n phq
P

ù
W

B0 phq, where

B̂n phq “ n2γπ̂n

´

θ̂n

¯1

Wn pP
˚
n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

`
1

2
h1

˜

Ĝ1WnĜ`
m
ÿ

j“1

m
ÿ

k“1

Wn,jkπ̂nk

´

θ̂n

¯

Ĥj

¸

h

` nγh1Ĝ1Wn pP
˚
n ´ Pnq π

´

¨, θ̂n

¯

` nγh1Ĝ1 pW ˚
n ´Wnq π̂n

´

θ̂n

¯

.

(7)
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If Wn ´ W “ OP pn
´γq and W ˚

n ´ Wn “ O˚P pn
´γq, then B0 phq “ π pθ0q

1WZ0,1 phq `

h1G1WU0 `
1
2
h1H̄h` h1G1W0 for ρ “ 1 and B0 phq “ π pθ0q

1WZ0,1{2 phq `
1
2
h1H̄h` h1G1W0

when ρ “ 1{2. If Wn ´ W “ oP pn
´γq and W ˚

n ´ Wn “ o˚P pn
´γq, then B0 phq “

π pθ0q
1WZ0,1 phq ` h1G1WU0 `

1
2
h1H̄h for ρ “ 1 and B0 phq “ π pθ0q

1WZ0,1{2 phq `
1
2
h1H̄h

when ρ “ 1{2.

We showed in Theorem 3 of Hong and Li (2023) that

n2γ

ˆ

Q̂n

ˆ

θ0 `
h

nγ

˙

´ Q̂n pθ0q

˙

“ n2γ

ˆ

Q1

ˆ

θ0 `
h

nγ

˙

` Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙

` Q̂4

ˆ

θ0 `
h

nγ

˙

` Q̂5

ˆ

θ0 `
h

nγ

˙

` Q̂6

ˆ

θ0 `
h

nγ

˙˙

“ n2γ

ˆ

Q1

ˆ

θ0 `
h

nγ

˙

` Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙

` Q̂4

ˆ

θ0 `
h

nγ

˙˙

` oP p1q

ù B0 phq .

(8)

Q1 pθq “
1

2
g pθq1Wg pθq ` g pθq1Wπ pθ0q , Q̂3 pθq “ π pθ0q

1Wη̂n pθq

Q̂2 pθq “
1

2
η̂n pθq

1Wη̂n pθq ` g pθq
1W pπ̂n pθ0q ´ π pθ0qq ` g pθq

1Wη̂n pθq ` pπ̂n pθ0q ´ π pθ0qq
1Wη̂n pθq

Q̂4 pθq “
1

2
g pθq1 pWn ´W q g pθq ` g pθq

1
pWn ´W q π pθ0q

Q̂5 pθq “g pθq
1
pWn ´W q pπ̂n pθ0q ´ π pθ0qq

`g pθq1 pWn ´W q η̂n pθq ` pπ̂n pθ0q ´ π pθ0qq
1
pWn ´W q η̂n pθq

Q̂6 pθq “π pθ0q
1
pWn ´W q η̂n pθq `

1

2
η̂n pθq

1
pWn ´W q η̂n pθq .

Recall n2γQ1 pθ0 ` n
´γhq “ nγh1G1Wπ pθ0q`

1
2
h1H̄h`o p1q. Additionally, Chernoff regu-

larity implies that`81 ph R nγ pC ´ θ0qq
e
Ñ `81 ph R TC pθ0qq, where TC pθ0q ” lim sup

τÓ0

C´θ0
τ

.

When θ0 is the constrained minimizer, h1G1Wπ pθ0q ě 0 for all h P TC pθ0q. Otherwise, there
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would exist some descent direction h P TC pθ0q that reduces the value of the objective func-

tion and θ0 would not be the constrained minimizer anymore. Define

Q̄n

ˆ

θ0 `
h

nγ

˙

” Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙

` Q̂4

ˆ

θ0 `
h

nγ

˙

. (9)

Then, for any c P R,

lim sup
nÑ8

sup
PPP

P

˜

n2γ

˜

Q̂n pθ0q ´ inf
hPCθ0δn

Q̂n

ˆ

θ0 `
h

nγ

˙

¸

ą c

¸

“ lim sup
nÑ8

sup
PPP

P

˜

´n2γ inf
hPCθ0δn

"

Q̄n

ˆ

θ0 `
h

nγ

˙

`Q1

ˆ

θ0 `
h

nγ

˙*

ą c

¸

ď lim sup
nÑ8

sup
PPP

P

˜

´ inf
hPCθ0δn

"

n2γQ̄n

ˆ

θ0 `
h

nγ

˙

` nγh1G1Wπ pθ0q `
1

2
h1H̄h

*

ą c

¸

ď lim sup
nÑ8

sup
PPP

P

ˆ

´ inf
hPthPTCpθ0q:}h}ďκu

"

n2γQ̄n

ˆ

θ0 `
h

nγ

˙

`
1

2
h1H̄h

*

ą c

˙

Because the test statistic n2γ

˜

Q̂n pθ0q ´ inf
hPCθ0δn

Q̂n

`

θ0 `
h
nγ

˘

¸

may not have a well-defined

limiting distribution when h1nγG1Wπ pθ0q ‰ 0, we will instead define Jn p¨, P q as the

CDF of ´ inf
hPthPTCpθ0q:}h}ďκu

 

n2γQ̄n

`

θ0 `
h
nγ

˘

` 1
2
h1H̄h

(

under P , and J p¨, P q as the CDF

of its limiting distribution ´ inf
thPTCpθ0q:}h}ďκu

B0 phq under P . Let J˚αn p¨, P q denote the con-

ditional CDF of ´ inf
hPRd

B̂n phq under P and let J˚ p¨, P q denote the CDF of its limiting

distribution ´ inf
hPRd

B0 phq under P . Note that ´ inf
thPTCpθ0q:}h}ďκu

B0 phq is stochastically dom-

inated by ´ inf
hPRd

B0 phq. The result follows from modifying the proof of Theorem 3 to

incorporate the new definitions of Jn p¨, P q, J p¨, P q, J˚αn p¨, P q, J
˚ p¨, P q, and replacing

n2γ

ˆ

Q̂n pθnq ´ inf
hPBδn

Q̂n

`

θn `
h
nγ

˘

˙

by n2γ

˜

Q̂n pθnq ´ inf
hPCθnδn

Q̂n

`

θn `
h
nγ

˘

¸

.

�
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6.1.6 Proof of Theorem 6

Recall Q̂n pθq ´ Q̂n pθ0q “ Q1 pθq ` Q̂2 pθq ` Q̂3 pθq, where

Q1 pθq “
1

2
g pθq1Wg pθq ` g pθq1Wπ pθ0q , Q̂3 pθq “ π pθ0q

1Wη̂n pθq

Q̂2 pθq “
1

2
η̂n pθq

1Wη̂n pθq ` g pθq
1W pπ̂n pθ0q ´ π pθ0qq ` g pθq

1Wη̂n pθq ` pπ̂n pθ0q ´ π pθ0qq
1Wη̂n pθq .

Consistency of θ̂n for θ0 follows from constraining θ to lie in C when applying Corollary

3.2.3 in van der Vaart and Wellner (1996) or Theorem 5.7 in Van der Vaart (2000) since the

equation array in the proof of Theorem 2.6 in Newey and McFadden (1994) in combination

with Assumptions 5(iii) and (iv) imply sup
θPC

ˇ

ˇ

ˇ
Q̂npθq ´Qpθq

ˇ

ˇ

ˇ
“ oP p1q.

Apply Kim and Pollard (1990) Lemma 4.1 to η̂n pθq, and in turn Q̂3 pθq: @ε ą 0,

DMn,3 “ OP p1q such that

|Q̂3 pθq | ď ε}θ ´ θ0}
2
` n´2γM2

n,3.

The 1st, 3rd, and 4th terms in Q̂2 pθq are all of the form oP p1q η̂n pθq, hence are also

bounded by ε}θ´ θ0}
2 ` n´2γM2

n,2. For the 2nd term in Q̂2 pθq, for n large enough, @ε ą 0,

DMn,22 “ OP p1q such that

|g pθq1W pπ̂n pθ0q ´ π pθ0qq | “ OP

ˆ

}θ ´ θ0}
?
n

˙

ď ε}θ ´ θ0}
2
` n´2γM2

n,22.

Therefore, @ε ą 0, DMn “ OP p1q such that |Q̂2 pθq ` Q̂3 pθq | ď ε}θ ´ θ0}
2 ` n´2γM2

n.

Taylor expanding Q1 pθq around θ0 while constraining θ to lie in C, Q1 pθq “ Q1 pθ0q `

pθ ´ θ0q
1 BQ1pθ0q

Bθ
` 1

2
pθ ´ θ0q

1 B2Q1pθ0q
BθBθ1

pθ ´ θ0q ` o p}θ ´ θ0}
2q “ pθ ´ θ0q

1G1Wπ pθ0q

`1
2
pθ ´ θ0q

1
`

H̄ ` o p1q
˘

pθ ´ θ0q since BQ1pθ0q
Bθ

“ G1Wπ pθ0q and B2Q1pθ0q
BθBθ1

“ H̄. Because H̄ is
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positive definite and pθ ´ θ0q
1G1Wπ pθ0q ě 0 for all θ P C, there exists K ą 0 and a small

enough neighborhood of θ0 such that Q1 pθq ě K }θ ´ θ0}
2. By consistency of θ̂n for θ0,

with probability approaching 1, Q1

´

θ̂n

¯

ě K
›

›

›
θ̂n ´ θ0

›

›

›

2

. Then,

Q1

´

θ̂n

¯

` Q̂2

´

θ̂n

¯

` Q̂3

´

θ̂n

¯

“ Q̂n

´

θ̂n

¯

´ Q̂n pθ0q ď Q̂n

´

θ̂n

¯

´ inf
θPC

Q̂n pθq ď oP
`

n´2γ
˘

.

Choose ε so that K ´ ε ą 0. Then,

oP
`

n´2γ
˘

ě Q1

´

θ̂n

¯

´ ε
›

›

›
θ̂n ´ θ0

›

›

›

2

´ n´2γM2
n

ě pK ´ εq
›

›

›
θ̂n ´ θ0

›

›

›

2

´ n´2γM2
n

ùñ

›

›

›
θ̂n ´ θ0

›

›

›

2

ď pK ´ εq´1 n´2γM2
n ` oP

`

n´2γ
˘

“ OP

`

n´2γ
˘

.

It follows that nγ
´

θ̂n ´ θ0

¯

“ OP p1q.

Using the arguments in Theorems 2 and 6 of Hong and Li (2023), Ân phq
P

ù
W

A0 phq,

where

Ân phq “ π̂n

´

θ̂n

¯1

Wnγρ
?
n pP ˚n ´ Pnq

ˆ

π

ˆ

¨, θ̂n `
h

nγ

˙

´ π
´

¨, θ̂n

¯

˙

`

?
nnγρ

2n2γ
h1

˜

Ĝ1WĜ`
m
ÿ

j“1

m
ÿ

k“1

Wjkπ̂nk

´

θ̂n

¯

Ĥj

¸

h

`
nγρ

nγ
h1Ĝ1W

?
n pP ˚n ´ Pnq π

´

¨, θ̂n

¯

.

For H̄ “ G1WG`
řm
j“1

řm
k“1Wjkπk pθ0qHj, A0 phq “ π pθ0q

1WZ0,1 phq`h
1G1WU0`

1
2
h1H̄h

for ρ “ 1 and A0 phq “ π pθ0q
1WZ0,1{2 phq `

1
2
h1H̄h when ρ “ 1{2.

Chernoff regularity implies that for any sequence apnq Ñ 8, `81 ph R a pnq pC ´ θ0qq
e
Ñ
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`81 ph R TC pθ0qq. Since nγ{ηn Ñ 8 and nγ
´

θ̂n ´ θ0

¯

“ OP p1q,

ω˚n phq “ `81

¨

˝h R
nγ pC ´ θ0q

ηn
´

nγ
´

θ̂n ´ θ0

¯

ηn

˛

‚

“ `81

ˆ

h R
nγ pC ´ θ0q

ηn
´ op p1q

˙

e
Ñ ω phq ” `81 ph R TC pθ0qq .

where TC pθ0q ” lim sup
τÓ0

C´θ0
τ

. By a bootstrap in probability version of Theorem 4 in Knight

(1999),

Ân phq ` ω
˚
n phq

p
Ñ
e´d

A0 phq ` ω phq .

where p
Ñ
e´d

denotes epi-convergence of the conditional law of Ĝ˚n to G0, which can be equiva-

lently stated as supfPBL1
|EWf

´

Ĝ˚n
¯

´Ef pG0q |
p
ÝÑ 0 and EWf

´

Ĝ˚n
¯˚

´EWf
´

Ĝ˚n
¯

˚

p
ÝÑ 0

for all f P BL1, whereBL1 is the class of Lipschitz norm 1 functions with respect to the met-

ric of epi-convergence defined as d
´

Ĝ˚n,G0

¯

“
´ 8

0
max

!
ˇ

ˇ

ˇ
depi Ĝ˚n pvq ´ depi G0 pvq

ˇ

ˇ

ˇ
: |v| ď ρ

)

exp p´ρq dρ,

where dC pvq “ inf t|v ´ u| : u P Cu for a non-empty closed subset of Rd`1, and epi G phq “

tph, αq : G phq ď αu is the epigraph of G : Rd ÞÑ R. Lemma 2.6 in Kim and Pollard (1990)

implies that the Gaussian processes Z0,1{2 phq and Z0,1 phq have a unique minimum. In

combination with the fact that 1
2
h1H̄h is a convex function of h, there is a unique h that

minimizes A0 phq ` ω phq. By a modification of the bootstrap argmin continuous mapping

lemma 14.2 in Hong and Li (2020) that replaces weak convergence with epi-convergence,

nγ
´

θ̂˚n ´ θ̂n

¯

“ arg min
hPRd

!

Ân phq ` ω
˚
n phq

)

P
ù
W

arg min
hPRd

tA0 phq ` ω phqu, which coincides

with the limiting distribution of nγ
´

θ̂n ´ θ0

¯

.

�
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6.2 Verification of Assumption 3

For the Andrews (2000) example, π p¨, θq “ pyi ´ θq
2,mn p¨, θ, hq “

?
n
´

`

yi ´ θ ´
h
nγ

˘2
´ pyi ´ θq

2
¯

,

and

mn p¨, θ, hq ´mn p¨, θ0, hq

“
?
n

ˆ

π

ˆ

¨; θ `
h
?
n

˙

´ π p¨; θq ´

ˆ

π

ˆ

¨, θ0 `
h
?
n

˙

´ π p¨, θ0q

˙˙

“
?
n

˜

ˆ

yi ´ θ ´
h
?
n

˙2

´ pyi ´ θq
2
´

˜

ˆ

yi ´ θ0 ´
h
?
n

˙2

´ pyi ´ θ0q
2

¸¸

“
?
n

ˆ

´2

ˆ

yi ´ θ0 ´
h
?
n

˙

` 2 pyi ´ θ0q

˙

pθ ´ θ0q

“2h pθ ´ θ0q

sup
hPH,}θ´θ0}ďεn

›

›

›

mnp¨,θ,hq´mnp¨,θ0,hq
1`nγ}θ´θ0}

›

›

›
ď K will be satisfied if we take K “ 2sup

hPH
|h|.

Another way Assumption 3 can be satisfied is if E

«

sup
hPH,}θ´θ0}ďεn

›

›

›

mnp¨,θ,hq´mnp¨,θ0,hq

1`n1{3}θ´θ0}

›

›

›

2`δ

ff

ă

8 for all n and any δ ą 0. For Example 2, there exists some constant C ą 0 such that

E

«

sup
hPH,}θ´θ0}ďεn

ˇ

ˇ

ˇ

ˇ

mn p¨, θ, hq ´mn p¨, θ0, hq

1` nγ}θ ´ θ0}

ˇ

ˇ

ˇ

ˇ

2`δ
ff

“E

«

sup
hPH,}θ´θ0}ďεn

n1{3
ˇ

ˇπ
`

¨; θ ` hn´1{3
˘

´ π p¨; θq ´
`

π
`

¨, θ0 ` hn
´1{3

˘

´ π p¨, θ0q
˘ˇ

ˇ

2`δ

p1` n1{3 }θ ´ θ0}q
2`δ

ff

ďE

«

sup
hPH,}θ´θ0}ďεn

n1{3
ˇ

ˇ1
`

θ ` h
n1{3 ´ 1 ď yi ď θ ` h

n1{3 ` 1
˘

´ 1 pθ ´ 1 ď yi ď θ ` 1q
ˇ

ˇ

p1` n1{3 }θ ´ θ0}q
2`δ

ff

`E

«

sup
hPH,}θ´θ0}ďεn

n1{3
ˇ

ˇ1
`

θ0 `
h
n1{3 ´ 1 ď yi ď θ0 `

h
n1{3 ` 1

˘

´ 1 pθ0 ´ 1 ď yi ď θ0 ` 1q
ˇ

ˇ

p1` n1{3 }θ ´ θ0}q
2`δ

ff

ď sup
hPH,}θ´θ0}ďεn

Ch

p1` n1{3 }θ ´ θ0}q
2`δ

ă 8

For Example 3,mn p¨, θ, hq “ nγ r1 pyi ď θ ` hn´γq ´ τ, yi ´ θ ´ hn
´γs

1
´nγ r1 pyi ď θq ´ τ, yi ´ θs

1
“

nγ r1 pyi ď θ ` hn´γq ´ 1 pyi ď θq ,´hn´γs1 ” rmn1 p¨, θ, hq ,mn2 p¨, θ, hqs
1 , where γ “ 1{2 if
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τ “ 0.5 and γ “ 1{3 if τ ‰ 0.5. We can verify E

«

sup
hPH,}θ´θ0}ďεn

›

›

›

mnp¨,θ,hq´mnp¨,θ0,hq
1`nγ}θ´θ0}

›

›

›

2`δ

ff

ă 8

for all n and any δ ą 0 because there exists some constant C ą 0 such that

E

«

sup
hPH,}θ´θ0}ďεn

ˇ

ˇ

ˇ

ˇ

mn1 p¨, θ, hq ´mn1 p¨, θ0, hq

1` nγ}θ ´ θ0}

ˇ

ˇ

ˇ

ˇ

2`δ
ff

ďE

«

sup
hPH,}θ´θ0}ďεn

nγ |1 pyi ď θ ` hn´γq ´ 1 pyi ď θq|

p1` nγ }θ ´ θ0}q
2`δ

ff

`E

«

sup
hPH,}θ´θ0}ďεn

nγ |1 pyi ď θ0 ` hn
´γq ´ 1 pyi ď θ0q|

p1` nγ }θ ´ θ0}q
2`δ

ff

ď sup
hPH,}θ´θ0}ďεn

Ch

p1` nγ }θ ´ θ0}q
2`δ

ă 8

Additionally, E

«

sup
hPH,}θ´θ0}ďεn

ˇ

ˇ

ˇ

mn2p¨,θ,hq´mn2p¨,θ0,hq
1`nγ}θ´θ0}

ˇ

ˇ

ˇ

2`δ

ff

“ 0.

6.3 Additional Monte Carlo Simulations

We now examine the coverage frequency and average interval length using κ “ 8 in the

fixed weighting matrix setup. In the case of β0 ě 0, Table 6 shows that the coverage

frequencies and average interval lengths are similar to the case of κ “ 5.

In the case of β0 ă 0, Table 7 shows that the coverage is not affected, but the average

interval length can be longer when we use κ “ 8, especially for the more negative values

of β0. This suggests that it is better to use a finite κ ă 8, although if the value of κ is too

small, the coverage can be more conservative, as the next table shows.

We next examine the coverage frequency and average interval length using κ “ 1 in the

fixed weighting matrix setup. In the case of β0 ě 0, Table 8 shows that the coverage can

be more conservative than in the case of κ “ 5. For example, when τ “ 0.5, all values of

β0 lead to coverage that is above 98% when κ “ 1, but the coverage was under 98% when

κ “ 5. For the other values of τ , the coverage is similar between κ “ 1 and κ “ 5. Even
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Table 6: Coverage Frequencies and Average Interval Lengths, κ “ 8

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 1
τ “ 0.1

n “ 100 1.000 1.000 0.992 0.980 0.961 0.962 0.946
p0.515q p0.503q p0.432q p0.388q p0.384q p0.379q p0.377q

n “ 500 1.000 1.000 1.000 0.992 0.968 0.955 0.967
p0.358q p0.352q p0.296q p0.223q p0.202q p0.200q p0.200q

n “ 1000 1.000 1.000 1.000 0.999 0.978 0.953 0.958
p0.323q p0.321q p0.271q p0.189q p0.155q p0.153q p0.153q

n “ 5000 1.000 1.000 1.000 1.000 1.000 0.971 0.970
p0.289q p0.288q p0.262q p0.183q p0.102q p0.083q p0.084q

τ “ 0.3
n “ 100 0.996 0.994 0.971 0.959 0.950 0.952 0.944

p0.421q p0.412q p0.370q p0.353q p0.354q p0.352q p0.352q
n “ 500 1.000 1.000 0.994 0.974 0.956 0.949 0.961

p0.242q p0.239q p0.203q p0.177q p0.175q p0.176q p0.177q
n “ 1000 1.000 1.000 0.998 0.974 0.954 0.945 0.956

p0.200q p0.199q p0.164q p0.132q p0.129q p0.130q p0.130q
n “ 5000 1.000 1.000 1.000 0.996 0.953 0.958 0.967

p0.155q p0.154q p0.131q p0.076q p0.065q p0.065q p0.065q
τ “ 0.5

n “ 100 0.976 0.975 0.963 0.951 0.943 0.948 0.943
p0.365q p0.361q p0.345q p0.341q p0.342q p0.341q p0.342q

n “ 500 0.972 0.965 0.965 0.964 0.959 0.946 0.958
p0.177q p0.175q p0.167q p0.166q p0.166q p0.166q p0.166q

n “ 1000 0.976 0.971 0.964 0.946 0.951 0.944 0.957
p0.126q p0.127q p0.121q p0.119q p0.119q p0.120q p0.119q

n “ 5000 0.978 0.976 0.968 0.944 0.953 0.955 0.955
p0.058q p0.058q p0.055q p0.055q p0.055q p0.055q p0.055q

though the coverage can be more conservative for κ “ 1, the average interval lengths can

also be shorter, especially for values of β0 that are closer to zero. For example, when τ “ 0.1

and β0 “ n´1, the average interval length is 0.066 when κ “ 1 and 0.289 when κ “ 5. In

the case of β0 ă 0 and τ “ 0.5, Table 9 shows that the coverage is more conservative when

using κ “ 1, but the average interval lengths are shorter for all values of τ .

Some intuition for why coverage can be more conservative when κ “ 1 comes from

54



Table 7: Coverage Frequencies and Average Interval Lengths, κ “ 8

β0 ´n´1 ´n´1{2 ´n´1{3 ´n´1{4 ´n´1{6 ´1
τ “ 0.1

n “ 100 1.000 1.000 1.000 1.000 1.000 1.000
p0.525q p0.634q p0.802q p0.985q p1.238q p2.237q

n “ 500 1.000 1.000 1.000 1.000 1.000 1.000
p0.358q p0.427q p0.570q p0.728q p1.006q p2.247q

n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000
p0.325q p0.375q p0.501q p0.652q p0.917q p2.249q

n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000
p0.289q p0.315q p0.401q p0.520q p0.760q p2.245q

τ “ 0.3
n “ 100 0.996 1.000 1.000 1.000 1.000 1.000

p0.426q p0.515q p0.669q p0.846q p1.095q p2.114q
n “ 500 1.000 1.000 1.000 1.000 1.000 1.000

p0.243q p0.298q p0.433q p0.589q p0.868q p2.125q
n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000

p0.202q p0.245q p0.364q p0.513q p0.779q p2.126q
n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000

p0.155q p0.180q p0.264q p0.383q p0.624q p2.124q
τ “ 0.5

n “ 100 0.980 0.998 1.000 1.000 1.000 1.000
p0.367q p0.424q p0.551q p0.713q p0.957q p1.986q

n “ 500 0.969 0.998 1.000 1.000 1.000 1.000
p0.176q p0.202q p0.305q p0.451q p0.730q p1.999q

n “ 1000 0.975 0.998 1.000 1.000 1.000 1.000
p0.127q p0.144q p0.233q p0.376q p0.642q p2.001q

n “ 5000 0.978 0.999 1.000 1.000 1.000 1.000
p0.058q p0.066q p0.130q p0.245q p0.486q p1.999q

examining the stochastic dominance argument in the proof of Theorem 4. For κ1 ą κ,

lim sup
nÑ8

sup
PPP

P

ˆ

´ inf
hPthPTCpθ0q:}h}ďκu

"

n2γ

ˆ

Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙˙

`
1

2
h1H̄h

*

ą c

˙

ďlim sup
nÑ8

sup
PPP

P

ˆ

´ inf
hPthPTCpθ0q:}h}ďκ1u

"

n2γ

ˆ

Q̂2

ˆ

θ0 `
h

nγ

˙

` Q̂3

ˆ

θ0 `
h

nγ

˙˙

`
1

2
h1H̄h

*

ą c

˙

So the limiting distribution of´ inf
hPthPTCpθ0q:}h}ďκ1u

!

n2γ
´

Q̂2

`

θ0 `
h
nγ

˘

` Q̂3

`

θ0 `
h
nγ

˘

¯

` 1
2
h1H̄h

)

,

which is ´ inf
thPTCpθ0q:}h}ďκ1u

A0 phq, is closer to the benchmarking statistic’s asymptotic distri-

bution ´ inf
hPRd

A0 phq when κ1 ą κ. However, because this comparison is between limiting

55



Table 8: Coverage Frequencies and Average Interval Lengths, κ “ 1

β0 0 n´1 n´1{2 n´1{3 n´1{4 n´1{6 1
τ “ 0.1

n “ 100 1.000 1.000 0.992 0.980 0.962 0.963 0.949
p0.318q p0.323q p0.357q p0.386q p0.398q p0.396q p0.393q

n “ 500 1.000 1.000 1.000 0.993 0.968 0.959 0.969
p0.163q p0.164q p0.176q p0.200q p0.205q p0.205q p0.205q

n “ 1000 1.000 1.000 1.000 0.999 0.977 0.954 0.959
p0.126q p0.126q p0.133q p0.152q p0.156q p0.156q p0.156q

n “ 5000 1.000 1.000 1.000 1.000 1.000 0.971 0.971
p0.066q p0.066q p0.067q p0.072q p0.086q p0.085q p0.085q

τ “ 0.3
n “ 100 0.996 0.993 0.973 0.963 0.950 0.952 0.947

p0.322q p0.324q p0.345q p0.354q p0.357q p0.356q p0.355q
n “ 500 1.000 1.000 0.994 0.972 0.956 0.949 0.962

p0.168q p0.168q p0.177q p0.177q p0.176q p0.176q p0.177q
n “ 1000 1.000 1.000 0.998 0.974 0.956 0.943 0.955

p0.130q p0.130q p0.136q p0.131q p0.130q p0.130q p0.130q
n “ 5000 1.000 1.000 1.000 0.997 0.954 0.957 0.967

p0.067q p0.067q p0.069q p0.072q p0.065q p0.064q p0.065q
τ “ 0.5

n “ 100 0.992 0.987 0.979 0.982 0.976 0.981 0.977
p0.315q p0.324q p0.387q p0.429q p0.439q p0.439q p0.439q

n “ 500 0.989 0.988 0.986 0.988 0.983 0.987 0.990
p0.143q p0.146q p0.179q p0.207q p0.209q p0.208q p0.209q

n “ 1000 0.994 0.990 0.981 0.985 0.981 0.981 0.987
p0.105q p0.105q p0.130q p0.149q p0.149q p0.150q p0.150q

n “ 5000 0.993 0.990 0.987 0.983 0.983 0.985 0.986
p0.048q p0.048q p0.059q p0.068q p0.068q p0.068q p0.068q

distributions rather than finite sample distributions, it is difficult to know for sure how

conservative the coverage will be for any finite n. For example, in the simulations above,

when κ “ 1, n “ 5000, β0 “ n´1{4, and τ “ 0.3, the coverage is 0.954, which slightly less

conservative than the coverage of 0.957 when κ “ 5. However, for τ “ 0.5, the coverage is

0.983 when κ “ 1, which is more conservative than the coverage of 0.948 when κ “ 5.
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Table 9: Coverage Frequencies and Average Interval Lengths, κ “ 1

β0 ´n´1 ´n´1{2 ´n´1{3 ´n´1{4 ´n´1{6 ´1
τ “ 0.1

n “ 100 1.000 1.000 1.000 1.000 1.000 1.000
p0.316q p0.283q p0.255q p0.239q p0.223q p0.200q

n “ 500 1.000 1.000 1.000 1.000 1.000 1.000
p0.163q p0.153q p0.143q p0.137q p0.132q p0.120q

n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000
p0.126q p0.122q p0.116q p0.112q p0.108q p0.102q

n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000
p0.066q p0.065q p0.064q p0.063q p0.061q p0.059q

τ “ 0.3
n “ 100 0.996 1.000 1.000 1.000 1.000 1.000

p0.318q p0.286q p0.254q p0.236q p0.214q p0.200q
n “ 500 1.000 1.000 1.000 1.000 1.000 1.000

p0.167q p0.156q p0.141q p0.134q p0.129q p0.120q
n “ 1000 1.000 1.000 1.000 1.000 1.000 1.000

p0.130q p0.123q p0.114q p0.110q p0.106q p0.100q
n “ 5000 1.000 1.000 1.000 1.000 1.000 1.000

p0.067q p0.066q p0.063q p0.061q p0.060q p0.059q
τ “ 0.5

n “ 100 0.991 0.999 1.000 1.000 1.000 1.000
p0.308q p0.234q p0.169q p0.138q p0.111q p0.100q

n “ 500 0.990 1.000 1.000 1.000 1.000 1.000
p0.142q p0.106q p0.066q p0.054q p0.048q p0.040q

n “ 1000 0.992 1.000 1.000 1.000 1.000 1.000
p0.104q p0.079q p0.048q p0.039q p0.035q p0.030q

n “ 5000 0.990 1.000 1.000 1.000 1.000 1.000
p0.048q p0.036q p0.020q p0.017q p0.015q p0.014q
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