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This paper studies inference on finite population average and local average
treatment effects under limited overlap, meaning some strata have a small pro-
portion of treated or untreated units. We model limited overlap in an asymptotic
framework sending the propensity score to zero (or one) with the sample size.
We derive the asymptotic distribution of analog estimators of the treatment ef-
fects under two common randomization schemes: conditionally independent and
stratified block randomization. Under either scheme, the limit distribution is
the same and conventional standard error formulas remain asymptotically valid,
but the rate of convergence is slower the faster the propensity score degener-
ates. The practical import of these results is twofold. When overlap is limited,
standard methods can perform poorly in smaller samples, as asymptotic ap-
proximations are inadequate due to the slower rate of convergence. However, in
larger samples, standard methods can work quite well even when the propensity
score is small.
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1 Introduction

A well-known concern with estimating treatment effects under unconfoundedness is
limited overlap, the possibility that in some strata, the proportion of treated or un-
treated units is small. This is a common problem with observational data, for example
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when only a few states pass a law of interest. It can also be a concern in experimental
settings where, for instance, treatment is expensive to procure or other institutional
constraints exist, so that only a small proportion of units in certain subpopulations
can feasibly be treated. Several papers discuss the problem of limited overlap infor-
mally (e.g. Dehejia and Wahba, 1999; Heckman et al., 1997), but to our knowledge,
none propose a rigorous definition and study the asymptotic properties of conventional
estimators under limited overlap. This paper seeks to fill this gap in the literature.

We derive our main results in the context of the finite population model of treat-
ment effects, where the set of observed units constitutes the entire population and
potential outcomes and covariates are nonrandom quantities. This model dates back
to Neyman (1923) and is widely used in the causal inference literature (e.g. Li and
Ding, 2017; Freedman, 2008; Hinkelmann and Kempthorne, 2008; Imbens and Rubin,
2015; Rosenbaum, 2002). It stands in contrast to the superpopulation model, where
the set of observed units is a small, random subsample from a larger population, and
potential outcomes and covariates are modeled as i.i.d. draws from a superpopula-
tion distribution. The relevance of the finite population model in experimental and
observational settings, is discussed in, for example, Abadie et al. (2014), Imbens and
Rubin (2015), and Reichardt and Gollob (1999).

We focus on finite population analogs of the average treatment effect (ATE) and
local average treatment effect (LATE), the latter originally defined in Imbens and
Angrist (1994) under a superpopulation model. We study the ATE in the context of
the conditionally independent (CI) model where treatment assignment is independent
across strata. We study the LATE in the instrumental variables (IV) model where
instead a binary instrument satisfies this distributional assumption, and variation in
the instrument induces take up of a binary treatment. In the IV model, only the
instrument is random, and take up decisions are fixed. Such a model is relevant, for
example, in experimental settings with noncompliance.

We consider two randomization schemes for treatment assignment in the CI model
and the instrument in the IV model: conditionally independent and stratified block
randomization. By conditionally independent randomization we mean that within
each stratum, units are assigned to treatment in an i.i.d. fashion. By stratified block
randomization, we mean that in stratum x, exactly mx out of nx units are assigned
to treatment. Most of the econometric literature appears to focus on conditionally
independent randomization, while most of the statistics literature seems to consider
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stratified block randomization but only for the case of a single stratum. Allowing
for only one stratum is a serious practical limitation, since the main motivation for
stratification is to ensure balance, which requires independent randomization across
different strata. Hence, an important feature of our results is that they allow for
multiple strata. A technical contribution of this paper is a new CLT under stratified
block randomization that may be of independent interest.

Note that despite our use of the word “randomization” above, our assumptions in
the CI model correspond to the usual unconfoundedness condition, since the proba-
bility that unit i selects treatment is not a function of her identity, and hence, her
potential outcomes. The model is therefore relevant for observational data when the
econometrician is solely interested in inference on the observed set of units. This
applies to settings in which no obvious superpopulation exists, for example when the
set of observed units is the fifty states ((Abadie et al., 2014)). That said, we also
derive analogous results for the superpopulation model.

We now define limited overlap. Let pnpxq denote the propensity score, where x
denotes a stratum and n denotes the sample size. In the context of the CI model,
pnpxq is the proportion of units assigned to treatment, whereas in the IV model, it is
the proportion of units assigned to a particular value of a binary instrument. We say
there is limited overlap if there exists some stratum x such that pnpxq degenerates to
zero or one as the sample size diverges. This formalizes the notion of the proportion
of treated or untreated units being small in an asymptotic framework. It stands in
contrast to the conventional assumption that the propensity score is bounded away
from zero or one (e.g. Firpo, 2007; Hirano et al., 2003). We emphasize that this
model of limited overlap is not intended to be a realistic description of how real-world
decisions to select into or assign treatment evolve as the population size grows but
rather to provide an asymptotic approximation to a finite-sample phenomenon. This
is the same idea behind high-dimensional asymptotics in statistical learning theory
and weak instruments asymptotics.

Our theoretical results are as follows. (1) Under limited overlap, we find that the
“effective” sample size is smaller in that estimators converge at the much slower rate
pnminx pnpxqp1 ´ pnpxqqq

´1{2. If this quantity tends to zero, which is necessary for
consistent estimation and nests the standard sufficient overlap case, then standard
estimators of the ATE and LATE are asymptotically normal after proper scaling,
and the asymptotic variance is the same under both randomization schemes. Even
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in the case of sufficient overlap, the results for the finite population LATE model
appear to be new. (2) Conventional variance estimators remain valid and are therefore
robust to limited overlap. (3) Interestingly, while under sufficient overlap, the variance
estimators are well-known to be conservative in the finite population setup, under
limited overlap, they are in fact asymptotically exact because a problematic covariance
term that cannot be consistently estimated vanishes in the limit. (4) The proof of
asymptotic normality relies on a new CLT for stratified block randomization that
may be of independent interest. (5) While the focus of the main text is the finite
population case, we also derive analogous results for the superpopulation model (see
section A.4 of the appendix). Mirroring standard results, we show that the variance
estimator is always consistent, regardless of limited overlap.

In a simulation study, we find that limited overlap can lead to undercoverage in
smaller sample sizes, but coverage reaches nominal levels when n is sufficiently large.
This is the case even if the proportion treated is empirically quite small. In our
simulation results, when pnpxq “ n´1{2, we obtain close to the target level of coverage
when n is above 1000, despite the fact that pnpxq is then less than 4 percent. Our
simulation results also indicate that in small samples, coverage can be substantially
more conservative under stratified block randomization. Intuitively this is because
conventional variance estimators are derived under asymptotic independence, but
block randomization induces negative correlation in treatment assignment across units
in finite samples. This conservativeness actually has the interesting advantage of
partially correcting for undercoverage that results from limited overlap.

Thus, the practical import of our results is twofold.

1. Standard methods can perform poorly in smaller samples under limited overlap
due to the usual intuition that the effective sample size is smaller. We provide
formal justification for this intuition, showing that the rate of convergence is
slowed by limited overlap, and thus the normal approximation is inadequate in
small samples.

2. In larger samples, however, standard methods can work quite well even when
the propensity score is fairly close to zero or one, as shown by our simulation
results. We recommend reporting conventional estimates and standard errors
together with other commonly used corrections that remove strata with limited
overlap but have the effect of changing the target estimand (reviewed below).
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Related Literature. Rothe (2017) studies inference on the ATE in the presence
of limited overlap. He shows that the asymptotic coverage error of the conventional
confidence interval can be large when overlap is limited. We complement this re-
sult by quantifying the rate of convergence. Rothe proposes an inference procedure
valid in finite samples that relies on the assumption of normally distributed potential
outcomes. In contrast, we impose no distributional assumptions, treat potential out-
comes as fixed, and consider asymptotic inference. Sasaki and Ura (2018) and more
recently Ma and Wang (2018) study trimming for inverse probability weighting with
“small denominators,” a related model for formalizing small propensity scores. All
of these papers focus on superpopulation models with full compliance, conditionally
indepenent randomization, and a propensity score that does not vary with n. In
particular for the latter paper, when the denominator is not too small (γ0 ą 2), the
estimator attains a

?
n rate of convergence, whereas in our case the convergence rate

can be slower due to the vanishing propensity score.
Several papers propose corrections for limited overlap in the CI model by removing

observations in strata for which overlap is too limited, which mimics empirical practice
(e.g. Crump et al., 2009; Dehejia and Wahba, 1999; Heckman et al., 1997; Ho et al.,
2007). A disadvantage of these results is that they necessarily change the target
estimand to a conditional treatment effect. Our results are complementary to this
literature, since they imply that the rate of convergence can be substantially improved
by removing strata with limited overlap. Our simulation evidence indicates that these
estimators are particularly useful when sample sizes are small, since conventional
estimators perform very poorly due to the slow rate of convergence. However, if the
target estimand is truly an unconditional treatment effect, and if the sample size is
large, then our results suggest that conventional estimators can still perform well.

Our results for stratified block randomization are new, even in the CI model with-
out limited overlap. Li and Ding (2017) derive central limit theorems (CLTs) relevant
for the finite population ATE when there exists only a single stratum. We derive a
new CLT for the multiple-stratum case by generalizing the CLT for finite population
simple random samples in Appendix 4 of Lehmann and D’Abrera (2006). Chapter 9.6
of Imbens and Rubin (2015) discusses results for stratified block randomization, but
these are limited to linear regression estimators of the ATE in the superpopulation
model. Bugni et al. (2018) and Bugni et al. (2017) study inference for the superpop-
ulation ATE in two-sample and linear regression t-tests under a variety of sampling
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schemes. Ansel et al. (2018) extend their results to the LATE and also study the
efficiency of linear regression estimators. We focus on conditionally independent and
stratified block randomization and study finite population estimands, which requires
a new large sample theory that does not rely on randomness of potential outcomes.
Also note that none of the papers above allow for limited overlap.

Outline. The next section studies the ATE in the conditional independence
model. Section 3 considers the LATE in the instrumental variables model. We con-
duct a simulation study in section 4, and section 5 concludes. All proofs are given in
the appendix.

2 Average Treatment Effect

This section studies inference on the ATE in the standard finite population potential
outcomes model under conditional independence (CI) or unconfoundedness.

2.1 Setup

There are n observed units, and each unit i is endowed with treatment assignment
Di, a random variable supported on t0, 1u. Let Yipdq denote the potential outcome
of unit i under treatment assignment d P t0, 1u and Wi P Rk a vector of baseline
covariates. The elements tpYip1q, Yip0q,Wiqu

n
i“1 are constants, so the only source of

randomness is treatment assignment. The econometrician observes tpYi, Di,Wiqu
n
i“1,

where
Yi “ Yip1qDi ` Yip0qp1´Diq.

Stratified block randomization is implemented in practice using a small set of
strata. Following Bugni et al. (2018) and Bugni et al. (2017), we assume strata are
obtained from baseline covariates according to some mapping S : Rk Ñ X, where X
is a finite set. We let Xi “ SpWiq denote the stratum of observation i. Assume there
exists a “mass function” fpxq satisfying

f̂pxq “
1

n

n
ÿ

i“1

1tXi “ xu Ñ fpxq

as nÑ 8 for all x P X.
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We consider randomization schemes for which treatment assignment is indepen-
dent across strata and identically distributed within strata. The latter implies uncon-
foundedness, since the probability that unit i is assigned treatment is not a function
of her identity, and hence, her nonrandom potential outcomes. We focus on the
following two schemes.

(a) Conditionally independent randomization: within stratum x, each unit is assigned
to treatment with probability px, independently across units.

(b) Stratified block randomization: within stratum x, exactly mx out of the nx units
are assigned to treatment.

Define the propensity score as pnpxq “ ErD1 |X1 “ xs. Thus for conditionally
independent randomization, pnpxq “ px, and for stratified block randomization,
pnpxq “ mx{nx. We assume throughout that mx{nx

px
Ñ 1, so that the propensity

score is asymptotically equivalent under the two randomization schemes. Define the
sample propensity score

p̂npxq “

řn
i“1Di1tXi “ xu
řn
i“1 1tXi “ xu

.

We next allow for the possibility that pnpxq Ñ c P t0, 1u as nÑ 8 for some or all
values of x P X in order to capture limited overlap.

Definition 1. Let an “ minxPX pnpxqp1 ´ pnpxqq. We say there is limited overlap if
an Ñ 0.

The finite population average treatment effect is given by

τn “
1

n

n
ÿ

i“1

`

Yip1q ´ Yip0q
˘

.

To motivate our estimator, we note that τn can alternatively be represented as

τn “
ÿ

xPX

f̂pxqτnpxq,

7

 Electronic copy available at: https://ssrn.com/abstract=3128546 



Hong, Leung, and Li

where τnpxq is the finite population “conditional” ATE

τnpxq “ µnp1, xq ´ µnp0, xq “

řn
i“1 Yip1q1tXi “ xu
řn
i“1 1tXi “ xu

´

řn
i“1 Yip0q1tXi “ xu
řn
i“1 1tXi “ xu

.

Our estimator for the ATE is the sample analog

τ̂n “
1

n

n
ÿ

i“1

τ̂npXiq “
ÿ

xPX

f̂pxqτ̂npxq,

where

τ̂npxq “ µ̂np1, xq ´ µ̂np0, xq “

řn
i“1 YiDi1tXi “ xu
řn
i“1Di1tXi “ xu

´

řn
i“1 Yip1´Diq1tXi “ xu
řn
i“1p1´Diq1tXi “ xu

.

Note that because the set of strata X is finite, τ̂n is equivalent to the inverse propensity
score weighted and doubly robust estimators (Robins et al., 1994); see Proposition 6
in the appendix.

Remark 1. This paper considers the case of binary-valued treatment effects. In the
case of multi-valued treatment effects, we would redefine an “ minxPX ΠQ

q“1pnpx, qq

where pnpx, qq “ ErDipqq |X1 “ xs withDipqq “ 1 if treatment is level q P t0, 1, ..., Qu.1

Bugni et al. (forthcoming) and Cattaneo (2010) study efficient inference under full
overlap. When Q is finite, it should be straightforward to extend our univariate CLT
results in the next subsection to corresponding multivariate CLTs for

?
nanΣ

´1{2
n pτ̂n ´ τnq,

where τn “ pτnp1q, ..., τnpQqq for τnpqq “ n´1
řn
i“1pYipqq´Yip0qq, and τ̂n “ pτ̂np1q, ..., τ̂npQqq

for τ̂npqq “ n´1
řn
i“1 τ̂npXi, qq with τ̂npx, qq “

řn
i“1 YiDipqq1tXi“xu
řn

i“1Dipqq1tXi“xu
´

řn
i“1 YiDip0q1tXi“xu
řn

i“1Dip0q1tXi“xu
.

The case QÑ 8 is an interesting direction for future research.

2.2 Asymptotic Theory

We next derive the asymptotic distribution of τ̂n and an estimator for its asymptotic
variance. In the standard case of sufficient overlap, τ̂n is well-known to be

?
n-

consistent. However, under limited overlap, we find that the rate of convergence will
be slower and depend on an. Our CLT below shows that the correct rate is

?
nan,

which indicates that limited overlap can substantially reduce the effective sample size.
1We thank a referee for this comment.
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Let

σ2
n “ Var

˜

?
nan

1

n

n
ÿ

i“1

ÿ

xPX

Divipxq

¸

“ Var

˜

?
nan

1

n

n
ÿ

i“1

DiṽipXiq

¸

,

where

vipxq “ ṽi pxq1tXi “ xu, ṽi pxq “

ˆ

Yip1q ´ µnp1, xq

pnpxq
`
Yip0q ´ µnp0, xq

1´ pnpxq

˙

.

This is the variance of an asymptotically linear representation of τ̂n and therefore will
be equal to the asymptotic variance.

Theorem 1. Suppose treatment is assigned according to conditionally independent
or stratified block randomization. Assume nan Ñ 8,

lim sup
nÑ8

max
dPt0,1u

1

n

n
ÿ

i“1

|Yipdq|
2`ε

ă 8 for some ε ą 0, (1)

and
lim inf
nÑ8

σ2
n ą 0. (2)

Then
?
nanpτ̂n ´ τnq{σn

d
ÝÑ N p0, 1q.

Remark 2. We can explicitly characterize σ2
n as follows. Lemma A.1 in the appendix

shows that τ̂n can be linearized as

τ̂n ´ τn “
1

n

n
ÿ

i“1

ÿ

xPX

Divipxq ` op
`

pnanq
´1{2

˘

“
1

n

n
ÿ

i“1

DiṽipXiq ` op
`

pnanq
´1{2

˘

,

The variance of the first term on the right-hand side gives us σ2
n. By Lemma A.2 in

the appendix, under either randomization scheme, this variance equals

σ2
n ” an

«

1

n

n
ÿ

i“1

pnpXiq
´1Ỹip1, Xiq

2
`

1

n

n
ÿ

i“1

p1´ pnpXiqq
´1Ỹip0, Xiq

2

´
1

n

n
ÿ

i“1

`

Ỹip1, Xiq ´ Ỹip0, Xiq
˘2

ff

, (3)

where Ỹipd, xq “ Yipdq ´ µnpd, xq. This coincides with the usual expression for the
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asymptotic variance, except from the presence of an to account for limited overlap
(for the case of block randomization, see e.g. Imbens and Rubin, 2015, p. 202). Block
randomization induces negative correlation between Di and Dj, since i being treated
reduces the chance that j is treated. However, in large samples, this reduction in j’s
treatment probability is negligible, hence the equivalence between variances.

Remark 3. Equation (1) is a standard moment condition, while (2) requires a non-
degenerate variance. To assess the reasonableness of the latter condition, first con-
sider (3) in the standard case where pnpxq Ñ ρpxq P p0, 1q for all x P X. Then
an Ñ α P p0, 1q, which corresponds to the standard case without limited overlap and
a
?
n rate of convergence. Thus, (2) reduces to the usual nondegeneracy condition.
If instead pnpxq Ñ ρpxq1 P t0, 1u for some x, then an Ñ 0, and there must exist

some x1 P X and d1 P t0, 1u for which an{ppnpxqd
1

p1´pnpxqq
1´d1q Ñ 1. For this stratum

and treatment, overlap is the most limited. For all other strata and treatments, the
terms an{pnpxq, an{p1´pnpxqq, and an vanish in (3), intuitively because they converge
to their limits faster than the strata with the least overlap. Then it is straightforward
to see that (2) holds under the primitive condition

lim inf
nÑ8

1

n

n
ÿ

i“1

Ỹipd
1, x1q21tXi “ x1u ą 0,

which requires nondegeneracy of the conditional second moments of potential out-
comes.

Remark 4. The requirement nan Ñ 8 states that overlap cannot be too limited.
Otherwise, there is insufficient information in the sample, and τ̂n is not even consis-
tent. Consistency is also required in Sasaki and Ura (2018), who use a different notion
of small propensity scores. When this condition fails, the limit distribution can be
shown to be non-normal. One can potentially test this condition as follows.2 Given a
consistent variance estimator σ̂2

n (discussed below) our theorem establishes normality
of Tn ”

?
nanpτ̂n´τnq{σ̂n under nan Ñ 8. When this condition fails, the distribution

can be shown to be non-normal. This suggests implementing any conventional test
for normality (e.g. a KS test) by bootstrapping the distribution of Tn.

2We thank the editor for this suggestion.
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Remark 5. The result for stratified block randomization relies on an argument gen-
eralizing the proof of Theorem 6, Appendix 4 of Lehmann and D’Abrera (2006),
allowing for independent randomization across strata. This appears to be new, even
in the case without limited overlap. See Lemma A.4 in the appendix.

In order to construct confidence intervals using Theorem 1, we need estimates of
σ2
n and an. We can consistently estimate the latter using ân “ mini p̂npXiqp1´p̂npXiqq,

since p̂np¨q is uniformly consistent over X, as shown in the proof of Theorem 1. We
consider the following estimator for the variance:

σ̂2
n “

ân
n

n
ÿ

i“1

«

Di pYi ´ µ̂n p1, Xiqq
2

p̂n pXiq
2 `

p1´Diq pYi ´ µ̂n p0, Xiqq
2

p1´ p̂n pXiqq
2

ff

.

This is a standard expression, except for the presence of ân. To be more specific, note
that under the superpopulation model σ̂2

n is consistent for the asymptotic variance of
τ̂ minus

τxn ”
1

n

n
ÿ

i“1

ErYip1q ´ Yip0q |Xis (4)

(see section A.4 of the appendix). This is well-known in the case of sufficient overlap
(e.g. Imbens and Wooldridge, 2009). However, in the finite population model, it is
also well-known that there is an additional term in the asymptotic variance

βn “ an
1

n

n
ÿ

i“1

`

Ỹip1, Xiq ´ Ỹip0, Xiq
˘2

that cannot be estimated due to its dependence on Ỹip1, XiqỸip0, Xiq, which is unob-
served. Since βn is nonnegative, if it does not vanish in the limit, we can expect that
σ̂2
n is generally conservative in the finite population model, as shown formally in the

next proposition.

Proposition 1. Suppose treatment is assigned according to conditionally independent
or stratified block randomization. Assume nan Ñ 8, (2) holds, and

lim sup
nÑ8

max
dPt0,1u

1

n

n
ÿ

i“1

Yipdq
4
ă 8. (5)
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Then pσ̂2
n ´ βnq{σ

2
n

p
ÝÑ 1.

Remark 6. Using Proposition 1, the following is a (potentially conservative) 100 ˚

p1´ αq% confidence interval for τn:

τ̂n ˘ z1´α{2
σ̂n
?
nân

, (6)

where z1´α{2 is the 1 ´ α{2 quantile of the standard normal distribution. Note that
this coincides with the conventional confidence interval for (4), since ân cancels out of
σ̂n, resulting in the usual variance estimator. Thus, our results show that conventional
i.i.d. standard errors are valid under limited overlap and stratified block sampling.

Remark 7. Proposition 1 implies that σ̂2
n is asymptotically exact when there is

limited overlap, since βn Ñ 0 when an Ñ 0. The only general condition in the
existing literature under which the estimator is exact is the strong requirement of
homogeneity in potential outcomes (Yipdq “ Yjpdq for all i, j such that Xi “ Xj).

Since X is finite, it can be shown that τ̂n is numerically identical to the coefficient
on Di in a regression of Yi on an intercept, Di, the dummies Vij ” 1tXi “ ju for
j “ 2, . . . , J , and all interaction terms betweenDi and the centered dummies Vj´f̂pjq.
For example, in Stata,

reg Yi Di Vi2 . . . ViJ DipVi2 ´ f̂p2qq . . . DpViJ ´ f̂pJqq. (7)

Furthermore, the robust (Eicker-White) standard errors coincide with the standard
errors in (6).

Proposition 2. σ̂2
n{ pânnq is numerically identical to the robust variance for the co-

efficient of Di in regression (7).

Hence, by Remark 7, in the finite-population model, a confidence interval for τn
computed using robust standard errors is conservative under sufficient overlap but
asymptotically exact under limited overlap. In the superpopulation model, if the
target parameter is τxn ”(4), the confidence interval is known to be exact, and if the
target parameter is ErYip1q ´ Yip0qs ‰ τxn , it is known to undercover ((Imbens and
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Wooldridge, 2009; Ansel et al., 2018)).

Remark 8. (Cattaneo et al., 2018) consider the case of “many” covariates in the
superpopulation model and show that confidence intervals using the Eicker-White
standard errors will undercover when the number of covariates grows with the sample
size. The authors also examine confidence intervals using the HCk class of standard
errors and show that HC3 will provide conservatively valid inference. In principle, our
assumption that X is finite rules out the possibility of "many" covariates. However, if
the cardinality of X is large in practice, it may be necessary to rework our asymptotics
allowing the number of covariates to grow with the sample size. We leave this topic
for further research.

Remark 9. The bootstrap is generally known to be valid for asymptotic inference
under the superpopulation model for the parameter ErYip1q´Yip0qs. Thus, bootstrap
confidence intervals are more conservative for (4) relative to (6). We therefore expect
that the bootstrap is conservative for τn, although a formal result is beyond the scope
of this paper. We also conjecture that the bootstrap is asymptotically exact under
limited overlap when an Ñ 0, in light of the previous remark.

Remark 10. In completely randomized experiments, pnpxq does not vary across x. In
this case, taking a simple difference of the two subsample means, which coincides with
a linear regression Yi on Di, is also consistent for both the finite- and superpopulation
ATEs. However, this estimator less efficient than regression (7). This is because the
regression estimator is equivalent to τ̂n, which in turn is equivalent to an inverse
propensity score weighting estimator with an estimated propensity score (see section
A.3 of the appendix). The latter estimator is known to reach the semiparametric
efficiency bound (Hirano et al., 2003).

Relatedly, if pnpxq is known, the inverse propensity score weighting estimator using
the known propensity score is consistent. However, it is more efficient to estimate it
using regression (7) because the regression estimator is equivalent to τ̂n.
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3 Local Average Treatment Effect

In this section, we extend the results of the previous section to a finite population
analog of the Imbens and Angrist (1994) instrumental variables (IV) model, where
we consider inference on the LATE instead of the ATE.

3.1 Setup

As in the previous section, we treat tpYip1q, Yip0q,Wiqu
n
i“1 as constants. Each unit i is

now also endowed with an instrument Zi, a random variable supported on t0, 1u. Let
Dipzq P t0, 1u represent unit i’s take up choice when the instrument Zi equals z. The
elements tpDip1q, Dip0qqu

n
i“1 are constants, so the only random element in the model

is the instrument. The econometrician observes tpYi, Di, Zi,Wiqu
n
i“1, where

Di “ Dip1qZi `Dip0qp1´ Ziq.

As in section 2, we let Xi “ SpWiq be the stratum of observation i, and we continue
to assume that the set of strata X is finite. We again consider conditionally inde-
pendent and stratified block randomization and allow for limited overlap, all defined
analogously to the previous section, with Di replaced by Zi in these definitions.

We define the finite population LATE as

λ˚n “

řn
i“1

`

Yip1q ´ Yip0q
˘

1tDip1q ą Dip0qu
řn
i“1 1tDip1q ą Dip0qu

,

in complete analogy with the definition of the superpopulation estimand in Imbens
and Angrist (1994). We next provide conditions under which λ˚n is identified. Let

Y ˚i pzq “ Yip1qDipzq ` Yip0qp1´Dipzqq,

so that Yi “ Y ˚i p1qZi ` Y
˚
i p0qp1´ Ziq. For z P t0, 1u and x P X let

µ˚npz, xq “

řn
i“1 Y

˚
i pzq1tXi “ xu

řn
i“1 1tXi “ xu

, γnpz, xq “

řn
i“1Dipzq1tXi “ xu
řn
i“1 1tXi “ xu

.
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Also let µ˚npzq “
ř

xPX f̂pxqµ
˚
npz, xq and γnpzq “

ř

xPX f̂pxqγnpz, xq. Then define

λn “
µ˚np1q ´ µ

˚
np0q

γnp1q ´ γnp0q
.

This parameter can be estimated by its sample analog, defined below. As the next
proposition shows, it is also asymptotically equivalent to the target parameter λ˚n
under standard identification conditions.

Proposition 3. Suppose (1) holds, as well as the following conditions.

(a) (Monotonicity) 1
n

řn
i“1 1tDip0q ą Dip1qu Ñ 0.

(b) (Compliers) lim infnÑ8
1
n

řn
i“1 1tDip1q ą Dip0qu ą 0.

Then |λ˚n ´ λn| Ñ 0.

The proof of this proposition is similar to the proof of Theorem 1 in Frölich (2007) and
is therefore omitted. Assumption (b) requires the existence of compliers, so that λ˚n
is asymptotically well-defined. Assumption (a) rules out defiers in the limit. Observe
that if there are absolutely no defiers (

řn
i“1 1tDip0q ą Dip1qu “ 0) and some complier

exists (
řn
i“1 1tDip1q ą Dip0qu ą 0q, then λ˚n “ λn.

We next define an estimator for λn. Let

µ̂˚npz, xq “

řn
i“1 YiZ

z
i p1´ Ziq

1´z1tXi “ xu
řn
i“1 Z

z
i p1´ Ziq

1´z1tXi “ xu
,

γ̂npz, xq “

řn
i“1DiZ

z
i p1´ Ziq

1´z1tXi “ xu
řn
i“1 Z

z
i p1´ Ziq

1´z1tXi “ xu
.

Also let µ̂˚npzq “
ř

xPX f̂pxqµ̂
˚
npz, xq and γ̂npzq “

ř

xPX f̂pxqγ̂npz, xq. Our estimator for
the LATE is

λ̂n “
µ̂˚np1q ´ µ̂

˚
np0q

γ̂np1q ´ γ̂np0q
.

3.2 Asymptotic Theory

Note that the IV model completely nests the CI model, the latter of which is obtained
when Dip1q “ 1´Dip0q “ 1 for all units i. We will obtain results analogous to those
in section 2.
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Define p˚npxq as the proportion of treated units in stratum x (the analog of the
propensity score for the instrument). Let ∆n “ n´1

řn
i“1pDip1q ´Dip0qq and

ṽµ,i pxq “

ˆ

Y ˚i p1q ´ µ
˚
np1, xq

p˚npxq
`
Y ˚i p0q ´ µ

˚
np0, xq

1´ p˚npxq

˙

,

ṽγ,ipxq “

ˆ

Dip1q ´ γnp1, xq

p˚npxq
`
Dip0q ´ γnp0, xq

1´ p˚npxq

˙

.

The asymptotic variance will be given by

σ2
λ,n “ Var

˜

?
nan

1

n∆n

n
ÿ

i“1

Zi
`

ṽµ,ipXiq ´ λ
˚
nṽγ,ipXiq

˘

¸

.

Finally, define the sample analog of p˚npxq,

p̂˚npxq “

řn
i“1 Zi1tXi “ xu
řn
i“1 1tXi “ xu

.

Theorem 2. Suppose the instrument is generated according to conditionally indepen-
dent or stratified block randomization. Assume nan Ñ 8, assumptions (a) and (b) of
Proposition 3 and (1) hold, and

lim inf
nÑ8

σ2
λ,n ą 0. (8)

Then
?
nanpλ̂n ´ λ

˚
nq{σλ,n

d
ÝÑ N p0, 1q.

Remark 11. Assumption (8) requires both an asymptotically nondegenerate vari-
ance, as in (2), as well as the usual rank condition that the instrument nontrivially
affects the take up choice. The rank condition is equivalent to the compliers assump-
tion in Proposition 3.

Lemma A.6 in the appendix derives an explicit form for σ2
λ,n in (23). Its sample
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analog can be rewritten as

pγ̂p1q ´ γ̂p0qq´2
ân
n

n
ÿ

i“1

»

—

–

Zi

´

Yi ´ µ̂
˚
np1, Xiq ´ λ̂npDi ´ γ̂np1, Xiqq

¯2

p̂˚n pXiq
2

`

p1´ Ziq
´

Yi ´ µ̂
˚
np0, Xiq ´ λ̂npDi ´ γ̂np0, Xiqq

¯2

p1´ p̂˚n pXiqq
2

fi

ffi

fl

.

As in the CI model, under the superpopulation model, this is the sample analog of
the asymptotic variance of λ̂n minus

λxn ”

řn
i“1ErpYip1q ´ Yip0qq1tDip1q ą Dip0qu |Xis

řn
i“1PpDip1q ą Dip0q |Xiq

(9)

and is therefore consistent in that setting (see section A.4 of the appendix). On the
other hand, if the target parameter is λ˚ “ ErYip1q´Yip0q |Dip1q ą Dip0qs, then σ̂2

λ,n

is known to be an underestimate of the variance of λ̂n ´ λ˚ ((Ansel et al., 2018)).
In the finite population model, the estimator can be conservative because it does

not account for the term

βλ,n “ an
1

n

n
ÿ

i“1

´

Ỹ ˚i p1, Xiq ´ Ỹ
˚
i p0, Xiq ´ λ

˚
n

´

D̃ip1, Xiq ´ D̃ip0, Xiq

¯¯2

in the asymptotic variance, which cannot be consistently estimated.

Proposition 4. Suppose the instrument is generated according to conditionally in-
dependent or stratified block randomization. Assume nan Ñ 8 and assumptions (a)
and (b) of Proposition 3 and (5) and (8) hold. Then pσ̂2

λ,n ´ βλ,nq{σ
2
λ,n

p
ÝÑ 1.

Remark 12. Similar to Proposition 1, we see that σ̂2
λ,n can be conservative, but it is

consistent for σ2
λ,n when potential outcomes and take up decisions are homogeneous

or overlap is limited.

It can be shown that λ̂n is numerically identical to the coefficient on Di in an
instrumental variable regression of Yi on an intercept, Di, the dummies pVij, j “
2, . . . , Jq defined for (7), and the interaction terms DipVij ´ f̂pjqq, where Di is instru-
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mented by Zi. The following proposition shows that the associated robust standard
errors coincide with those constructed using σ̂2

λ,n. This is analogous to Proposition 2
for the CI model.

Proposition 5. σ̂2
λ,n{ pânnq is numerically identical to the robust variance for the

coefficient of Di in the aformentioned instrumental variable regression.

In light of Remark 12, this implies that the Stata robust standard errors are asymp-
totically conservative under sufficient overlap and exact under limited overlap. Also,
this regression is efficient for reasons analogous to those discussed in Remark 10 for
the CI model.

4 Simulation Study

We study the finite-sample coverage of the confidence interval suggested by results in
section 2. Suppose Xi is binary, and let pnp1q “ 0.5 and

pnp0q “ mintn´δ, 0.5u.

We will display results for several values of δ ě 0 under both randomization schemes.
In the case of stratified block randomization, we will define mx “ rpnpxqnxs.

We simulate a random-coefficients model, where outcomesY “ pY1, . . . , Ynq satisfy

Y “Wθ,

W “ p1,X,D,D ˚Xq, 1 is an n-dimensional vector of ones, X “ pX1, . . . , Xnq, D “

pD1, . . . , Dnq, and “˚” denotes the elementwise product. We draw tθiuni“1 „ N pµ,Σq
for µ “ p0, 0.5, 2, 1q and Σ the identity matrix, and tXiu

n
i“1

iid
„ Berp0.5q.

Table 1 displays results for conditionally independent randomization and Table 2
for stratified block randomization. Row “Cover” denotes the fraction of simulations
for which the nominal 95-percent confidence interval (6) covers τn. We use 5000
simulations, redrawing only D in each simulation, since this is a finite population
model. Row “P-score” gives the average value of p̂np0q across the simulations.

From the simulation results, we find that when δ is small, so that there is sufficient
overlap, the confidence intervals are conservative, which corroborates Proposition 1.
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Table 1: Conditionally Independent Randomization

δ 0 0.4 0.5

n 100 1000 5000 100 1000 5000 100 1000 5000

Cover 0.962 0.970 0.968 0.932 0.956 0.949 0.896 0.931 0.942
P-score 0.50 0.50 0.50 0.16 0.06 0.03 0.10 0.03 0.01

Table 2: Stratified Block Randomization

δ 0 0.4 0.5

n 100 1000 5000 100 1000 5000 100 1000 5000

Cover 0.956 0.961 0.969 0.949 0.954 0.951 0.930 0.936 0.948
P-score 0.50 0.50 0.50 0.17 0.06 0.03 0.11 0.03 0.01

Also coverage is similar across randomization schemes for large samples, which is
consistent with Remark 2. When δ is larger, there is undercoverage for smaller sample
sizes due to the small number of treated observations in stratum x “ 0. In unreported
results, we find that for larger values of δ, the sample size needs to be quite substantial
for adequate coverage. This is unsurprising given that limited overlap reduces the rate
of convergence by Theorem 1.

It is noteworthy to compare Tables 1 and 2 for the case δ “ 0.5. We see that
coverage is more conservative for stratified block randomization relative to condition-
ally independent randomization when the sample size is small. This is because in
finite samples, block randomization induces negative correlation in treatment assign-
ment across units. When δ is large and n small, there are few treated units, so this
negative correlation remains substantial. Since the standard errors are derived un-
der asymptotic independence, they become conservative for block randomization in
finite samples, relative to independent randomization. This conservativeness actually
appears to be advantageous given that the confidence intervals tend to undercover
substantially under conditionally independent randomization and limited overlap. Of
course, when the sample size is sufficiently large, coverage approaches nominal levels.
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5 Conclusion

We propose an asymptotic definition of limited overlap, that the propensity score
tends to zero or one with the sample size for some strata. This provides a rigorous
notion of overlap being “limited,” analogous to how high-dimensional asymptotics take
the number of covariates large as the sample size diverges. We study the properties
of standard estimators for the ATE and LATE in a finite population model under
this notion of limited overlap. We find that the estimators are asymptotically normal
under both conditionally independent and stratified block randomization. In the
case of block randomization, our results allow for independent randomization across
multiple strata, while existing results only allow for a single stratum. We also find
that limited overlap slows the rate of convergence, yet standard variance estimators
remain valid.

In a simulation study, we show that in finite samples, limited overlap can lead
to undercoverage, which, in addition to our rate result, provides motivation for al-
ternative estimators that eliminate observations in strata with limited overlap, (e.g
Crump et al., 2009; Ho et al., 2007). However, these estimators come at the cost of
estimating a conditional average treatment effect instead. Our results suggest that
researchers interested in the unconditional ATE can still use conventional estimators
when sample sizes are large, since in this case, the estimators can perform well even
when the propensity score is empirically quite small.

A Appendix

A.1 Proofs: ATE

This section provides proofs of results in section 2. The next lemma states high-
level conditions for asymptotic normality that we will later verify for the cases of
conditionally independent and stratified block randomization.

Lemma A.1. For nan Ñ 8, under the following conditions,

?
nanpτ̂n ´ τnq{σn

d
ÝÑ N p0, 1q.

(a) (Nondegenerate variance) σ´1n “ Op1q.
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(b) (P-score estimator) p̂npxq{pnpxq
p
ÝÑ 1 for all x P X.

(c) (Rate of convergence) For all d P t0, 1u and x P X,

1

n

n
ÿ

i“1

pYipdq ´ µnpd, xqq

ˆ

Di

pnpxq

˙dˆ
1´Di

1´ pnpxq

˙1´d

1tXi “ xu “ Op

`

pnanq
´1{2

˘

.

(10)

(d) (Normality of linear representation)

?
nan

1

n

n
ÿ

i“1

ÿ

xPX

pDi ´ pnpxqqvipxq{σn
d
ÝÑ N p0, 1q.

Proof. Fix x P X. Let κ̂np1, xq “ p 1n
řn
i“1Di1tXi “ xu{ppnpxqfpxqqq

´1. Then

f̂pxqpµ̂np1, xq ´ µnp1, xqq “ κ̂np1, xq
f̂pxq

fpxq

1

n

n
ÿ

i“1

Ỹip1, xq
Di

pnpxq
1tXi “ xu, (11)

where Ỹipd, xq “ Yipdq ´ µnpd, xq. By assumption (b), κ̂np1, xq
p
ÝÑ 1, and by as-

sumption (c), the average on the right-hand side of (11) is Opppnanq
´1{2q. This and

a similar derivation for f̂pxqpµ̂np0, xq ´ µnp0, xqq yield the following asymptotically
linear representation of the conditional ATE (scaled by f̂pxq):

f̂pxq pτ̂npxq ´ τnpxqq “
1

n

n
ÿ

i“1

´

Ỹip1, xq ´ Ỹip0, xq
¯

1tXi “ xu

`
1

n

n
ÿ

i“1

pDi ´ pnpxqq

˜

Ỹip1, xq

pnpxq
`

Ỹip0, xq

1´ pnpxq

¸

1tXi “ xu ` opppnanq
´1{2

q. (12)

The first term on the right-hand side is identically zero. The result then follows from
assumptions (a) and (d).

We next compute the variance of the influence function, which gives us the asymp-
totic variance by the previous lemma.
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Lemma A.2. Under conditionally independent or stratified block randomization,

Var

˜

?
nan

1

n

n
ÿ

i“1

ÿ

xPX

pDi ´ pnpxqqvipxq

¸

“
ÿ

xPX

«

an
pnpxq

1

n

n
ÿ

i“1

Ỹip1, xq
21tXi “ xu `

an
1´ pnpxq

1

n

n
ÿ

i“1

Ỹip0, xq
21tXi “ xu

´an
1

n

n
ÿ

i“1

`

Ỹip1, xq ´ Ỹip0, xq
˘2
1tXi “ xu

ff

. (13)

Note that this is equivalent to (3).

Proof. Under either randomization scheme,

σ2
n “

an
n

n
ÿ

i“1

n
ÿ

j“1

ÿ

xPX

CovpDivipxq, Djvjpxqq.

Under conditionally independent randomization, CovpDivipxq, Djvjpxqq “ 0 if i ‰ j

and otherwise equals VarpDivipxqq, which is given by

ˆ

1´ pnpxq

pnpxq
Ỹip1, xq

2
` 2Ỹip1, xqỸip0, xq `

pnpxq

1´ pnpxq
Ỹip0, xq

2

˙

1tXi “ xu

“

ˆ

1

pnpxq
Ỹip1, xq

2
`

1

1´ pnpxq
Ỹip0, xq

2
´
`

Ỹip1, xq ´ Ỹip0, xq
˘2

˙

1tXi “ xu,

where Ỹipd, xq “ Yipdq ´ µnpd, xq. This establishes (13).
Under stratified block randomization, we also have to show that the following is

op1q:

an
n

ÿ

i‰j

ÿ

xPX

CovpDivipxq, Djvjpxqq “
an
n

ÿ

i‰j

ÿ

xPX

wijpxq

mxpmx´1q
nxpnx´1q

´ pnpxq
2

pnpxq2p1´ pnpxqq2
, (14)

where wijpxq “ pnpxq
2p1´ pnpxqq

2vipxqvjpxq. Let rnpxq2 “ mxpmx ´ 1q{pnxpnx ´ 1qq.
Then

(14) ď

˜

1

n2

ÿ

i‰j

ÿ

xPX

wijpxq

¸

max
xPX

an
pnpxqp1´ pnpxqq

nprnpxq
2 ´ pnpxq

2q

pnpxqp1´ pnpxqq
.
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Note that an{ppnpxqp1´ pnpxqqq ď 1. Also, by (1),

1

n2

ÿ

i‰j

ÿ

xPX

wijpxq “
ÿ

xPX

˜

1

n

n
ÿ

i“1

pnpxqp1´ pnpxqqvipxq

¸2

looooooooooooooooooomooooooooooooooooooon

0

´
1

n2

n
ÿ

i“1

pnpxq
2
p1´ pnpxqq

2vipxq
2

looooooooooooooooooomooooooooooooooooooon

op1q

.

Furthermore,

nprnpxq
2 ´ pnpxq

2q

pnpxqp1´ pnpxqq
“

n

nx

mxpmx´1q
nx´1

´
m2

x

nx

pnpxqp1´ pnpxqq
“

1

f̂pxq

mx

nx´1
pmx

nx
´ 1q

pnpxqp1´ pnpxqq
Ñ ´

1

fpxq
.

Thus, (14) Ñ 0, as desired.

The next two lemmas verify the conditions of Lemma A.1 for our two randomiza-
tion schemes.

Lemma A.3. Suppose treatment is assigned according to conditionally independent
randomization. Assume nan Ñ 8 and (1) and (2) hold. Then

?
nanpτ̂n´ τnq{σn

d
ÝÑ

N p0, 1q.

Proof. It suffices to verify assumptions (b), (c), and (d) of Lemma A.1. To verify
(b), note that p̂npxq{pnpxq has mean one and variance p1´ pnpxqq2{pnanf̂pxqq, which
tends to zero since nan Ñ 8.

To verify assumption (c), consider the case d “ 1, with case d “ 0 being similar.
Then

nanVar

˜

1

n

n
ÿ

i“1

Ỹip1, xq
Di

pnpxq
1tXi “ xu

¸

“
1

n

n
ÿ

i“1

Ỹip1, xq
21tXi “ xu

anp1´ pnpxqq

pnpxq
,

which is Op1q by (1). Hence, the variance of the left-hand side of (10) is Oppnanq´1q.
Since the left-hand side is also mean zero, this verifies (c).

Lastly, we verify assumption (d) of Lemma A.1. We check the Lindeberg condition:
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for all δ ą 0,
n
ÿ

i“1

E
“

W 2
i 1 t|Wi| ą δu

‰

Ñ 0,

where Wi “ pan{pnσ
2
nqq

1{2
ř

xPXpDi ´ pnpxqqvipxq. Note that for any ε ą 0,

n
ÿ

i“1

E
“

W 2
i 1 t|Wi| ą δu

‰

ď

n
ÿ

i“1

E

„

|Wi|
2`ε 1

W ε
i

1 t|Wi| ą δu



ď

n
ÿ

i“1

E
“

|Wi|
2`ε

‰

δ´ε.

(15)
Hence, it suffices to show that

řn
i“1E r|Wi|

2`εs is op1q for some ε ą 0. Now, this
expectation equals

ˆ

an
nσ2

n

˙
2`ε
2

n
ÿ

i“1

ÿ

xPX

“

pnpxqp1´ pnpxqq
2`ε
` p1´ pnpxqqpnpxq

2`ε
‰

|vipxq|
2`ε

“ pnanq
´ε{2σ´1´ε{2n

ÿ

xPX

«

ˆ

p1´ pnpxqq
an

pnpxqp1´ pnpxqq

˙1`ε

`

ˆ

pnpxq
an

pnpxqp1´ pnpxqq

˙1`ε
ff

1

n

n
ÿ

i“1

|pnpxqp1´ pnpxqqvipxq|
2`ε. (16)

Note that nan Ñ 8, σ´1´ε{2n “ Op1q by (2), and maxxPX an{ppnpxqp1 ´ pnpxqqq “ 1.
Furthermore,

1

n

n
ÿ

i“1

ÿ

xPX

|pnpxqp1´ pnpxqqvipxq|
2`ε

“
1

n

n
ÿ

i“1

ÿ

xPX

1tXi “ xu
ˇ

ˇ

`

p1´ pnpxqqỸip1, xq ` pnpxqỸip0, xq
˘
ˇ

ˇ

2`ε
,

which is Op1q by assumption (1). Hence, (16) Ñ 0, as desired.

Lemma A.4. Suppose treatment is assigned according to stratified block randomiza-
tion. Assume nan Ñ 8 and (1) and (2) hold. Then

?
nanpτ̂n ´ τnq{σn

d
ÝÑ N p0, 1q.

Proof. It suffices to verify assumptions (b), (c), and (d) of Lemma A.1. To verify
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(b), note that p̂npxq{pnpxq has mean one and variance

«

n
ÿ

i“1

1tXi “ xupnpxqp1´ pnpxqq `
ÿ

i‰j

1tXi “ Xj “ xu

ˆ

mxpmx ´ 1q

nxpnx ´ 1q
´ pnpxq

2

˙

ff

ˆ pnpxq
´2

˜

n
ÿ

i“1

1tXi “ xu

¸´2

“
p1´ pnpxqq

2

npnpxqp1´ pnpxqqf̂pxq
` pnpxq

´1

ˆ

mx ´ 1

nx ´ 1
´ 1

˙

,

which is op1q, since nan Ñ 8.
Next, we verify assumption (c) of Lemma A.1. Consider case d “ 1, with case

d “ 0 being similar. It suffices to show that the following is Op1q:

nanVar

˜

1

n

n
ÿ

i“1

Ỹip1, xq
Di

pnpxq
1tXi “ xu

¸

“
1

n

n
ÿ

i“1

Ỹip1, xq
21tXi “ xu

anp1´ pnpxqq

pnpxq

`
an
n

ÿ

i‰j

Ỹip1, xqỸjp1, xq1tXi “ Xj “ xu

mxpmx´1q
nxpnx´1q

´ pnpxq
2

pnpxq2
.

The first term is Op1q by (1). The second term equals

1

n2

ÿ

i‰j

Ỹip1, xqỸjp1, xq1tXi “ Xj “ xu
anp1´ pnpxqq

pnpxq

n

nx

mxpmx´1q
nx´1

´
m2

x

nx

pnpxqp1´ pnpxqq
. (17)

To see that this is op1q, first note that

1

n2

ÿ

i‰j

Ỹip1, xqỸjp1, xq1tXi “ Xj “ xu

“

˜

1

n

n
ÿ

i“1

Ỹip1, xq1tXi “ xu

¸2

´
1

n2

n
ÿ

i“1

Ỹip1, xq
21tXi “ xu.

The first term equals zero, while the second is op1q by (1). Second,

nanp1´ pnpxqq{pnxpnpxqq ď f̂pxq´1 Ñ fpxq´1.
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Third,
mxpmx´1q
nx´1

´
m2

x

nx

pnpxqp1´ pnpxqq
“

mx

nx´1
ppnpxq ´ 1q

pnpxqp1´ pnpxqq
Ñ ´1.

Thus, (17) Ñ 0, as desired.
Lastly, we verify assumption (d) of Lemma A.1. Let tD˚i uni“1 be i.i.d. condition-

ally independent Bernoulli random variables with success probability mx{nx. (Recall
pnpxq “ mx{nx under stratified block randomization.) Define W ˚

i pxq “ vipxqD
˚
i .

To apply Corollary 2, Appendix 3 of Lehmann and D’Abrera (2006), we first verify
(A.121) of the corollary and then apply the Lindeberg CLT to

řn
i“1

ř

xPXW
˚
i pxq (after

centering and scaling). Equation (A.121) corresponds to

E
”

p
řn
i“1

ř

xPXpW
˚
i pxq ´Wipxqqq

2
ı

Var p
řn
i“1

ř

xPXW
˚
i pxqq

Ñ 0, (18)

where Wipxq “ vipxqDi. By the Cauchy-Schwarz inequality, the left-hand side is
bounded above by

ÿ

x,yPX

¨

˝

E
”

p
řn
i“1pW

˚
i pxq ´Wipxqqq

2
ı

Var p
řn
i“1W

˚
i pxqq

E
”

p
řn
i“1pW

˚
i pyq ´Wipyqqq

2
ı

Var p
řn
i“1W

˚
i pyqq

Var p
řn
i“1W

˚
i pxqq

Var p
řn
i“1

ř

xPXW
˚
i pxqq

Var p
řn
i“1W

˚
i pyqq

Var p
řn
i“1

ř

xPXW
˚
i pxqq

˙1{2

.

By Lemma 1, Appendix 4 of Lehmann and D’Abrera (2006),

max
xPX

E
”

p
řn
i“1pW

˚
i pxq ´Wipxqqq

2
ı

Var p
řn
i“1W

˚
i pxqq

Ñ 0.

Furthermore, since treatment assignment is independent across strata,

Var p
řn
i“1W

˚
i pxqq

Var p
řn
i“1

ř

xPXW
˚
i pxqq

ď 1

for all x P X. This establishes (18).
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It remains to prove a CLT for
řn
i“1

ř

xPX vipxqD
˚
i , i.e. to show that

?
nan

1

n

n
ÿ

i“1

ÿ

xPX

pD˚i ´ pnpxqqvipxq{σn
d
ÝÑ N p0, 1q.

Since D˚i is now conditionally i.i.d., it is enough to check the Lindeberg condition.
We can apply the corresponding argument from the proof of Lemma A.3 verbatim.

Proof of Theorem 1. This follows from Lemmas A.3 and A.4.

Proof of Proposition 1. First observe that

σ̂2
n “

ÿ

xPX

f̂pxq

«

ân
p̂npxq

řn
i“1

`

Yi ´ µ̂np1, xq
˘2
Di1tXi “ xu

řn
i“1Di1tXi “ xu

`
ân

1´ p̂npxq

řn
i“1

`

Yi ´ µ̂np0, xq
˘2
p1´Diq1tXi “ xu

řn
i“1p1´Diq1tXi “ xu

ff

(see the proof of Proposition 2). From the proof of Theorem A.3, p̂npxq{pnpxq
p
ÝÑ 1

and ân{an
p
ÝÑ 1. By (3), it suffices to show that for any d P t0, 1u,

ˇ

ˇ

ˇ

ˇ

f̂pxq

řn
i“1

`

Yi ´ µ̂npd, xq
˘2
Dd
i p1´Diq

1´d1tXi “ xu
řn
i“1D

d
i p1´Diq

1´d1tXi “ xu
´

1

n

n
ÿ

i“1

Ỹipd, xq
21tXi “ xu

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0,

(19)
where Ỹipd, xq “ Yipdq ´ µnpd, xq. We prove the case d “ 1, as d “ 0 is similar. Since
f̂pxq{fpxq Ñ 1, (19) holds if

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Ỹipd, xq
2 Di

pnpxq
1tXi “ xu ´

1

n

n
ÿ

i“1

Ỹipd, xq
21tXi “ xu

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0. (20)

First consider conditionally independent randomization. Here,

Var

˜

1

n

n
ÿ

i“1

Ỹipd, xq
2 Di

pnpxq
1tXi “ xu

¸

“
1

n2

n
ÿ

i“1

Ỹipd, xq
4
p1´ pnpxqq1tXi “ xu,

which is op1q by (5). This establishes (19).
Next consider stratified block randomization. By the argument for conditionally
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independent randomization, it suffices to show that the following covariance is op1q:

1

n2

ÿ

i‰j

Ỹipd, xq
2Ỹjpd, xq

21tXi “ Xj “ xu

mxpmx´1q
nxpnx´1q

´
m2

x

n2
x

pnpxq2
.

This tends to zero because 1
n2

ř

i‰j Ỹipd, xq
2Ỹjpd, xq

21tXi “ Xj “ xu “ Op1q by (5),
and

mxpmx´1q
nxpnx´1q

´
m2

x

n2
x

pnpxq2
Ñ 0.

Proof of Proposition 2. The normal equations of this regression take the
form of 1

n

řn
i“1Wiεi “ 0, where the instruments Wi consist of 1, Di, Vij ´ V̄j, j ě 2,

Diˆ
`

Vij ´ V̄j
˘

, j ě 2, and where εi “ yi´ α̂´Diτ̂n´ η̂
1
`

Vi ´ V̄
˘

´ φ̂1Diˆ
`

Vi ´ V̄
˘

.
By linearly transforming the normal equations, we can replace the second instrument
Di by

J
ÿ

j“1

1 pxi “ jq
Di ´ p̂n pjq

p̂n pjq p1´ p̂n pjqq
“

Di ´ p̂n pXiq

p̂n pXiq p1´ p̂n pXiqq

and denote the transformed instruments as W̃i. Then the second row of the Jacobian
matrix of the normal equations is

1

n

n
ÿ

i“1

W̃i

“

1 Di Vi ´ V̄ Di ˆ
`

Vi ´ V̄
˘‰

“ r0 1 0 0s

By inspecting the other rows we find that the second row of the inverse of the Jacobian
matrix is also r0 1 0 0s. Hence the robust variance of τ̂n from Stata is given by

se “
n
ÿ

i“1

ˆ

Di ´ p̂n pXiq

p̂n pXiq p1´ p̂n pXiqq

˙2

ε2i .

Next by reparameterization, we can rewrite, for ζj1 “ µ̂n p1, jq, ζj0 “ µ̂n p0, jq, and
Vij “ 1 pXi “ jq,

εi “ yi ´
řJ
j“1 ζj1VijDi ´

řJ
j“1 ζj0Vij p1´Diq

“
řJ
j“1 pyi ´ ζj1qVijDi ´

řJ
j“1 pyi ´ ζj0qVij p1´Diq

28

 Electronic copy available at: https://ssrn.com/abstract=3128546 



Treatment Effects Under Limited Overlap

Then we can write

se “
řn
i“1

´

Di´p̂npXiq

p̂npXiqp1´p̂npXiqq

¯2 ”
ř

j VijDi pyi ´ ζj1q
2
`
ř

j Vij p1´Diq pyi ´ ζj0q
2
ı

“
řJ
j“1

řn
i“1

´

Di´p̂npjq
p̂npjqp1´p̂npjqq

¯2

VijDi pyi ´ ζj1q
2

`
řJ
j“1

řn
i“1

´

Di´p̂npjq
p̂npjqp1´p̂npXiqq

¯2

Vij p1´Diq pyi ´ ζj0q
2

Next note that

pDi ´ p̂n pjqq
2Di “ Di p1´ p̂n pjqq

2 , pDi ´ p̂n pjqq
2
p1´Diq “ p1´Diq p̂n pjq

2

We can further rewrite

se “
J
ÿ

j“1

1

p̂n pjq
2

n
ÿ

i“1

VijDi pyi ´ ζj1q
2
`

J
ÿ

j“1

1

p1´ p̂n pjqq
2

n
ÿ

i“1

Vij p1´Diq pyi ´ ζj0q
2 .

We can then manipulate σ̂2
n{ pnânq to be exactly this same form, so that se “

σ̂2
n{ pnânq.

A.2 Proofs: LATE

The next four lemmas are respectively analogous to Lemmas A.1-A.4 in the main
text.

Lemma A.5. For nan Ñ 8, under the following conditions,

?
nanpλ̂n ´ λ

˚
nq{σλ,n

d
ÝÑ N p0, 1q.

(a) Assumptions (a) and (b) of Proposition 3 hold.

(b) (1) and (8) hold.

(c) p̂˚npxq{p˚npxq
p
ÝÑ 1 for all x P X.
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(d) For all z P t0, 1u and x P X,

1

n

n
ÿ

i“1

pYipzq ´ µ
˚
npz, xqq

ˆ

Zi
p˚npxq

˙z ˆ
1´ Zi

1´ p˚npxq

˙1´z

1tXi “ xu “ Op

`

pnanq
´1{2

˘

,

1

n

n
ÿ

i“1

pDipzq ´ γnpz, xqq

ˆ

Zi
p˚npxq

˙z ˆ
1´ Zi

1´ p˚npxq

˙1´z

1tXi “ xu “ Op

`

pnanq
´1{2

˘

.

(e)
?
nan

1
n

řn
i“1

ř

xPX
`

pZi ´ p
˚
npxqqpvµ,ipxq ´ λ

˚
nvγ,ipxqq

˘

{σλ,n
d
ÝÑ N p0, 1q, where

vµ,ipxq “

ˆ

Y ˚i p1q ´ µ
˚
np1, xq

p˚npxq
`
Y ˚i p0q ´ µ

˚
np0, xq

1´ p˚npxq

˙

1tXi “ xu,

vγ,ipxq “

ˆ

Dip1q ´ γnp1, xq

p˚npxq
`
Dip0q ´ γnp0, xq

1´ p˚npxq

˙

1tXi “ xu

Proof. First note that

λ̂n ´ λ
˚
n “

µ̂˚np1q ´ µ̂
˚
np0q ´ µ

˚
np1q ` µ

˚
np0q

γ̂np1q ´ γ̂np0q
´ λ˚n

γ̂np1q ´ γ̂np0q ´ γnp1q ` γnp0q

γ̂np1q ´ γ̂np0q
.

Second, by assumptions (b) and (c) and the arguments in the proof of Lemma A.1,

µ̂˚npzq ´ µ
˚
npzq “

1

n

n
ÿ

i“1

ÿ

xPX

pZi ´ p
˚
npxqqvµ,ipxq ` op

`

pnanq
´1{2

˘

,

γ̂npzq ´ γnpzq “
1

n

n
ÿ

i“1

ÿ

xPX

pZi ´ p
˚
npxqqvγ,ipxq ` op

`

pnanq
´1{2

˘

.

Therefore,

?
nan

λ̂n ´ λ
˚
n

σλ,n
“

1

γ̂np1q ´ γ̂np0q

1

σλ,n

c

an
n

«

n
ÿ

i“1

ÿ

xPX

pZi ´ p
˚
npxqqpvµ,ipxq ´ λ

˚
nvγ,ipxqq

` An ´Bn



` op
`

σ´1λ,npγ̂np1q ´ γ̂np0qq
´1
p1´ λ˚nqpnanq

´1{2
˘

, (21)
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where for Ỹ ˚i pz, xq “ Y ˚i pzq ´ µ
˚
npz, xq and D̃ipz, xq “ Dipzq ´ γnpz, xq,

An “
n
ÿ

i“1

ÿ

xPX

´

Ỹ ˚i p1, xq ´ Ỹ
˚
i p0, xq

¯

1tXi “ xu,

Bn “ λ˚n

n
ÿ

i“1

ÿ

xPX

´

D̃ip1, xq ´ D̃ip0, xq
¯

1tXi “ xu.

Note that An “ Bn “ 0.
We have λ˚n “ Op1q by assumption (b) of Proposition 3 and (1). Furthermore,

γ̂np1q ´ γ̂np0q

“
ÿ

xPX

f̂pxq

˜

1
n

řn
i“1 1tXi “ xuZiDip1q

f̂pxqp̂npxq
´

1
n

řn
i“1 1tXi “ xup1´ ZiqDip0q

f̂pxqp1´ p̂npxqq

¸

“
ÿ

xPX

f̂pxq

˜

1

n

n
ÿ

i“1

Dip1q ´
1

n

n
ÿ

i“1

Dip0q

¸

` opp1q “ ∆n ` opp1q

∆n’s limit infimum is strictly positive by assumptions (a) and (b) of Proposition 3.
Therefore, by (8),

σ´1λ,npγ̂np1q ´ γ̂np0qq
´1
p1´ λ˚nqpnanq

´1{2
“ Opppnanq

´1{2
q.

The result then follows from assumption (d).

Define Ỹ ˚i pz, xq “ Y ˚i pzq´µ
˚
npz, xq, D̃ipz, xq “ Dipzq´γnpz, xq, γnpzq “

ř

xPX f̂pxqγnpz, xq,
and

∆vipxq “ vµ,ipxq ´ λ
˚
nvγ,ipxq, (22)

Lemma A.6. Under conditionally independent or stratified block randomization,

σ2
λ,n “ ∆´2

n

1

n

n
ÿ

i“1

ÿ

xPX

„

an
p˚npxq

´

Ỹ ˚i p1, xq ´ λ
˚
nD̃ip1, xq

¯2

`
an

1´ p˚npxq

´

Ỹ ˚i p0, xq ´ λ
˚
nD̃ip0, xq

¯2

´an

´

Ỹ ˚i p1, xq ´ Ỹ
˚
i p0, xq ´ λ

˚
n

´

D̃ip1, xq ´ D̃ip0, xq
¯¯2



1tXi “ xu. (23)
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Proof. Under either randomization scheme,

σ2
λ,n “ ∆´2

n

an
n

n
ÿ

i“1

n
ÿ

j“1

ÿ

xPX

CovpZi∆vipxq, Zj∆vjpxqq.

Under conditionally independent randomization, CovpZi∆vipxq, Zj∆vjpxqq “ 0, so
some simple algebra establishes that

∆´2
n

an
n

n
ÿ

i“1

ÿ

xPX

VarpZi∆vipxqq “ (23).

Under stratified block randomization, we also have to show that

an
n

ÿ

i‰j

ÿ

xPX

CovpZi∆vipxq, Zj∆vjpxqq Ñ 0.

This can be proven using the argument in the proof of Lemma A.2 that establishes
(14) “ op1q.

Lemma A.7. Suppose the instrument is generated according to conditionally inde-
pendent randomization. Assume nan Ñ 8 and (1) and (8) hold. Then

?
nanpλ̂n ´

λ˚nq{σλ,n
d
ÝÑ N p0, 1q.

Proof. It suffices to verify assumptions (b), (c), and (d) of Lemma A.5. Assumption
(b) is shown in Lemma A.1. Verification of assumption (c) proceeds along the same
lines as the argument in Lemma A.3 for verifying assumption (c) of Lemma A.1.

Lastly, we verify assumption (d) of Lemma A.5. By (15), it suffices to show that

n
ÿ

i“1

E
“

|Wi|
2`ε

‰

Ñ 0. (24)
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Then, as in (16), the left-hand side of (24) equals

pnanq
´ε{2σ

´1´ε{2
λ,n

ÿ

xPX

«

ˆ

p1´ p˚npxqq
an

p˚npxqp1´ p
˚
npxqq

˙1`ε

`

ˆ

p˚npxq
an

p˚npxqp1´ p
˚
npxqq

˙1`ε
ff

1

n

n
ÿ

i“1

|p˚npxqp1´ p
˚
npxqq∆vipxq|

2`ε, (25)

where ∆vipxq is defined in (22). Note that nan Ñ 8, σ´1´ε{2λ,n “ Op1q by (8), and

max
xPX

an
p˚npxqp1´ p

˚
npxqq

“ 1.

Furthermore,

1

n

n
ÿ

i“1

ÿ

xPX

|p˚npxqp1´ p
˚
npxqq∆vipxq|

2`ε
ď |2λ˚n|

2`ε

`
1

n

n
ÿ

i“1

ÿ

xPX

1tXi “ xu
ˇ

ˇ

`

Y ˚i p1q ´ µ
˚
np1, xq ` Y

˚
i p0q ´ µ

˚
np0, xq

˘
ˇ

ˇ

2`ε
,

which is Op1q by assumption (1) and (2). Hence, (25) Ñ 0, as desired.

Lemma A.8. Suppose the instrument is generated according to stratified block ran-
domization. Assume nan Ñ 8 and (1) and (8) hold. Then

?
nanpλ̂n ´ λ˚nq{σλ,n

d
ÝÑ

N p0, 1q.

Proof. Let tD˚i uni“1 be i.i.d. Bernoulli random variables with success probabil-
ity mx{nx. (Recall p˚npxq “ mx{nx under stratified block randomization.) Define
W ˚
i pxq “ ∆vipxqD

˚
i , where ∆vipxq is defined in (22).

As in the proof of Lemma A.4, we use Corollary 2, Appendix 3 of Lehmann and
D’Abrera (2006) to reduce the problem to showing

řn
i“1

ř

xPXW
˚
i pxq is asymptotically

normal after centering and scaling. To apply the corollary, we need to verify (18).
The argument for this proceeds as in the proof of Lemma A.4.
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It remains to prove a CLT for
řn
i“1

ř

xPX ∆vipxqD
˚
i , i.e. to show that

?
nan

1

n

n
ÿ

i“1

ÿ

xPX

pD˚i ´ p
˚
npxqq∆vipxq{σn

d
ÝÑ N p0, 1q.

It suffices to verify assumptions (b), (c), and (d) of Lemma A.5. The argument for
(d) is identical to the proof of Lemma A.7, while (b) is shown in the proof of Lemma
A.4. Lastly, the argument for verifying assumption (c) is the same as the argument
in Lemma A.4 for verifying assumption (c) of Lemma A.1.

Proof of Theorem 2. This follows from Lemmas A.7 and A.8.

Proof of Proposition 4. First observe that σ̂2
λ,n equals

pγ̂p1q´γ̂p0qq´2
ÿ

xPX

f̂pxq

«

ân
p̂˚npxq

řn
i“1

`

Yi ´ µ̂
˚
np1, xq ´ λ̂npDi ´ γ̂np1, xqq

˘2
Zi1tXi “ xu

řn
i“1 Zi1tXi “ xu

`
ân

1´ p̂˚npxq

řn
i“1

`

Yi ´ µ̂
˚
np0, xq ´ λ̂npDi ´ γ̂np0, xqq

˘2
p1´ Ziq1tXi “ xu

řn
i“1p1´ Ziq1tXi “ xu

ff

(see the proof of Proposition 5). By Theorem 2, |λ̂n ´ λ˚n|
p
ÝÑ 0. Also, the proof of

Lemma A.5 shows pγ̂np1q ´ γ̂np0qq{pγnp1q ´ γnp0qq
p
ÝÑ 1. The remainder of the proof

is similar to the proof of Proposition 1.

Proof of Proposition 5. The estimating equations of this IV regression take the
form of 1

n

řn
i“1Wiεi “ 0, where the instruments Wi consists of 1, Zi, Vij ´ V̄j, j ě 2,

Ziˆ
`

Vij ´ V̄j
˘

, j ě 2, and where εi “ yi´ α̂´Diλ̂n´ η̂
1
`

Vi ´ V̄
˘

´ φ̂1Ziˆ
`

Vi ´ V̄
˘

.
By linearly transforming the normal equations, we can replace the second instrument
Zi by

J
ÿ

j“1

1 pxi “ jq
Zi ´ p̂

˚
n pjq

p̂˚n pjq p1´ p̂
˚
n pjqq

“
Zi ´ p̂

˚
n pXiq

p̂˚n pXiq p1´ p̂˚n pXiqq

and denote the transformed instruments as W̃i. Then the second row of the Jacobian
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matrix of the estimating equations is

1

n

n
ÿ

i“1

W̃i

“

1 Di Vi ´ V̄ Zi ˆ
`

Vi ´ V̄
˘‰

“ r0 t 0 0s

where t “ γ̂n p1q ´ γ̂n p0q. By inspecting the other rows we find that the second row
of the inverse of the Jacobian matrix is also r0 t´1 0 0s. To derive t, note that

γ̂n p1q ´ γ̂n p0q “
ÿ

j

f̂ pjq

„ř

iDiZiVij
ř

i ZiVij
´

ř

iDi p1´ ZiqVij
ř

i p1´ ZiqVij



“
ÿ

j

„ 1
n

ř

iDiZiVij

p̂˚n pjq
´

1
n

ř

iDi p1´ ZiqVij

1´ p̂˚n pjq



“
1

n

ÿ

i

„

DiZi

ř

j Vij

p̂˚n pjq
´Di p1´ Ziq

ř

j Vij

1´ p̂˚n pjq



“
1

n

ÿ

i

„

DiZi
p̂˚n pXiq

´
Di p1´ Ziq

1´ p̂˚n pXiq



“
1

n

ÿ

i

Di pZi ´ p̂
˚
n pXiqq

p̂˚n pXiq p1´ p̂˚n pXiqq

Then we note that by equivalent linear transformation of the moment conditions, the
instruments can also be transformed to

W̄i “ pZiVij, j “ 1, . . . , J, p1´ ZiqVij, j “ 1, . . . , Jq

Next we consider reparameterizing the residual term. Introduce φ1 ” 0 and write

εi “ yi ´ α̂ ´Diλ̂n ´
ř

jě2 η̂
1
j

`

Vij ´ V̄j
˘

´
ř

jě2 φ̂
1
jZi ˆ

`

Vij ´ V̄j
˘

“ yi ´ α̂ ´Diλ̂n ´
ř

jě2 η̂
1
j

`

Vij ´ V̄j
˘

´
ř

jě1 φ̂
1
jZi ˆ

`

Vij ´ V̄j
˘

.

If we fix λ̂n as an arbitrary number and take α̂, ηj, φj, j ě 1 as parameters that are
exactly identified by the moment equations, we can then reparameterize as

εi “ yi ´Diλ̂n ´
ÿ

j

ζj1VijZi ´
ÿ

j

ζj0Vij p1´ Ziq .
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where it can easily be shown that

ζj1 “ µ̂˚n p1, jq ´ λ̂nγ̂n p1, jq , ζj0 “ µ̂˚n p0, jq ´ λ̂nγ̂n p0, jq .

Then the error term can be written as

εi “
ÿ

j

´

yi ´ λ̂nDi ´ ζj1

¯

VijZi `
ÿ

j

´

yi ´ λ̂nDi ´ ζj0

¯

Vij p1´ Ziq .

The nominal Stata robust variance for λ̂n is then given by

pγ̂n p1q ´ γ̂n p0qq
´2

ÿ

i

ˆ

Zi ´ p̂
˚
n pXiq

p̂˚n pXiq p1´ p̂˚n pXiqq

˙2

ε2i

“

J
ÿ

j“1

1

p̂˚n pjq
2

n
ÿ

i“1

VijZi

´

yi ´ λ̂nDi ´ ζj1

¯2

`

J
ÿ

j“1

1

p1´ p̂˚n pjqq
2

n
ÿ

i“1

Vij p1´ Ziq
´

yi ´ λ̂nDi ´ ζj0

¯2

.

where the last equality follows similarly to the end of the proof for Proposition 2.
Finally, σ̂2

λ,n can be rewritten to take exactly the same form.

A.3 Estimator Equivalence

Consider the IV model of section 3. Note that the CI model of section 2 is a special
case, obtained when Dip1q “ 1 and Dip0q “ 0 for all i. We define three common
estimators and show their computational equivalence. The projection estimator is
given by

λ̂n “
1
n

řn
i“1 pµ̂

˚
n p1, Xiq ´ µ̂

˚
n p0, Xiqq

1
n

řn
i“1 pγ̂n p1, Xiq ´ γ̂n p0, Xiqq

.

Note that this is equivalent to the original definition of λ̂n in section 3 by (26) below.
The inverse probability weighting estimator is defined as

λ̂IP “

˜

1

n

n
ÿ

i“1

ˆ

DiZi
p̂n pXiq

´
Di p1´ Ziq

1´ p̂n pXiq

˙

¸´1˜

1

n

n
ÿ

i“1

ˆ

YiZi
p̂n pXiq

´
Yi p1´ Ziq

1´ p̂n pXiq

˙

¸

.
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The doubly robust estimator is given by

λ̂DR “

1
n

řn
i“1

´

ZipYi´µ̂
˚
np1,Xiqq

p̂npXiq
` µ̂˚n p1, Xiq ´

p1´ZiqpYi´µ̂
˚
np0,Xiqq

1´p̂npXiq
´ µ̂˚n p0, Xiq

¯

1
n

řn
i“1

´

ZipDi´γ̂np1,Xiqq

p̂npXiq
` γ̂n p1, Xiq ´

p1´ZiqpDi´γ̂np0,Xiqq

1´p̂npXiq
´ γ̂n p0, Xiq

¯ .

Equivalence of the three estimators is known in the ATE setting. The next propo-
sition establishes the result in the more general LATE setting.

Proposition 6. If tx : fpxq ą 0u has finite cardinality, then λ̂n “ λ̂IP “ λ̂DR.

Proof. First note that

1

n

n
ÿ

i“1

µ̂˚n pz,Xiq “
ÿ

xPX

f̂pxq

řn
i“1 YiZ

z
i p1´ Ziq

1´z1 tXi “ xu
řn
i“1 Z

z
i p1´ Ziq

1´z1 tXi “ xu
, (26)

1

n

n
ÿ

i“1

γ̂n pz,Xiq “
1

n

n
ÿ

i“1

DiZ
z
i p1´ Ziq

1´z

p̂˚n pXiq
.

Then λ̂IP “ λ̂n follows from the fact that

1

n

n
ÿ

i“1

YiZ
z
i p1´ Ziq

1´z

p̂n pXiq
“

1

n

n
ÿ

i“1

1 tXi “ xu
YiZ

z
i p1´ Ziq

1´z

p̂˚npxq

“
ÿ

xPX

f̂pxq

řn
i“1 YiZ

z
i p1´ Ziq

1´z1 tXi “ xu
řn
i“1 Zi1 tXi “ xu

.
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To complete the proof, we show that λ̂DR “ λ̂n. First observe that

1

n

n
ÿ

i“1

ˆ

Zi pYi ´ µ̂
˚
n p1, Xiqq

p̂n pXiq
` µ̂˚n p1, Xiq

˙

“
1

n

n
ÿ

i“1

ZiYi
p̂n pXiq

`
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq ´
1

n

n
ÿ

i“1

Zi
µ̂˚n p1, Xiq

p̂n pXiq

“ 2
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq ´
1

n

n
ÿ

i“1

Zi
µ̂˚n p1, Xiq

p̂n pXiq

“ 2
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq ´
1

n

n
ÿ

i“1

ÿ

xPX

1 tXi “ xuZi
µ̂˚n p1, xq

p̂n pxq

“ 2
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq ´
ÿ

xPX

µ̂˚n p1, xq

p̂n pxq

1
n

řn
i“1 Zi1 tXi “ xu

1
n

řn
i“1 1 tXi “ xu

1

n

n
ÿ

i“1

1 tXi “ xu

“ 2
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq ´
ÿ

xPX

µ̂˚n p1, xq f̂pxq

“
1

n

n
ÿ

i“1

µ̂˚n p1, Xiq .

By a similar argument,

1

n

n
ÿ

i“1

ˆ

p1´ Ziq pYi ´ µ̂
˚
n p0, Xiqq

1´ p̂n pXiq
´ µ̂˚n p0, Xiq

˙

“
1

n

n
ÿ

i“1

γ̂n p0, Xiq .

Hence, λ̂DR “ λ̂n, as desired.

A.4 Superpopulation Model

We show that σ̂2
λ,n is consistent for the asymptotic variance of λ̂n under the super-

population IV model where tpYip1q, Yip0q, Dip1q, Dip0q, Xiqu
n
i“1 is i.i.d., the probability

mass function of X1 is fpxq, and the following identification conditions hold:

• (Exclusion) pY1p0q, Y1p1q, D1pzqq KK Z1 |X1.

• (Monotonicity) PpD1p0q ą D1p1qq “ 0.

• (Compliers) PpD1p1q ą D1p0qq ą 0.

38

 Electronic copy available at: https://ssrn.com/abstract=3128546 



Treatment Effects Under Limited Overlap

Note that this nests the CI model, which is obtained by setting Dip1q “ 1´Dip0q “ 1

for all i. We will also need the following definitions:

• µ˚pz, xq “ ErY ˚1 pzq |X1 “ xs, µ˚pzq “
ř

xPX fpxqµ
˚pz, xq,

• γpz, xq “ ErD1pzq |X1 “ xs, γpzq “
ř

xPX fpxqγpz, xq,

• λxn “ (9),

• Ỹ ˚i pz, xq “ Yipzq ´ µ
˚pz, xq, and D̃ipz, xq “ Dipzq ´ γpz, xq.

• vµ,ipxq “
´

Y ˚i p1q´µ
˚p1,xq

p˚npxq
`

Y ˚i p0q´µ
˚p0,xq

1´p˚npxq

¯

1tXi “ xu

• vγ,ipxq “
´

Dip1q´γp1,xq

p˚npxq
`

Dip0q´γp0,xq

1´p˚npxq

¯

1tXi “ xu

By an argument similar to (21),

?
nanpλ̂n ´ λ

x
nq “

1

γ̂p1q ´ γ̂p0q

ÿ

xPX

c

an
n

n
ÿ

i“1

κipxq ` opp1q,

where

κipxq “
´

Ỹ ˚i p1, xq ´ Ỹ
˚
i p0, xq

¯

1tXi “ xu

´ λxn

´

D̃ip1, xq ´ D̃ip0, xq
¯

1tXi “ xu

` pZi ´ p
˚
npxqqpvµ,ipxq ´ λ

x
nvγ,ipxqq.

By the law of large numbers, γ̂p1q ´ γ̂p0q p
ÝÑ γp1q ´ γp0q. Also,

Var

˜

ÿ

xPX

c

an
n

n
ÿ

i“1

κipxq

¸

“
an
n

n
ÿ

i“1

n
ÿ

j“1

ÿ

xPX

Covpκipxq, κjpxqq.

In the case of conditionally independent randomization, the covariance is zero when
i ‰ j and otherwise equals

fpxq

„

1

p˚npxq
VarpY1p1q |X1 “ xq `

1

1´ p˚npxq
VarpY1p0q |X1 “ xq



. (27)
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Under stratified block randomization, one can show, using the argument for (14), that

an
n

n
ÿ

i“1

ÿ

j‰i

ÿ

xPX

Covpκipxq, κjpxqq “ op1q.

Thus, the asymptotic variance is

σ2
λ,n “

ÿ

xPX

fpxq

„

an
p˚npxq

Var pY ˚1 p1q ´ µp1, xq ´ λ
x
npD1p1q ´ γp1, xqq |X1 “ xq

`
an

1´ p˚npxq
Var pY ˚1 p0q ´ µp0, xq ´ λ

x
npD1p0q ´ γp0, xqq |X1 “ xq



`

γp1q ´ γp0q
˘´2

,

which for the CI model reduces to

σ2
n “

ÿ

xPX

fpxq

„

an
p˚npxq

VarpY1p1q |X1 “ xq `
an

1´ p˚npxq
VarpY1p0q |X1 “ xq



.

Since f̂pxq{fpxq p
ÝÑ 1 by the law of large numbers and p̂˚npxq{p

˚
npxq

p
ÝÑ 1 by

arguments in Lemmas A.3 and A.4, by simple mean-variance calculations, we obtain
σ̂2
λ,n{σ

2
λ,n

p
ÝÑ 1 provided (8), the identification conditions, and the following analog

of (5) holds:
max
dPt0,1u

E
“

Yipdq
4
‰

ă 8.
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