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Abstract. We investigate estimation and inference of the (local) average treatment effect
parameter when a binary instrumental variable is generated by a randomized or conditionally
randomized experiment. Under i.i.d. sampling, we show that adding covariates and their
interactions with the instrument will weakly improve estimation precision of the (local)
average treatment effect, but the robust OLS (2SLS) standard errors will no longer be valid.
We provide an analytic correction that is easy to implement and demonstrate through monte
carlo simulations and an empirical application the interacted estimator’s efficiency gains
over the unadjusted estimator and the uninteracted covariate adjusted estimator. We also
generalize our results to covariate adaptive randomization where the treatment assignment
is not i.i.d., thus extending the recent contributions of Bugni et al. (2017a) and Bugni et al.
(2017b) to allow for the case of non-compliance. 1

1 Introduction

With the advent of the internet and large online datasets, randomized and conditio-
nally randomized experiments are becoming increasingly common. Despite the vast
literature on treatment effect analysis under conditional independence and monotoni-
city assumptions, the surge of recent interest in these experiments (for example, Lin
(2013); Freedman (2008);Bugni et al. (2017a);Bugni et al. (2017b)) suggests a need to
clarify the relationship to the previous literature and for understanding new results
that are relevant in these settings.

This paper contributes to the vast literature on treatment effect analysis (Rosenbaum
and Rubin (1983), Imbens and Angrist (1994), among others) by examining the role

1 This paper was inspired by a discussion with Patrick Kline, who also provided key
references. We thank Joe Romano for very helpful discussions, and particular the editors and
referee for insightful comments and constructive suggestions. This research was supported
by a Faculty Research Grant awarded by the Committee on Research from the University
of California, Santa Cruz, the National Science Foundation (SES 1658950), and SIEPR.
Correspondence can be sent to jeqli@ucsc.edu.
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that covariates play in improving the efficiency of treatment effect estimates. Under
the conventional assumption of independent and identically-distributed (i.i.d.) samp-
ling from an infinite population, we provide an extensive analysis of the efficiency gains
from including covariates interacted with the binary instrument Z for the treatment.
The efficiency analysis applies under both full compliance and partial compliance.
The full compliance case, where the treatment indicator D coincides with the binary
instrument of treatment eligibility Z, is governed by a model of conditional indepen-
dence (unconfoundedness) in Rosenbaum and Rubin (1983). The partial compliance
case, where D may not be equal to Z, is governed by the local average treatment ef-
fect (LATE) model of Imbens and Angrist (1994). Because the LATE model is more
general, most of the results in this paper are presented under the partial complian-
ce LATE model. Results for the full compliance model under unconfoundedness are
special cases of the LATE model when D = Z.

Under the i.i.d. sampling framework, we find that including additional covariates X
and their interactions with Z in a 2SLS regression of the outcome Y on the treatment
indicator D will weakly improve efficiency of the estimator for the LATE parameter.
Including the covariates X only, without interacting with the instrument Z, might
improve or reduce efficiency. The intuition for the efficiency gains from including the
interaction term comes from examining its relationship with the sieve estimator for
ATE as discussed in Chen, Hong and Tarozzi (CHT 2008) and for LATE as discussed
in Frolich (2006). If X were replaced with a sieve expansion then the interacted
estimator coincides with the sieve estimator.

We also extend our efficiency comparisons to covariate adaptive randomization sche-
mes. Following Bugni et al. (2017a) (BCS 2017a) and Bugni et al. (2017b) (BCS
2017b), we admit strata-level differences in the randomization scheme, perform effi-
ciency comparisons, and extend their results to allow for noncompliance. In general,
the interacted estimator is more efficient than the unadjusted and uninteracted esti-
mators, except when the sampling scheme exhibits strong balance, such as in stratified
block randomization, in which case the interacted estimator is equally efficient as the
uninteracted covariate adjusted estimator.

In addition to providing monte carlo simulations comparing the standard errors of
the various estimators, we also include an empirical application. The data come from
GoDaddy, a domain name registrar responsible for managing sales of internet domain
names through a variety of formats such as auctions and direct negotiation between
buyers and sellers. We observe a sample of auctions which underwent a simple ran-
domized experiment in which some auctions were assigned a valuation determined by
a machine learning algorithm for the domain name that is being sold. The question
is whether the act of seeing the valuation for the domain name would induce bidders
to submit higher bids and thereby raise the sale price. We find that there is indeed a
positive effect of seeing the valuation on the sale price, and we show how the standard
error of the average treatment effect can decrease by including covariates interacted
with the treatment.

In section 2, we present the model, the estimators, efficiency comparisons, and consi-
stent inference under the assumption of i.i.d. sampling. In section 3, we discuss semi-
parametric efficiency and semiparametric estimation methods. Section 4 generalizes
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our results to covariate adaptive randomization. We provide monte carlo simulations
in section 5 and the empirical application in section 6. Section 7 concludes.

2 Theoretical Model and Parametric Efficiency

Consider the causal LATE model of Imbens and Angrist (1994), and its special ca-
se the conditional independence (CI) model of Rosenbaum and Rubin (1983). The
counterfactual outcomes are denoted Y1, Y0, and let Z ∈ {0, 1} be the dummy instru-
mental variable indicating the eligibility for treatment. D1 and D0 are the counterfac-
tual treatment statuses corresponding to Z = 1 and Z = 0 respectively. The sample
contains Y,D,Z, and possibly additional covariates X, such that

D =D1Z +D0 (1− Z)

Y =Y1D + Y0 (1−D) = Y ∗1 Z + Y ∗0 (1− Z)

where Y ∗1 = Y1D1 + Y0 (1−D1) and Y ∗0 = Y1D0 + Y0 (1−D0). We begin with the
usual i.i.d sampling with replacement framework:

Assumption 1 (i.i.d sampling) Y1i, Y0i, D1i, D0i, Xi, Zi are drawn i.i.d from an
underlying population.

Both the CI and LATE models are assumed to satisfy two assumptions. First, the
instrumental variable is independent of the potential outcomes, counterfactual treat-
ment statuses, and covariates. Second, the counterfactual treatment status correspon-
ding to Z = 1 is weakly greater than the counterfactual treatment status correspon-
ding to Z = 0 with probability 1 and strictly greater with positive probability.

Assumption 2 (CI.1, LATE.1, Independence) Y1, Y0, D1, D0, X ⊥ Z.

Assumption 3 (CI.2, LATE.2, Monotonicity) P (D1 ≥ D0) = 1, and P (D1 > D0) >
0.

The CI model additionally satisfies

Assumption 4 (CI.3, Full compliance) D1 = 1 and D0 = 0, or D = Z.

The CI Model often is stated without reference to Z since D = Z.

Assumption 5 (CI.1-3) Y1, Y0, X ⊥ D.

The population LATE parameter of interest is given by Imbens and Angrist (1994):

β0 =E (Y1 − Y0|D1 > D0) = Cov(Y,Z)/Cov(D,Z) =
(E (Y |Z = 1)− E (Y |Z = 0))

(E (D|Z = 1)− E (D|Z = 0))
(1)

which becomes the average treatment effect (ATE) parameter under CI:

β0 = E (Y1 − Y0) = (E (Y |Z = 1)− E (Y |Z = 0)) .
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Let β̂1 be the coefficient on D when running 2SLS of Y on D instrumented by Z:

β̂1 =

n∑
i=1

Yi
(
Zi − Z̄

)
/

n∑
i=1

Di

(
Zi − Z̄

)
This corresponds to the following Stata command:

ivreg Y (D=Z)

When Z = D, β̂1 becomes the coefficient on D in an OLS regression of Y on D:

reg Y D

In both the CI and the LATE models, it is well known that β̂1 is consistent for
β0 and the nominal (robust) OLS and 2SLS standard errors consistently estimate
the asymptotic variance for

√
n
(
β̂1 − β0

)
. Next, consider applying OLS or 2SLS to

regress Yi on Di and Xi, where D is instrumented by Z. Let β̂2 be the coefficient on
Di in

ivreg Y (D=Z) X or reg Y D X

It can be shown that β̂2 is consistent for β0 under both CI and LATE, but β̂2 can be
either more or less efficient than β̂1. The nominal (robust) OLS and 2SLS standard
errors remain valid for β̂2.

Finally, consider using OLS or 2SLS to regress Yi on Di and Xi, and the interaction
between Xi − X̄ and Zi. Let β̂3 be the coefficient on D in

ivreg Y (D=Z) X Z*(X-X̄) or reg Y D X D*(X-X̄)

It can be shown that β̂3 is consistent for β0 under both CI and LATE, and β̂3 is
always no less efficient than β̂1 and β̂2.

Under i.i.d. sampling, the efficiency comparison holds under both the correlation
model and the causal model.

Assumption 6 (correlation model) Y and X have finite δ > 4 moments, and
X ⊥ Z.

Theorem 1 Under Assumptions 1 and 6, for j = 1, 2, 3,
√
n
(
β̂j − β0

)
d−→ N

(
0, σ2

j

)
, where σ3 ≤ σk for k = 1, 2.

Assumption 7 (causal model) Y1i, Y0i and Xi have finite 4 + δ moments.

Corollary 1 Theorem 1 holds under Assumptions 1, 2, 3, and 7.

These results include the model in Lin (2013) as a special case when Zi = Di, but
differ in that we are concerned about superpopulation asymptotics while Lin (2013) is
not concerned about the variation in Xi. Adding covariates or functions of covariates
into the interaction estimator β̂3 will also further improve efficiency. Let β̂4 be defined
as β̂3 except that we replace X with a subset of it denoted Xs:
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ivreg Y (D=Z) Xs Z*(Xs-X̄s) or reg Y D Xs D*(Xs-X̄s)

Corollary 2 Under the conditions of either Theorem 1 or Corollary 1,
√
n
(
β̂4 − β0

)
d−→ N

(
0, σ2

4

)
, where σ4 ≥ σ3.

For β̂1 and β̂2, nominal robust 2SLS standard errors (when D 6= Z, and robust
OLS standard errors when Z = D) reported by Stata are asymptotically valid. In
contrast, robust 2SLS standard errors for β̂3 underestimate its asymptotic variance.
In particular, nominal robust standard errors for β̂k, k = 1, 2, 3, denoted σ̂2

k, are given
by the (2, 2) element of Â−1B̂Â−1, where

Â =
1

n

n∑
i=1

W̄ikV̄ik B̂ =
1

n

n∑
i=1

ε̂2ikW̄ikW̄
′
ik. (2)

In the above, W̄i1 = (1 Zi)
′, V̄i1 = (1 Di), W̄i2 = (1 Zi Xi), V̄i2 = (1 Di Xi),

W̄i3 =
(
1 Zi Xi Zi

(
Xi − X̄

))
, V̄i3 =

(
1 Di Xi Zi

(
Xi − X̄

))
, and ε̂ik is the regression

residual corresponding to β̂k. Furthermore, define

ε̄i3 = (Zi − p̂z) ε̂i3 + p̂z (1− p̂z) φ̂
(
Xi − X̄

)
. (3)

where φ̂ are the coefficients on Zi
(
Xi − X̄

)
and p̂z = Z̄. For ĈovZ,D = 1

n

∑n
i=1 ZiDi−

Z̄D̄,

σ̄2
3 = Ĉov

−2
Z,D

1

n

n∑
i=1

ε̄2i3 (4)

Corollary 3 Under the conditions of either Theorem 1 or Corollary 1, σ̂2
k

p−→ σ2
k

for k = 1, 2, and plim σ̂2
3 ≤ σ2

3. But σ̄2
3

p−→ σ2
3.

It is possible to give a GMM interpretation to the interactive estimator β̂3. By in-
dependence between Z and X, the moment conditions Eφi (α0, β0, µ0x) = 0 hold,
where

φi (α, β, µx) =

(
Zi

1− Zi

)
⊗
(
yi − α− βDi

Xi − µx

)
Let V̂ar (φi (·)) = Var (φi (α0, β0, µ0x))+oP (1) and φ̂ (α, β, µx) = 1

n

∑n
i=1 φi (α, β, µx).

It can then be shown that the GMM estimator, defined through(
α̂, β̂GMM , µ̂x

)
= arg min

α,β,µx

φ̂ (α, β, µx)
′ V̂ar (φi (α, β, µx))

−1
φ̂ (α, β, µx) (5)

coincides asymptotically with the interactive IV estimator β̂3.

Proposition 1 β̂GMM = β̂3 + oP

(
1√
n

)
.
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3 Semiparametric Estimation and Efficiency

The asymptotic variance of the interactive estimator β̂3 decreases when more regres-
sors are added. If we replace Xi by its sieve expansion, denoted Vi = V (Xi), where
dim (Vi)→∞ as n→∞ at a suitable rate, then our interactive estimator is exactly
the sieve ATE estimate in Chen, Hong and Tarozzi (CHT 2008) when D = Z, and
is a sieve version of the average LATE estimator of Frolich (2006) when D 6= Z. We
denote by β̂∞ our interactive estimator using Vi = V (Xi) in place of Xi.

We show this equivalence first for D = Z. The CHT 2008 ATE estimator uses two
linear regressions:

(1−Di)Yi = (1−Di)
[
γ̂0 + ϑ̂0Vi + e0i

]
DiYi =Di

[
γ̂1 + ϑ̂1Vi + e1i

]
and is based on the following relations:

Ê (Y0|X = x) =γ̂0 + ϑ̂0V (x) Ê (Y1|X = x) = γ̂1 + ϑ̂1V (x)

ÂTE =
1

n

n∑
i=1

(
Ê (Y1|X = Xi)− Ê (Y0|X = Xi)

)
=

1

n

n∑
i=1

(
γ̂1 + ϑ̂1Vi − γ̂0 − ϑ̂0Vi

)
= γ̂1 + ϑ̂1V̄ − γ̂0 − ϑ̂0V̄ .

Our interactive regression can be rewritten as

Yi = α̂+ β̂∞Di + η̂Vi + φ̂Di

(
Vi − V̄

)
= α̂+ η̂Vi +Di

(
β̂∞ − φ̂V̄ + φ̂Vi

)
.

The following equalities hold between the two different parameterizations:

γ̂0 = α̂, ϑ̂0 = η̂, γ̂1 = α̂+ β̂∞ − φ̂V̄ , ϑ̂1 = η̂ + φ̂.

Therefore the following equivalence relation holds:

ÂTE = γ̂1 + ϑ̂1V̄ − γ̂0 − ϑ̂0V̄ = α̂+ β̂∞ − φ̂V̄ +
(
η̂ + φ̂

)
V̄ − α̂− η̂V̄ = β̂∞. (6)

In the special case when Vi are cluster dummy variables, equation (6) is identical to
a fully saturated regression of the outcome on the treatment and cluster dummies
with full interactions and computes the cluster-weighted average of the cluster-level
estimates. More precisely, let Vi (s) = 1 (Xi ∈ s) for all clusters s = 1, . . . , S and let
V̄ (s) = 1

n

∑n
i=1 1 (Xi ∈ s). Then equation (6) becomes

γ̂1 +

S∑
s=2

ϑ̂1sV̄ (s)−

(
γ̂0 +

S∑
s=2

ϑ̂0sV̄ (s)

)
(7)

Let ξ̂11 = γ̂1, ξ̂01 = γ̂0, ξ̂1s = γ̂1 + ϑ̂1s, and ξ̂0s = γ̂0 + ϑ̂0s for s = 2, . . . , S. Then

(7) =

S∑
s=1

(
ξ̂1s − ξ̂0s

) ∑n
i=1 1 (Xi ∈ s)

n
. (8)
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But ξ̂1s− ξ̂0s is exactly the difference in the cluster s levels in Yi for Di = 1 and Di =
0. This estimator achieves the semiparametric efficiency bound when only cluster
indicators are observable, but is not fully efficient when the covariates Xi are also
observable.

We now consider the LATE model when D 6= Z, and show that the interactive IV
estimator β̂∞ is a sieve implementation of the semiparametrically efficient average
LATE estimator in Frolich (2006), which takes the form of

̂AvgLATE =

1
n

∑n
i=1

(
Ê (Y |Z = 1, X = Xi)− Ê (Y |Z = 0, X = Xi)

)
1
n

∑n
i=1

(
Ê (D|Z = 1, X = Xi)− Ê (D|Z = 0, X = Xi)

) .
A sieve implementation of this estimator is based on the following relations:

Ê (Y |Z = 0, X = x) =γ̂0 + ϑ̂0V (x) , Ê (Y |Z = 1, X = x) = γ̂1 + ϑ̂1V (x)

Ê (D|Z = 0, X = x) =τ̂0 + ζ̂0V (x) , Ê (D|Z = 1, X = x) = τ̂1 + ζ̂1V (x) ,

and uses the following four linear regressions:

(1− Zi)Yi = (1− Zi)
[
γ̂0 + ϑ̂0Vi + e0i

]
, ZiYi = Zi

[
γ̂1 + ϑ̂1Vi + e1i

]
(1− Zi)Di = (1− Zi)

[
τ̂0 + ζ̂0Vi + e0i

]
, ZiDi = Zi

[
τ̂1 + ζ̂1Vi + e1i

]
.

(9)

We can then write

̂AvgLATE =
γ̂1 − γ̂0 +

(
ϑ̂1 − ϑ̂0

)′
V̄

τ̂1 − τ̂0 +
(
ζ̂1 − ζ̂0

)′
V̄
. (10)

Proposition 2 ̂AvgLATE = β̂∞ for the interactive instrumental variable estimator
β̂∞.

When Vi are cluster indicators, the LATE analog of (8) becomes

β̂∞ =

∑S
s=1

(
ξ̂1s − ξ̂0s

) ∑n
i=1 1(Xi∈s)

n∑S
s=1

(
ζ̂1s − ζ̂0s

) ∑n
i=1 1(Xi∈s)

n

, (11)

where ξ̂1s − ξ̂0s is exactly the difference in the cluster s levels in Yi between Zi = 1
and Zi = 0, and ζ̂1s− ζ̂0s is the difference in the cluster s levels in Di between Zi = 1
and Zi = 0. This estimator achieves the semiparametric efficiency bound when only
cluster indicators are observable, but is not fully efficient when the covariates Xi

are also observable. Under CI where D = Z, semiparametric efficiency bounds are
calculated in, among others, Hahn (1998) and Chen et al. (2008). In the more general
LATE case when D 6= Z, the LATE efficiency bound is calculated in Frolich (2006)
as well as Hong and Nekipelov (2010) (Lemma 1 and Theorem 4). These results from
the previous literature confirm the following efficiency comparison:
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Proposition 3
√
n
(
β̂∞ − β0

)
d−→ N

(
0, σ2
∞
)
, where σ2

∞ ≤ σ2
3.

Under suitable regularity conditions, a consistent estimate of σ2
∞ can be obtained by

an analog of (3) and (4) when Xi and X̄ are replaced by sieve expansions Vi and V̄ :

ε̄i∞ = (Zi − p̂z) ε̂i∞ + p̂z (1− p̂z) φ̂′
(
Vi − V̄

)
.

where φ̂ are the coefficients on Zi
(
Vi − V̄

)
and p̂z = Z̄. For ĈovZ,D = 1

n

∑
ZiDi −

Z̄D̄, a consistent estimate of σ2
∞ is given by

σ̄2
∞ = Ĉov

−2
Z,D

1

n

n∑
i=1

ε̄2i∞

4 Covariate Adaptive Randomization

We now move beyond the i.i.d. sampling framework and consider the covariate adap-
tive randomization scheme discussed in Bugni et al. (2017a) and Bugni et al. (2017a)
(BCS 2017a, BCS 2017b) where units are first assigned to a finite number of strata
using baseline covariates and then are assigned treatment status using the instrument.
Unlike BCS 2017b, we do not allow for multiple treatments, so we will describe how
our notation differs from BCS 2017a.

1. Our treatment variables are D1 and D0 corresponding to Z = 1 and Z = 0
respectively while BCS 2017a use A to denote the treatment in the case where
D = Z.

2. Our baseline covariates which determine stratum membership are denoted by X
while BCS 2017a use Z.

3. Our target proportion of units assigned to treatment in each stratum is denoted
by pz while BCS 2017a use π.

We also note that our notation will differ from chapter 9 of Imbens and Rubin (2015)
in the following ways:

1. Our treatment variables are D1 and D0 while Imbens and Rubin (2015) assume
D = Z and use W to denote the treatment.

2. We follow BCS 2017a and use Si ∈ {1, 2, ..., S} to denote the stratum of unit i
while Imbens and Rubin (2015) define a variable Bi(j) which is an indicator for
unit i belonging in stratum j for j ∈ {1, ..., J}.

3. We use pz (s) to denote the proportion of treated units in stratum s while Imbens
and Rubin (2015) use e (j).

With more than one stratum, BCS 2017b have already shown that interacting the
instrument with strata indicators improves efficiency, and they allow for different
conditional targeted randomization probabilities across strata. Our contribution is
twofold. First we extend BCS 2017a and BCS 2017b to allow for non-compliance
by operating under the LATE framework and IV regression. Second we show how
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additional covariates beyond strata indicators further enhance efficiency and derive
an efficient semiparametric sieve based estimator. Results in the previous sections
correspond to the single stratum case and coincide in the special case of D = Z with
simple OLS and adjusted but non-interacted OLS.

Similar to BCS 2017a, consider a sampling scheme where (Y1i, Y0i, D1i, D0i, Xi) are
drawn i.i.d from a superpopulation and are first assigned to a finite set of clusters
using a function S : supp(Xi)→ S based on the value of Xi before treatment status
is assigned using Zi. As in BCS 2017a, let Si = S (Xi), S(n) = (S1, . . . , Sn), Z(n) =
(Z1, . . . , Zn), p (s) = P (Si = s), and define a measure of imbalance in stratum s
relative to the target proportion pz as

Zn (s) =
1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) .

Assumption 8 1. Z(n) ⊥ (Y1i, Y0i, D1i, D0i, Xi, i = 1, . . . , n) |S(n).
2. P

(
Zi = 1|S(n)

)
= pz +Oa.s.

(
1
n

)
for all 1 ≤ i ≤ n.

3. {Zn (s)s∈S |S(n)} d−→ N (0, ΣZ), where ΣZ = diag{σ2
Z (s) : s ∈ S} and

σ2
Z (s) = p (s) τ (s) and 0 ≤ τ (s) ≤ pz (1− pz) ,∀s ∈ S.

τ (s) is a strata-specific scalar that equals 0 for all s ∈ S in the case of strong
balance. An example of a sampling scheme that achieves strong balance is stratified
block randomization (see example 3.4 of BCS 2017a). Assumption 8 is modeled after
Assumption 2.2 in BCS 2017a but is different. It allows for non-compliance in the
sense that D 6= Z.

Consider first the simple IV estimator β̂1 with instrument Z and regressor D. Define
for t1i = Y ∗1i − β0D1i and t0i = Y ∗0i − β0D0i,

ωi =

[
t1i − Et1i

pz
+
t0i − Et0i

1− pz

]
and ω (s) = E [ωi|Xi ∈ s] .

Proposition 4 Under Assumption 8,
√
n
(
β̂1 − β0

)
d−→ N

(
0, σ2

1fs1 + σ2
1fs2 + σ2

∞

)
,

where

σ2
1fs1 =

pz (1− pz)
P (D1 > D0)

2

S∑
s=1

p (s)V ar (ωi|s) , σ2
1fs2 =

∑S
s=1 ω (s)

2
p (s) τ (s)

P (D1 > D0)
2 , σ2

∞ =
V ar [t1i − t0i]
P (D1 > D0)

2 .

Furthermore, plim σ̂2
1 ≥ σ2

1fs+σ
2
∞ where the inequality is strict when τ (s) < pz (1− pz).

Therefore, 2SLS nominal standard errors are in general conservatively valid and only
asymptotically accurate when τ (s) = pz (1− pz). We note that Proposition 4 has
already been shown in Theorem 4.1 of BCS 2017a when D = Z. Our contribution is
to extend their results to the case of D 6= Z.

Next consider the adjusted regression β̂2, where Xi is replaced by cluster dummies

Vi = {1 (Xi ∈ s) , s ∈ S}.
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Proposition 5 Under Assumption 8,
√
n
(
β̂2 − β0

)
d−→ N

(
0, σ2

2fs1 + σ2
2fs2 + σ2

∞

)
,

where σ2
2fs1 = σ2

1fs1, and

σ2
2fs2 = P (D1 > D0)

−2
S∑
s=1

p (s) τ (s)

(
1− 2pz

pz (1− pz)
(t1 (s)− t0 (s))

)2

.

where t1 (s) = E (t1i|Xi ∈ s) and t0 (s) = E (t0i|Xi ∈ s). Furthermore, plim σ̂2
2 =

σ2
2fs1 + σ̄2

2fs2 + σ2
∞, where σ̄2

2fs2 ≥ σ2
2fs2,

σ̄2
2fs2 = P (D1 > D0)

−2
S∑
s=1

p (s)
1

pz (1− pz)
((1− 2pz) (t1 (s)− t0 (s)))

2
.

Consequently, nominal 2SLS standard errors are generally conservative and only
asymptotically valid when either τ (s) ≡ pz (1− pz) or pz = 1

2 . We emphasize that
the case of D = Z has already been shown in BCS 2017a. Our contribution is only
to allow for noncompliance with D 6= Z.

Proposition 6 Under Assumption 8,
√
n
(
β̂3 − β0

)
d−→ N

(
0, σ2

3fs + σ2
∞

)
, where

σ2
3fs = σ2

2fs1.Furthermore, plim σ̂2
3 ∈

[
σ2
3fs, σ

2
3fs + σ2

∞

]
.

The asymptotic variance of β̂3 is smaller than the variances of β̂1 and β̂2 by the
amount σ2

1fs2 and σ2
2fs2, respectively, except in the cases of pz = 1/2 or τ (s) = 0, in

which case the asymptotic variances of β̂3 and β̂2 are the same. As before the case of
D = Z in Proposition 6 follows from results that have already been shown in BCS
2017b. Our contribution is to allow for noncompliance.

In addition, even if the targeted randomization probability is specific to each cluster,
namely pz (s) can differ across clusters, if we replace Assumption 8.2 by

P
(
Zi = 1|S(n), Xi ∈ s

)
= pz (s) +Oa.s.

(
1

n

)
and τ (s) ≤ pz (s) (1− pz (s)) ,

β̂3 continues to be consistent and Proposition 6 continues to hold with

σ2
3fs = P (D1 > D0)

−2∑
s∈S

p (s) pz (s) (1− pz (s))V ar (ωi|s) .

When pz (s) ≡ pz, nominal 2SLS robust standard errors overestimate σ2
3fs but unde-

restimate σ2
3fs + σ2

∞. A consistent estimate for σ2
3fs + σ2

∞ can be obtained by

Ĉov
−2
Z,D

1

n

n∑
i=1

(
(Zi − p̂z) ε̂i∞ + p̂z (1− p̂z) φ̂′

(
Vi − V̄

))2
where φ̂ are the coefficients on Zi

(
Vi − V̄

)
, p̂z = Z̄, and ĈovZ,D = 1

n

∑
ZiDi − Z̄D̄.

Additional covariates Xi can be utilized to improve efficiency beyond the cluster
indicators. Asymptotic efficiency is obviously maximized by the semiparametric esti-
mators in section 3, e.g. Chen et al. (2008) and Frolich (2006), where both the cluster
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dummies and sieve transformations of increasing dimensions of Xi and their interac-
tions are included in Vi when defining the sieve 2SLS estimator β̂∞. Here we investi-
gate the efficiency improvement from interacting the finite dimensional functions of
Xi (which we denote for convenience as Xi) with Zi and the cluster dummies. We
can equivalently rewrite this estimator as

β̂S =

∑
s∈S p̂ (s)

(
γ̂1s − γ̂0s +

(
ϑ̂1s − ϑ̂0s

)′
X̄s

)
∑
s∈S p̂ (s)

(
τ̂1s − τ̂0s +

(
ζ̂1s − ζ̂0s

)′
X̄s

)
where p̂ (s) = 1

n

∑n
i=1 1 (Xi ∈ s), X̄s = 1

n

∑n
i=1 1 (Xi ∈ s)Xi/p̂ (s), and the coeffi-

cients are obtained using four sets of cluster-specific regressions using only the s
cluster:

(1− Zi)Yi = (1− Zi)
[
γ̂0s + ϑ̂0sXi + e0i

]
, ZiYi = Zi

[
γ̂1s + ϑ̂1sXi + e1i

]
(1− Zi)Di = (1− Zi)

[
τ̂0s + ζ̂0sXi + e0i

]
, ZiDi = Zi

[
τ̂1s + ζ̂1sXi + e1i

]
.

(12)

Proposition 7 For σ2
Sfs < σ2

3fs,
√
n
(
β̂S − β0

)
d−→ N

(
0, σ2

Sfs + σ2
∞

)
,

In the special case of D = Z, ξ̂1s = 1, ξ̂0s = 0, ζ̂1s = ζ̂0s = 0. Therefore,

β̂S =
∑
s∈S

p̂ (s)

(
γ̂1s − γ̂0s +

(
ϑ̂1s − ϑ̂0s

)′
X̄s

)

A consistent estimate of σ2
Sfs+σ2

∞ can again be obtained using an analytical expres-
sion.

5 Monte Carlo Simulations

The purpose of these simulations is to perform efficiency comparisons for the three
different estimators in both the CI and LATE models, with and without covariate
adaptive randomization.

The data generating process for the CI model is as follows:

Yi = β0 + β1Di + β2DiX
2
i + β3Xi + εi, εi ∼ N (0, 1) , εi ⊥ Di

where β0 = 1, β1 = 0.5, and β2 = β3 = −1. The single covariate is generated as
Xi ∼ N (µx = 10, σx = 5) , Xi ⊥ Di, εi.

Without covariate adaptive randomization, the treatment Di is generated as Di ∼
Bern (0.5).

With covariate adaptive randomization, there are two strata Si = 1 (Xi > µx). Un-
der block randomization, pz# {Si = 0} elements are assigned to treatment in strata
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0 and pz# {Si = 1} elements are assigned to treatment in strata 1. Under simple
randomization, Di|Si = s ∼ Binomial (# {Si = s} , pz) for s = 0, 1.

For the LATE model, the data generating process is

Di = γ0 + γ1Zi + νi > 0

Yi = β0 + β1Di + β2DiX
2
i + β3Xi + εi(

νi
εi

)
∼ N

((
0
0

)
,

(
2 0.5

0.5 2

))
where γ0 = 1, γ = 10, β0 = 1, β1 = 0.5, and β2 = β3 = −1.

Without covariate adaptive randomization, the instrument Zi is generated as Zi ∼
Bern (0.5). With covariate adaptive randomization, there are two strata Si = 1 (Xi > µx).
Under block randomization, pz# {Si = 0} elements are assigned to treatment in stra-
ta 0 and pz# {Si = 1} elements are assigned to treatment in strata 1. Under simple
randomization, Zi|Si = s ∼ Binomial (# {Si = s} , pz) for s = 0, 1.

We consider the simple (L)ATE estimator without covariates, the (L)ATE estimator
with the covariate, and the (L)ATE estimator with the covariate and the interaction
between the instrument and the covariate. In the case of covariate adaptive randomi-
zation, the covariate is the stratum indicator V .

The first row of Table 1 shows the average monte carlo standard errors for the ATE
estimates which are the standard deviations of the estimates across 20000 monte carlo
simulations. The next two rows show the ATE average standard errors and average
confidence interval length using nominal robust OLS standard errors for β̂1 and β̂2 and
the analytic correction for β̂3 in Corollary 3. The number of observations is n = 2000.

We can see that relative to the baseline model with just the treatment on the right
hand side, the monte carlo standard error decreases when we include the uninteracted
covariate and when we also include the interaction between the covariate and the
treatment. The same pattern holds for the average standard errors. Additionally, the
average confidence interval length decreases when we add in the uninteracted covariate
and when we also include the interaction between the covariate and the treatment.

Tabelle 1 ATE without Covariate Adaptive Randomization

reg Y D reg Y D X reg Y D X D ∗
(
X − X̄

)
Monte Carlo Standard Err 3.49 2.49 2.49

Avg Standard Err 3.50 2.50 2.50
Avg Length of CI 13.74 9.80 9.79

The first rows of Tables 2 and 3 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations. The
next two rows show the ATE average standard errors and average confidence interval
length under covariate adaptive block and simple randomization with pz = 0.3 using
nominal robust OLS standard errors for β̂1 and β̂2 and the analytic correction for β̂3.
The number of observations is n = 2000.
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For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. Nominal OLS standard errors for the unadjusted and
uninteracted estimators are conservative, while standard errors obtained using the
analytic correction are not.

For covariate adaptive simple randomization, the monte carlo standard error is hig-
hest for the unadjusted model and is lowest for the interacted model. Nominal OLS
and analytically corrected standard errors are not conservative and exhibit the same
pattern as the monte carlo standard errors.

Tabelle 2 ATE with Covariate Adaptive Block Randomization, pz = 0.3

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 3.46 3.46 3.46

Avg Standard Err 4.52 3.78 3.45
Avg Length of CI 17.70 14.82 13.51

Tabelle 3 ATE with Covariate Adaptive Simple Randomization, pz = 0.3

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 4.52 3.79 3.46

Avg Standard Err 4.52 3.79 3.45
Avg Length of CI 17.72 14.85 13.53

The first rows of Tables 4 and 5 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations. The
next two rows show the ATE average standard errors and average confidence interval
length under covariate adaptive block and simple randomization with pz = 0.5 using
nominal robust OLS standard errors for β̂1 and β̂2 and the analytic correction for β̂3.
The number of observations is n = 2000.

For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. Nominal OLS standard errors are conservative for the
unadjusted estimator but not for the uninteracted estimator. Standard errors obtained
using the analytic correction are also not conservative.

For covariate adaptive simple randomization, the monte carlo standard error is highest
for the unadjusted model and decreases when we add covariates. Unlike the case of
pz = 0.3, now the uninteracted estimator and the interacted estimator have the same
standard errors. Nominal OLS and analytically corrected standard errors are not
conservative and exhibit the same pattern as the monte carlo standard errors.
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Tabelle 4 ATE with Covariate Adaptive Block Randomization, pz = 0.5

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 2.90 2.90 2.90

Avg Standard Err 3.50 2.90 2.90
Avg Length of CI 13.74 11.38 11.38

Tabelle 5 ATE with Covariate Adaptive Simple Randomization, pz = 0.5

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 3.51 2.90 2.90

Avg Standard Err 3.51 2.91 2.90
Avg Length of CI 13.74 11.39 11.38

The first rows of Tables 6 and 7 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations. The
next two rows show the ATE average standard errors and average confidence interval
length under covariate adaptive block and simple randomization with pz = 0.7 using
nominal robust OLS standard errors for β̂1 and β̂2 and the analytic correction for β̂3.
The number of observations is n = 2000.

For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. However, just like for pz = 0.3, nominal OLS standard
errors for the unadjusted and uninteracted estimators are conservative, while standard
errors obtained using the analytic correction are not.

For covariate adaptive simple randomization, the monte carlo standard error is hig-
hest for the unadjusted model and is lowest for the interacted model. Nominal OLS
and analytically corrected standard errors are not conservative and exhibit the same
pattern as the monte carlo standard errors.

Tabelle 6 ATE with Covariate Adaptive Block Randomization, pz = 0.7

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 2.63 2.63 2.63

Avg Standard Err 2.97 3.06 2.63
Avg Length of CI 11.63 12.01 10.33

Tabelle 7 ATE with Covariate Adaptive Simple Randomization, pz = 0.7

reg Y D reg Y D V reg Y D V D ∗
(
V − V̄

)
Monte Carlo Standard Err 2.98 3.05 2.63

Avg Standard Err 2.97 3.06 2.64
Avg Length of CI 11.63 12.01 10.33

The first row of Table 8 shows the average monte carlo standard errors for the LATE
estimates which are the standard deviations of the estimates across 20000 monte
carlo simulations. The next two rows show the LATE average standard errors and
average confidence interval length using nominal robust 2SLS standard errors for β̂1
and β̂2 and the analytic correction for β̂3 in Corollary 3. The number of observations
is n = 2000. We can see that relative to the baseline model with just the treatment on
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the right hand side, the monte carlo standard error decreases when we include either
the uninteracted covariate by itself or with the interaction between the covariate and
the instrument. The same pattern holds for the average standard errors. Additionally,
the average confidence interval length decreases when we add in just the uninteracted
covariate and when we also include the interaction between the covariate and the
instrument.

Tabelle 8 LATE without Covariate Adaptive Randomization

ivreg Y (D = Z) ivreg Y (D = Z) X ivreg Y (D = Z) X Z ∗
(
X − X̄

)
Monte Carlo Standard Err 19.31 8.66 8.67

Avg Standard Err 19.49 8.67 8.67
Avg Length of CI 76.40 33.99 34.00

The first rows of Tables 9 and 10 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations.
The next two rows show the LATE average standard errors and average confidence
interval length under covariate adaptive block and simple randomization with pz = 0.3
using nominal robust 2SLS standard errors for β̂1 and β̂2 and the analytic correction
for β̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. However, the nominal 2SLS standard errors for the
unadjusted estimator is very conservative, while the nominal 2SLS standard errors
for the uninteracted estimator and the analytic correction standard errors for the
interacted estimator are not particularly conservative.

For covariate adaptive simple randomization, the monte carlo standard error is highest
for the unadjusted model and is lowest for the interacted model. Nominal 2SLS and
analytically corrected standard errors are not particularly conservative and exhibit
the same pattern as the monte carlo standard errors.

Tabelle 9 LATE with Covariate Adaptive Block Randomization, pz = 0.3

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 14.78 14.78 14.78

Avg Standard Err 21.76 14.92 14.84
Avg Length of CI 85.30 58.50 58.18

Tabelle 10 LATE with Covariate Adaptive Simple Randomization, pz = 0.3

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 21.71 14.85 14.79

Avg Standard Err 21.79 14.94 14.86
Avg Length of CI 85.42 58.57 58.23

The first rows of Tables 11 and 12 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations.
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The next two rows show the LATE average standard errors and average confidence
interval length under covariate adaptive block and simple randomization with pz = 0.5
using nominal robust 2SLS standard errors for β̂1 and β̂2 and the analytic correction
for β̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. Nominal 2SLS standard errors for the unadjusted esti-
mator are conservative, while nominal 2SLS standard errors for the uninteracted
estimator are not. Standard errors obtained using the analytic correction are also not
conservative.

For covariate adaptive simple randomization, the monte carlo standard error is highest
for the unadjusted model and decreases when we add covariates. Unlike the case of
pz = 0.3, now the uninteracted estimator and the interacted estimator have the same
standard errors. Nominal 2SLS and analytically corrected standard errors are not
conservative and exhibit the same pattern as the monte carlo standard errors.

Tabelle 11 LATE with Covariate Adaptive Block Randomization, pz = 0.5

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 13.60 13.60 13.60

Avg Standard Err 19.46 13.63 13.63
Avg Length of CI 76.30 53.43 53.43

Tabelle 12 LATE with Covariate Adaptive Simple Randomization, pz = 0.5

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 19.49 13.58 13.58

Avg Standard Err 19.49 13.64 13.63
Avg Length of CI 76.40 53.46 53.45

The first rows of Tables 13 and 14 show the average monte carlo standard errors which
are the standard deviations of the estimates across 20000 monte carlo simulations.
The next two rows show the LATE average standard errors and average confidence
interval length under covariate adaptive block and simple randomization with pz = 0.7
using nominal robust 2SLS standard errors for β̂1 and β̂2 and the analytic correction
for β̂3. The number of observations is n = 2000.

For covariate adaptive block randomization, the monte carlo standard error is the
same for all three estimators. However, just like in Table 9, nominal 2SLS standard
errors for the unadjusted estimator is very conservative, while standard errors for the
uninteracted and interacted estimators are not.

For covariate adaptive simple randomization, the monte carlo standard error is highest
for the unadjusted model, decreases when we add the uninteracted covariate, and is
the lowest for the interacted model. Nominal 2SLS and analytically corrected standard
errors are not conservative and exhibit the same pattern as the monte carlo standard
errors.
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Tabelle 13 LATE with Covariate Adaptive Block Randomization, pz = 0.7

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 14.94 14.93 14.93

Avg Standard Err 20.72 14.95 14.87
Avg Length of CI 81.21 58.60 58.27

Tabelle 14 LATE with Covariate Adaptive Simple Randomization, pz = 0.7

ivreg Y (D = Z) ivreg Y (D = Z) V ivreg Y (D = Z) V Z ∗
(
V − V̄

)
Monte Carlo Standard Err 20.91 15.03 14.95

Avg Standard Err 20.75 14.95 14.87
Avg Length of CI 81.35 58.62 58.27

6 Empirical Application

We investigate the efficiency improvement in ATE estimates after including the in-
teraction between the exogenous treatment and the demeaned covariate in a dataset
with over 2 million observations. Each observation is an expiry auction for a particu-
lar domain name listed on GoDaddy, an online platform where domain names which
are no longer maintained by an individual are auctioned off in an open-bid English
auction with a minimum bid of $12 and a duration of approximately 10 days. One
interesting fact about these auctions is that the majority of participants are specula-
tors who have no intrinsic use of the domain name except turning a profit when they
resell the name in an aftermarket. Another interesting fact is that very few of the
English auctions result in sale, partly due to the sheer volume of domain names that
are listed for sale. For example, only 1.3% of auctions with a start time on or after
May 12th, 2017 and before July 11th, 2017 had bids at or above the minimum bid.

Starting on May 12th, 2017, GoDaddy implemented a simple randomized experiment
where some domain names would receive a valuation metric provided by a machine
learning algorithm using deep learning. The idea was to provide auction participants
with a better sense of the value of a domain name using features such as the length
of the domain name, how many words in the domain name are part of the English
dictionary, and whether the domain name is a .com, .net, or .org. The algorithm
performed better than many existing approaches for predicting whether the domain
name would sell and if so, at what price. At the start of the experiment, the treatment
probability was 50%, but starting June 1st, 2017, it became 75%. Then on July 11th,
2017, the treatment probability became 100%.

In table 15, we look at the average treatment effect of including the valuation on the
sale price conditional on at least one bidder meeting the minimum bid requirement for
auctions with start times between May 12th, 2017 and June 1st, 2017. Of the 812026
auctions which occurred during this time frame, only 9283 auctions met the minimum
bid requirement. In the first column, we estimate the ATE without any covariates to
be 1.6754 with a standard error of 6.1526. In the second column, we add different
combinations of the following covariates: the length of the domain name, whether
the top level domain is .com, .net, or .org, and whether the domain name contains
any words in the English dictionary. After including all of these covariates, the ATE
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becomes 0.7859 and the standard error increases to 6.1966. In the third column, we
include the covariates and the interactions between the treatment and the demeaned
covariates. The ATE becomes 0.7894, and the standard error decreases to 6.1301.

In table 16, we look at the average treatment effect of including the valuation on the
sale price conditional on at least one bidder meeting the minimum bid requirement for
auctions with start times between June 1st, 2017 and July 11th, 2017. Of the 1366161
auctions in this time frame, only 19165 auctions met the minimum bid requirement.
In the first column, we estimate the ATE without any covariates to be 12.6569 with a
standard error of 4.4770. In the second column, we add different combinations of the
following covariates: the length of the domain name, whether the top level domain is
.com, .net, or .org, and whether the domain name contains any words in the English
dictionary. After including all of these covariates, the ATE becomes 14.3432 and the
standard error increases to 4.6244. In the third column, we include the covariates
and the interactions between the treatment and the demeaned covariates. The ATE
becomes 13.1778, and the standard error decreases to 4.4617.

In table 17, we look at the average treatment effect of including the valuation on the
sale price conditional on at least one bidder meeting the minimum bid requirement for
auctions with start times between May 12th, 2017 and July 11th, 2017. Of the 2178187
auctions in this time frame, only 28448 auctions met the minimum bid requirement.
In the first column, we estimate the ATE without any covariates to be 6.6893 with a
standard error of 3.8301. In the second column, we add different combinations of the
following covariates: the length of the domain name, whether the top level domain is
.com, .net, or .org, and whether the domain name contains any words in the English
dictionary. After including all of these covariates, the ATE becomes 6.7003 and the
standard error increases to 3.8848. In the third column, we include the covariates
and the interactions between the treatment and the demeaned covariates. The ATE
becomes 6.4064, and the standard error decreases to 3.8183.

Tabelle 15 ATE of valuation on sale price conditional on entry for 9283 auctions from 5.12.17
to 6.01.17

reg Y D reg Y D X reg Y D X D*
(
X − X̄

)
X=length of domain name

β̂ 1.6754 1.0673 1.0682
se
(
β̂
)

6.1526 6.1325 6.1402
X=length,is.com,is.net,is.org

β̂ 1.6754 0.8519 0.8584
se
(
β̂
)

6.1526 6.1165 6.1301
X=length,is.com,is.net,is.org,contains English word
β̂ 1.6754 0.7859 0.7894

se
(
β̂
)

6.1526 6.1966 6.1301
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Tabelle 16 ATE of valuation on sale price conditional on entry for 19165 auctions from 6.01.17
to 7.11.17

reg Y D reg Y D X reg Y D X D*
(
X − X̄

)
X=length of domain name

β̂ 12.6569 14.1856 13.8739
se
(
β̂
)

4.4770 4.5152 4.4655
X=length,is.com,is.net,is.org

β̂ 12.6569 14.8170 13.8605
se
(
β̂
)

4.4770 4.5488 4.4627
X=length,is.com,is.net,is.org,contains English word
β̂ 12.6569 14.3432 13.1778

se
(
β̂
)

4.4770 4.6244 4.4617

Tabelle 17 ATE of valuation on sale price conditional on entry for 28448 auctions from 5.12.17
to 7.11.17

reg Y D reg Y D X reg Y D X D*
(
X − X̄

)
X=length of domain name

β̂ 6.6893 7.2388 7.1763
se
(
β̂
)

3.8301 3.8316 3.8226
X=length,is.com,is.net,is.org

β̂ 6.6893 6.9263 6.7882
se
(
β̂
)

3.8301 3.8377 3.8186
X=length,is.com,is.net,is.org,contains English word
β̂ 6.6893 6.7003 6.4064

se
(
β̂
)

3.8301 3.8848 3.8183

7 Conclusion

This paper has compared the relative efficiencies of different types of OLS and 2SLS
estimators in randomized or conditionally randomized experiments. Although the
results are presented in the context of (local) average treatment effects, they can
be generalized to nonlinear parameters including quantile treatment effects. Further
extensions include propensity score regression and regression discontinuity models.
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A Proof of Theorem 1

For k = 1, 2, 3, let Wik denote the instruments, let Vik and Uik denote the regressors, and let
θk denote the parameters of the instrumental variable moment condition EWik (Yi − V ′ikθ0k) =

0. The estimators θ̂k are defined by the sample estimating equations:

1

n

n∑
i=1

Wik

(
Yi − V ′ikθ̂k

)
+

1

n

n∑
i=1

WikUikφ̂
′ (X̄ − µx) = 0. (13)

For β̂1, let Ui1 = 0, pz = P (Zi = 1), pd = P (Di = 1),Wi1 = (1 Zi − pz) , Vi1 = (1 Di − pd),
and θ1 = (α, β). For β̂2, let Ui2 = 0, Wi2 = (1 Zi − pz Xi − µx) Vi2 = (1 Di − pd Xi − µx),
θ2 = (α, β, η). For β̂3, let Ui3 = Zi−pz, θ3 = (α, β, η, φ) ,Wi3 = (1 Zi − pz Xi − µx (Zi − pz) (Xi − µx)),
and Vi3 = (1 Di − pd Xi − µx (Zi − pz) (Xi − µx)). (13) leads to the following influence
function representation of :

√
n
(
θ̂k − θ0k

)
= (EWikVik)−1 1√

n

n∑
i=1

(
Wik

(
Yi − V ′ikθ0

)
+ EWikUikφ0 (Xi − µx)

)
+ oP (1) .

It can be calculated that the second row of E (WikVik)−1 , k = 1, 2, 3 takes the forms of(
0 Cov (D,Z)−1) (

0 Cov (D,Z)−1 0
) (

0 Cov (D,Z)−1 0 0
)
.
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Therefore for k = 1, 2, 3,

√
n
(
β̂k − β0

)
=Cov (Z,D)−1 1√

n

n∑
i=1

ψk (Yi, Zi, Xi,Wik, Vik, Uik) + oP (1) ,

ψk (Yi, Zi, Xi,Wik, Uik, Vik) = (Zi − pz)
(
Yi − V ′ikθ0

)︸ ︷︷ ︸
ψ1
ik

+E [(Zi − pz)Uik]φ0 (Xi − µx)︸ ︷︷ ︸
ψ2
ik

≡ ψik

(14)

Consequently,
√
n
(
β̂k − β0

)
d−→ N

(
0, Cov(D,Z)−2V ar (ψik)

)
. It remains to show that for

j = 1, 2, V ar (ψi3) ≤ V ar (ψij). This can be done by showing that Cov (ψij − ψi3, ψi3) = 0.
For this purpose, consider first j = 1. Note that

ψi1 − ψi3 = (Zi − pz)
[
η′0 (Xi − µx) + φ′0 (Xi − µx) (Zi − pz)

]
−
(
pz − p2

z

)
(Xi − µx)′ φ

= (Zi − pz) η′0 (Xi − µx)︸ ︷︷ ︸
∆ψ1

i13

+ (Zi − pz)2 φ′0 (Xi − µx)︸ ︷︷ ︸
∆ψ2

i13

−
(
pz − p2

z

)
(Xi − µx)′ φ︸ ︷︷ ︸

∆ψ3
i13

. (15)

It follows from Z2
i = Zi and EWi3 (Yi − V ′i3θ0) = 0 that

Cov
(
ψ1
i3,∆ψ

k
i13

)
= 0, k = 1, 2, 3

By independence of Zi fromXi, Cov
(
ψ2
i3,∆ψ

1
i13

)
= 0. Finally, we check that Cov

(
ψ2
i3,∆ψ

2
i13

)
=(

pz − p2
z

)2
φ′0V ar (X)φ0, and Cov

(
ψ2
i3,∆ψ

3
i13

)
=
(
pz − p2

z

)2
φ′0V ar (X)φ0, so that

Cov
(
ψ2
i3,∆ψ

2
i13 −∆ψ3

i13

)
= 0.

We have verified that Cov (∆ψi13, ψi3) = 0, and β̂3 is more efficient than β̂1 asymptotically.

Next turn to β̂2 and ψi2 = (Zi − pz) (Yi − α0 − β0 (Di − pd)− η′0 (Xi − µx)). We want to
show V ar (ψi3) ≤ V ar (ψi2) by verifying that Cov (∆ψi23, ψi3) = 0, where

∆ψi23 = (Zi − pz)2 φ′0 (Xi − µx)−
(
pz − p2

z

)
φ′0 (Xi − µx)

=
(
(1− 2pz)Zi + p2

z

)
φ′0 (Xi − µx)︸ ︷︷ ︸

∆ψ1
i23

−
(
pz − p2

z

)
φ′0 (Xi − µx)︸ ︷︷ ︸
∆ψ2

i23

. (16)

By the moment conditions EWi3 (Yi − V ′i3θ0) = 0,

Cov
(
ψ1
i3,∆ψ

k
i23

)
= 0, , k = 1, 2.

By independence between Z and X

Cov
(
ψ2
i3,∆ψ

1
i23

)
=
(
pz − p2

z

)2
φ′0V ar (X)φ0.

Therefore since also Cov
(
ψ2
i3,∆ψ

2
i23

)
=
(
pz − p2

z

)2
φ′0V ar (X)φ0, it follows that

Cov
(
ψ2
i3,∆ψ

1
i23 −∆ψ2

i23

)
= 0.

So that Cov (∆ψi23, ψi3) = 0, and V ar (ψi3) ≤ V ar (ψi1); β̂3 is also more efficient than β̂2.

However, there is no efficiency ranking between β̂1 and β̂2. Note that

∆ψi12 ≡ ψi1 − ψi2 = (Zi − pz) η′0 (Xi − µx) .
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There is no guarantee of either Cov (∆ψi12, ψi2) = 0 or Cov (∆ψi12 (W ) , ψi1 (W )) = 0. This
is because the moment conditions for β̂2 do not impose that

EZX
(
Y − α0 − β0D − η′0X

)
= 0,

and the moment conditions for β̂1 do not impose

EZX (Y − α0 − β0D) = 0 or EX (Y − α0 − β0D) = 0.

B Proof of Corollary 1

Under the causal model, the parameter β0 and the influence functions for β̂ can be written
using the counterfactuals. Recall that β0 = E (Y1 − Y0|D1 > D0) = E (Y ∗1 − Y ∗0 ) /E (D1 −D0).
Define t1 = Y ∗1 − β0D1, t0 = Y ∗0 − β0D0. Then

α0 − β0pd =EY − β0ED = pzEt1 + (1− pz)Et0
ψ1 = (Z − pz) (Y − α0 − β0 (D − pd))

= (Z − pz) ((1− pz) (t1 − Et1) + pz (t0 − Et0)) + pz (1− pz) (t1 − t0) ,

where by definition Et1−Et0 = 0. Next consider β̂2. It follows from the 3rd moment equation
E (X − µx) (Y − α0 − β0 (D − pd)− η0 (X − µX)) = 0 that

η0 = V ar (X)−1 Cov (X,Y − β0D) = V ar (X)−1 [pzCov (X, t1) + (1− pz)Cov (X, t0)] ,

and that

ψ2 = (Z − pz) (Y − α0 − β0 (D − pd)− η0 (X − µx))

= (Z − pz) ((1− pz) (t1 − Et1) + pz (t0 − Et0)− η0 (X − µx)) + pz (1− pz) (t1 − t0) ,

Next consider β̂3. It follows from the 4th moment condition

E (Z − pz) (X − µx) (Y − α0 − β0 (D − pd)− η0 (X − µX)− φ0 (Z − pz) (X − µx)) = 0

that φ0 = V ar (X)−1 Cov (X, t1 − t0). Therefore,

ψ1
3 = (Z − pz)

(
Y − α0 − β0 (D − pd)− η′0 (X − µx)− φ′0 (Z − pz) (X − µx)

)
= (Z − pz)

(
(1− pz)

(
t1 − Et1 − Cov (t1, X)V ar (X)−1 (X − µx)

)
+ pz

(
t0 − Et0 − Cov (t0, X)V ar (X)−1 (X − µx)

))
+ pz (1− pz)

(
(t1 − t0)− Cov (t1 − t0, X)V ar (X)−1 (X − µx)

)
and ψ2

3 = pz (1− pz)Cov (t1 − t0, X)V ar (X)−1 (X − µx). Therefore

ψ3 = (Z − pz)
(
Y − α0 − β0 (D − pd)− η′0 (X − µx)− φ′0 (Z − pz) (X − µx)

)
= (Z − pz)

(
(1− pz)

(
t1 − Et1 − Cov (t1, X)V ar (X)−1 (X − µx)

)
+ pz

(
t0 − Et0 − Cov (t0, X)V ar (X)−1 (X − µx)

))
+ pz (1− pz) (t1 − t0)

Using Z ⊥ (t1, t0, X), it can then be verified that

Cov (ψ1 − ψ3, ψ3) = 0 and Cov (ψ2 − ψ3, ψ3) = 0.
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In the special case when D = Z, t1 = Y1 − β0, t0 = Y0, β0 = E (Y1 − Y0), then

ψ3 = (Z − pz)
(

(1− pz)
(
Y1 − EY1 − Cov (Y1, X)V ar (X)−1 (X − µx)

)
+ pz

(
Y0 − EY0 − Cov (Y0, X)V ar (X)−1 (X − µx)

))
+ pz (1− pz) (Y1 − Y0 − β0)

ψ2 = (Z − pz)
(

(1− pz) (Y1 − EY1)

+ pz (Y0 − EY0)− η0 (X − µx)

)
+ pz (1− pz) (Y1 − Y0 − β0) .

(17)

for η0 = V ar (X)−1 [pzCov (X,Y1) + (1− pz)Cov (X,Y0)].

C Proof of Corollary 2

Replace µx by µxs = EXs. Then it can be shown that β̂3 is more efficient than β̂4. Similar
calculations as those for β̂3 show that

√
n
(
β̂4 − β0

)
=Cov (D,Z)−1 1√

n

n∑
i=1

ψi4 + oP (1) , where

ψi4 = (Zi − pz)
(
Yi − ρ0 − β0 (Di − pd)− η′0s (Xsi − µxs)− φ′0s (Xsi − µxs) (Zi − pz)

)
+
(
pz − p2

z

)
φ′0s (Xsi − µxs)

Then we can write, for η̄0, φ̄0 possibly different from both η0, φ0 and η0s, φ0s,

∆ψi43 = ψi4 − ψi3
= (Zi − pz)

[
η′0 (Xi − µx)− η′0s (Xsi − µxs) +

(
φ′0 (Xi − µx)− φ′0s (Xsi − µxs)

)
(Zi − pz)

]
+
(
pz − p2

z

)
(Xsi − µxs)′ φ0s −

(
pz − p2

z

)
(Xi − µx)′ φ0

= (Zi − pz)
[
η̄′0 (Xi − µx) + φ̄′0 (Xi − µx) (Zi − pz)

]
−
(
pz − p2

z

)
(Xi − µx)′ φ̄0

= (Zi − pz) η̄′0 (Xi − µx)︸ ︷︷ ︸
∆ψ1

i43

+ (Zi − pz)2 φ̄′0 (Xi − µx)︸ ︷︷ ︸
∆ψ2

i43

−
(
pz − p2

z

)
(Xi − µx)′ φ̄0︸ ︷︷ ︸
∆ψ3

i43

.

It follows from Z2
i = Zi, and the instrumental variable moment equations that

Cov
(
ψ1
i3,∆ψ

k
i43

)
= 0, , k = 1, 2, 3

By independence of Zi and Xi, Cov
(
ψ2
i3,∆ψ

1
i43

)
= 0. Finally, we check that

Cov
(
ψ2
i3,∆ψ

2
i43

)
=
(
pz − p2

z

)2
φ′0V ar (X) φ̄0,

and Cov
(
ψ2
i3,∆ψ

3
i43

)
=
(
pz − p2

z

)2
ψ′0V ar (X) ψ̄0. so that

Cov
(
ψ2
i3,∆ψ

2
i43 −∆ψ3

i43

)
= 0.

We have verified that Cov (∆ψi43, ψi3) = 0, and β̂3 is more efficient than β̂4 asymptotically.
The same result can also be verified using the counter-factual model as in Corollary 1.
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D Proof of Corollary 3

Note Â−1
k B̂kÂ

−1
k

p→ Var
(
Λk (EWikV

′
ik)
−1
Wik (Yi − V ′ikθ0k)

)
, where

Λ1 =

[
1 −pd
0 1

]
Λ2 =

 1 −pd −µx
0 1 0
0 0 1

 Λ3 =

 1 −pd −µx pzµx
0 1 0 0
0 0 1 −pz
0 0 0 1


Using the spare structure of EWikVik, the (2, 2) elements of A−1

k BkA
−1
k are then given by

Var
(
Cov (Zi, Di)

−1 (Zi − pz)
(
Yi − V ′ikθ0k

))
For k = 1, 2, this coincides with the asymptotic variance σ2

k in Theorem 1. Theorem 1 also
shows the asymptotic variance of β̂3 as

σ2
3 = Var

(
Cov (Zi, Di)

−1 [(Zi − pz) (Yi − V ′ikθ0k

)
+ pz (1− pz)φ0 (Xi − µx)

])
By the moment condition E (Zi − pz) (Xi − µx) (Yi − V ′ikθ0k) = 0, σ2

3 is at least as large as

plimσ̂2
3 = Var

(
Cov (Zi, Di)

−1 (Zi − pz)
(
Yi − V ′ikθ0k

))
(18)

A similar calculation shows that σ̄2
3

p−→ σ2
3 . Of course one can also bootstrap.

E Proof of Proposition 1

Consider first the case of D = Z. For α+β = E (Y |Z = 1), α = E (Y |Z = 0), and µx = EX,
the moment conditions are Eφi (α0, β0, µ0x) = 0, where

φi (α, β, µx)′ = (Zi (Yi − α− β) , Zi (Xi − µx) , (1− Zi) (Yi − α) , (1− Zi) (Xi − µx)) ,

such that for A11 = V ar (Yi|Zi = 1), A12 = Cov (Yi, Xi|Zi = 1) = A′21, B11 = V ar(Yi|Zi =
0), B12 = Cov (Yi, Xi|Zi = 0) = B′21, A22 = B22 = V ar (Xi),

V ar (φi (·)) =

(
pzA 0

0 (1− pz)B

)
A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
(19)

Then V̂ar (φi (·)) is similar to V ar (φ (·)) with pz, A,B replaced by p̂z, Â, B̂.
An application of the partitioned matrix inversion formula shows that the solution to (5) is
given by, for F2 =

(
A22 −A21A

−1
11 A12

)−1 and G2 =
(
B22 −B21B

−1
11 B12

)−1,

1

n

n∑
i=1

Zi (Yi − α− β)− Â12Â
−1
22

1

n

n∑
i=1

Zi (Xi − µx) = 0

1

n

n∑
i=1

(1− Zi) (Yi − α)− B̂12B̂
−1
22

1

n

n∑
i=1

(1− Zi) (Xi − µx) = 0

− F̂2A21A
−1
11

1

n

n∑
i=1

Zi (Yi − α− β) + F2
1

n

n∑
i=1

Zi (Xi − µx)

− Ĝ2B̂21B̂
−1
11

1

n

n∑
i=1

(1− Zi) (Yi − α) + Ĝ2
1

n

n∑
i=1

(1− Zi) (Xi − µx) = 0.

(20)
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Substitute the first two equations into the third and simplify to

Â−1
22

1

n

n∑
i=1

Zi (Xi − µx) + B̂−1
22

1

n

n∑
i=1

(1− Zi) (Xi − µx) = 0 (21)

Since Â22 = V ar (Xi) + OP
(

1√
n

)
= B̂22 + OP

(
1√
n

)
, this can be used to show that µ̂x =

X̄ + oP
(

1√
n

)
. And then

α̂+ β̂ =

(
n∑
i=1

ZiYi − Â12Â
−1
22

n∑
i=1

Zi (Xi − µx)

)
/

n∑
i=1

Zi + oP

(
1√
n

)

α̂ =

(
n∑
i=1

(1− Zi)Yi − B̂12B̂
−1
22

n∑
i=1

(1− Zi) (Xi − µx)

)
/

n∑
i=1

(1− Zi) + oP

(
1√
n

)
Up to oP

(
1√
n

)
terms, these are the intercept terms in separate regressions of Yi on Xi− X̄

among the control and treatment groups.
These calculations can be extended to the LATE GMM model in (5), where we now define
A11 = V ar (Y − α0 − β0D|Z = 1), A12 = Cov (Y − α0 − β0D,X|Z = 1) = A′21, B11 =
V ar(Y − α0 − β0D|Z = 0), B12 = Cov (Y − α0 − β0D,X|Z = 0) = B′21, A22 = B22 =

V ar (X), and let Âjk, B̂jk denote their
√
n consistent estimates. Then (19) and (21) both

continue to hold, leading to µ̂x = X̄+oP
(

1√
n

)
. The first two equations in (20) now become

1

n

n∑
i=1

Zi (Yi − α− βDi)− Â12Â
−1
22

1

n

n∑
i=1

Zi (Xi − µx) = 0

1

n

n∑
i=1

(1− Zi) (Yi − α− βDi)− B̂12B̂
−1
22

1

n

n∑
i=1

(1− Zi) (Xi − µx) = 0,

Note that given α and β, Â12Â
−1
22 and B̂12B̂

−1
22 are precisely the profiled φ̂ and η̂ implied

by the estimating equations (13) for β3. In other words, the above two equations are the
concentrated estimating equations for α and β implied by (13).

F Proof of Proposition 2

Let W1i = (Zi, ZiVi)
T and W0i = ((1− Zi) , (1− Zi)Vi)T . Then the normal equations

corresponding to (9) are

1

n

n∑
i=1

W1i

(
Yi − γ̂1 − ϑ̂1Vi

)
= 0,

1

n

n∑
i=1

W0i

(
Yi − γ̂0 − ϑ̂0Vi

)
= 0.

1

n

n∑
i=1

W1i

(
Di − τ̂1 − ζ̂1Vi

)
= 0,

1

n

n∑
i=1

W0i

(
Di − τ̂0 − ζ̂0Vi

)
= 0.

Taking a linear combination using β̂AL = ̂AvgLATE,

1

n

n∑
i=1

W1i

(
Yi − γ̂1 − ϑ̂1Vi − β̂AL

(
Di − τ̂1 − ζ̂1Vi

))
= 0

1

n

n∑
i=1

W0i

(
Yi − γ̂0 − ϑ̂0Vi − β̂AL

(
Di − τ̂0 − ζ̂0Vi

))
= 0
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We rearrange this into

1

n

n∑
i=1

W1i

(
Yi − γ̂1 + β̂ALτ̂1 +

(
β̂ALζ̂1 − ϑ̂1

)
V̄ − β̂ALDi −

(
β̂ALζ̂1 − ϑ̂1

) (
Vi − V̄

))
= 0

1

n

n∑
i=1

W0i

(
Yi − γ̂0 + β̂ALτ̂0 +

(
β̂ALζ̂0 − ϑ̂0

)
V̄ − β̂ALDi −

(
β̂ALζ̂0 − ϑ̂0

) (
Vi − V̄

))
= 0

By the definition in (10),

ν̂ = γ̂1 − β̂ALτ̂1 −
(
β̂ALζ̂1 − ϑ̂1

)
V̄ = γ̂0 − β̂ALτ̂0 −

(
β̂ALζ̂0 − ϑ̂0

)
V̄ .

The normal equations therefore take the form of

1

n

n∑
i=1

W1i

(
Yi − ν̂ − β̂ALDi −

(
β̂ALζ̂1 − ϑ̂1

) (
Vi − V̄

))
= 0

1

n

n∑
i=1

W0i

(
Yi − ν̂ − β̂ALDi −

(
β̂ALζ̂0 − ϑ̂0

) (
Vi − V̄

))
= 0

(22)

Next, consider the normal equations determining the interactive β̂∞. For Wi = (W1i,W0i)
T ,

1

n

n∑
i=1

Wi

(
Yi − α̂− β̂∞Di − η̂

(
Vi − V̄

)
− φ̂Zi

(
Vi − V̄

))
= 0.

This can be rewritten as

1

n

n∑
i=1

W1i

(
Yi − α̂− β̂∞Di −

(
η̂ + φ̂

) (
Vi − V̄

))
= 0

1

n

n∑
i=1

W0i

(
Yi − α̂− β̂∞Di − η̂

(
Vi − V̄

))
= 0

(23)

Then (23) can be satisfied through (22) by setting

α̂ = ν̂, β̂∞ = β̂AL, η̂ = β̂ALζ̂0 − ϑ̂0, φ̂ = β̂ALζ̂1 − ϑ̂1 − η̂.

G Proof of Proposition 3

When D = Z, Hahn (1998) shows that σ2
∞ = V ar (ψ∞), where

ψ∞ =
D

p
(Y1 − E (Y1|X))− 1−D

1− p (Y0 − E (Y0|X)) + (E (Y1 − Y0|X)− E (Y1 − Y0))

= (D − p)
[
Y1 − E (Y1|X)

p
+
Y0 − E (Y0|X)

1− p

]
+ Y1 − Y0 − E (Y1 − Y0)

We can then use ψ3 in the proof of Corollary 1 to show that

Cov (ψ3/ (pz (1− pz))− ψ∞, ψ∞) = 0.
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More generally when Z 6= D, the LATE efficiency bound was calculated in Frolich (2006)
and Hong and Nekipelov (2010) (Lemma 1 and Thm 4), with σ2

∞ = V ar (ψ∞), and

ψ∞ =
1

P (D1 > D0)

{
Z

pz
(Y − E (Y |Z = 1, X)) + E (Y |Z = 1, X)

− 1− Z
1− pz

(Y − E (Y |Z = 0, X))− E (Y |Z = 0, X)

−
(
Z

pz
(D − E (D|Z = 1, X)) + E (D|Z = 1, X)

− 1− Z
1− pz

(D − E (D|Z = 0, X))− E (D|Z = 0, X)

)
β

}
,

where P (D1 > D0) = P (D = 1|Z = 1)− P (D = 1|Z = 0). We can rewrite this as

P (D1 > D0)ψ∞ =
Z

pz
(t1 − E (t1|X))− 1− Z

1− pz
(t0 − E (t0|X)) + E (t1 − t0|X)

= (Z − pz)
{
t1 − E (t1|X)

pz
+
t0 − E (t0|X)

1− pz

}
+ t1 − t0.

(24)

Again comparing this to ψ3 in the proof of Corollary 1 shows that

Cov (ψ3/ (P (D1 > D0) pz (1− pz))− ψ∞, ψ∞) = 0.

The comparison between ψ2 and ψ3 in (17) can also be understood in the context of doubly
robust estimators, which use influence functions of the form similar to ψ∞ but without
requiring pz to be constant. Define Q (X) ≡ P (Z = 1|X). In the case of D = Z,

φ∞ =
D

Q (X)
(Y − E (Y1|X))− 1−D

1−Q (X)
(Y − E (Y0|X)) + (E (∆Y |X)− E∆Y )

= (D −Q (X))

[
Y1 − E (Y1|X)

Q (X)
+
Y0 − E (Y0|X)

1−Q (X)

]
+ (Y1 − Y0 − β)

The estimators with influence function φ∞ are consistent as long as either Q (X) or the pair
of E (Y1|X) , E (Y0|X) are correctly specified. Under complete randomization and with Q (X)
specified as pz, the P-score model is obviously correctly specified. Therefore E (Y1|X) and
E (Y0|X), being linear projections on (1 V (X)), have no effect on consistency. However,
between two misspecified conditional mean models, the first pair in ψ3 is a more efficient
projection that induces a smaller variance than the linear projection in ψ2. Similarly, in the
general LATE case when D 6= Z, doubly robust estimators use influence functions of the
form

φ∞ =
(
D − Q̃ (X)

)[ t1 − E (t1|X)

Q (X)
+
t0 − E (t0|X)

1−Q (X)

]
+ (t1 − t0 − β) .

where E (t1|X) = E (Y ∗1 |X)− β0E (D1|X) and E (t0|X) = E (Y ∗0 |X)− β0E (D0|X). These
estimators are consistent as long as either Q (X) or the set of

E (Y ∗1 |X) , E (Y ∗0 |X) , E (D1|X) , E (D0|X) .

are correctly specified. Among different misspecified linear approximations to E (t1|X) and
E (t0|X), the least square projection is more efficient.
Similar to (3) and (4), σ2

∞ can be consistently estimated under suitable regularity conditions
(such as those in Newey (1997)) by

σ̄2
∞ = Ĉov

−2

Z,D
1

n

n∑
i=1

ε̄2i∞ where ε̄i∞ = (Zi − p̂z) ε̂i∞ + p̂z (1− p̂z) φ̂∞
(
Vi − V̄

)
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and ε̂i∞ = Yi − α̂− β̂∞Di − η̂
(
Vi − V̄

)
− φ̂Zi

(
Vi − V̄

)
. If we write

Yi − β̂∞Di = (1− Zi)
(
α̂+ η̂

(
Vi − V̄

))
+ Zi

(
α̂+

(
η̂ + φ̂

) (
Vi − V̄

))
+ ε̂i∞,

then we expect that uniformly in Xi,

α̂+ η̂
(
Vi − V̄

)
=E (Y − βD|Z = 0, Xi) + oP (1) = E (t0i|Xi) + oP (1)

α̂+
(
η̂ + φ̂

) (
Vi − V̄

)
=E (Y − βD|Z = 1, Xi) + oP (1) = E (t1i|Xi) + oP (1) .

Therefore φ̂
(
Vi − V̄

)
= E (t1i − t0i|Xi)+oP (1), ε̂i∞ = Zi (t1i − E (t1i|Xi))+(1− Zi) (t0i − E (t0i|Xi)),

ε̄i∞ = (Zi − pz) ((1− pz) (t1i − E (t1i|Xi)) + pz (t0i − E (t0i|Xi))) + pz (1− pz) (t1i − t0i) + oP (1) ,

which coincides with the semiparametric asymptotic influence function, and includes the CI
model as a special case when D = Z.

H Proof of Proposition 4

Recall that
√
n
(
β̂1 − β0

)
= Covn (Z,D)−1√nCovn (Z, Y −Dβ0). It can be shown that

Covn (Z,D) =
1

n

n∑
i=1

ZiDi −
1

n

n∑
i=1

Zi
1

n

n∑
i=1

Di

=p̂z (1− p̂z)
[ 1
n

∑n
i=1 ZiD1i

p̂z
−

1
n

∑n
i=1 (1− Zi)D0i

1− p̂z

]
=pz (1− pz)P (D1 > D0) + oP (1) .

where the last line follows from Assumption 8.2. Furthermore,

Covn (Y,Z) =
1

n

n∑
i=1

ZiYi −
1

n

n∑
i=1

Zi
1

n

n∑
i=1

Yi = p̂z (1− p̂z)
[ 1
n

∑n
i=1 ZiY

∗
1i

p̂z
−

1
n

∑n
i=1 (1− Zi)Y ∗0i

1− p̂z

]

Next we consider

√
n (Covn (Y,Z)− Covn (D,Z)β0)

= p̂z (1− p̂z)
1√
n

n∑
i=1

[
Zit1i
p̂z
− (1− Zi) t0i

1− p̂z

]

= p̂z (1− p̂z)
1√
n

n∑
i=1

(
Zit1i
p̂z

+
Zit0i

1− p̂z
− (t1i − t0i)−

t0i
1− p̂z

)
+ p̂z (1− p̂z)

1√
n

n∑
i=1

(t1i − t0i)

= p̂z (1− p̂z)
1√
n

n∑
i=1

(Zi − p̂z)
(
t1i
p̂z

+
t0i

1− p̂z

)
+ p̂z (1− p̂z)

1√
n

n∑
i=1

(t1i − t0i)

= pz (1− pz)
1√
n

n∑
i=1

(Zi − pz)
(
t1i − E [t1i]

pz
+
t0i − E [t0i]

1− pz

)
+ pz (1− pz)

1√
n

n∑
i=1

(t1i − t0i) +Rn
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where

Rn =
1√
n

n∑
i=1

{(Zi − p̂z) ((pz − p̂z) (t1i − t0i) + ((1− pz)E [t1i] + pzE [t0i]))}

+
1√
n

n∑
i=1

(pz − p̂z) ((1− pz) t1i + pzt0i − ((1− pz)E [t1i] + pzE [t0i]))

+ [p̂z (1− p̂z)− pz (1− pz)]
1√
n

n∑
i=1

(t1i − t0i)

= (pz − p̂z)
1√
n

n∑
i=1

(Zi − pz) (t1i − t0i) + (pz − p̂z)2 1√
n

n∑
i=1

(t1i − t0i)

+ (pz − p̂z)
1√
n

n∑
i=1

((1− pz) (t1i − E [t1i]) + pz (t0i − E [t0i]))

+ [p̂z (1− p̂z)− pz (1− pz)]
1√
n

n∑
i=1

(t1i − t0i)

Using Assumption 8, each term can be shown to be oP (1), so that Rn = oP (1).
From this point on the variance becomes different depending on whether S = 1 or S > 1. Re-
call that ωi =

[
t1i−Et1i

pz
+ t0i−Et0i

1−pz

]
and ω (s) = E [ωi|Xi ∈ s]. First note that 1√

n

∑n
i=1 (t1i − t0i)

is asymptotically orthogonal to 1√
n

∑n
i=1 (Zi − pz)ωi under assumptions 8.1 and 8.2.

Cov

[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)ωi,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (t1i − t0i)

]

=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (Zi − pz)ωi (t1i − t0i)]

=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (E [Zi|Xi ∈ s, Y1i, Y0i, D1i, D0i]− pz)ωi (t1i − t0i)]

=
∑
s∈S

1√
n

n∑
i=1

E [1 (Xi ∈ s) (E [Zi|Xi ∈ s]− pz)ωi (t1i − t0i)]

= Oa.s.

(
1√
n

)

Then write the first part of the influence function as

1√
n

n∑
i=1

(Zi − pz)ωi

=
1√
n

n∑
i=1

(Zi − pz) (ωi − ω (s)) +
1√
n

n∑
i=1

(Zi − pz)ω (s)

=
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω (s)) +
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)ω (s) .

(25)
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First note that the two sums are orthogonal:

Cov

[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω(s)) ,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)ω(s)

]

=
∑
s∈S

1√
n

n∑
i=1

Cov [1 (Xi ∈ s) (Zi − pz) (ωi − ω(s)) , 1 (Xi ∈ s) (Zi − pz)ω(s)]

=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 (ωi − ω(s))ω(s)

]
=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 (ωi − E [ωi|Xi ∈ s, Zi])E [ωi|Xi ∈ s, Zi]

]
=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 (ωi − E [ωi|Xi ∈ s])E [ωi|Xi ∈ s]

]
= 0

We now use arguments similar to those in Lemma B.2 of BCS 2017a to derive the limiting
distribution of (25). The distribution of U = 1√

n

∑n
i=1 (Zi − pz) (ωi − ω (s)) is the same

as the distribution of the same quantity where the observations are first ordered by strata
and then by Zi = 1 and Zi = 0 within strata. Let nz(s) be the number of observations in
strata s which have Zi = z ∈ {0, 1}, and let p (s) = P (Xi ∈ s), N(s) =

∑n
i=1 I {Si < s},

and F (s) = P {Si < s}. Independently for each s and independently of
(
Z(n), S(n)

)
, let

{ωsi : 1 ≤ i ≤ n} be i.i.d. with marginal distribution equal to the distribution of ωi|Xi ∈ s.
Define

Ũ =
1√
n

∑
s∈S

n
(

N(s)
n

+
n1(s)

n

)∑
i=n

N(s)
n

+1

(ωsi − ω (s)) (1− pz) +

n
(

N(s)
n

+
n(s)
n

)∑
i=n

(
N(s)

n
+

n1(s)
n

)
+1

(ωsi − ω (s)) (−pz)


By construction,

{
U |S(n), Z(n)

}
d
=
{
Ũ |S(n), Z(n)

}
which implies U d

= Ũ . Next define

U∗ =
1√
n

∑
s∈S

bn(F (s)+p(s)pz)c∑
i=bnF (s)c+1

(ωsi − ω (s)) (1− pz) +

bn(F (s)+p(s))c∑
i=bn(F (s)+p(s)pz)c+1

(ωsi − ω (s)) (−pz)


Using properties of Brownian motion,

1√
n

bn(F (s)+p(s)pz)c∑
i=bnF (s)c+1

(ωsi − ω (s)) (1− pz)
d→ N

(
0, p(s)pz (1− pz)2 E

[
(ωsi − ω (s))2

])

1√
n

bn(F (s)+p(s))c∑
i=bn(F (s)+p(s)pz)c+1

(ωsi − ω (s)) (−pz)
d→ N

(
0, p(s) (1− pz) (pz)

2 E
[
(ωsi − ω (s))2

])
Since the two sums are independent, ωsi−ω (s) are independent across i and s, and E

[
(ωsi − ω (s))2] =

E
[
(ωi − ω (s))2

∣∣Xi ∈ s],
U∗

d→ N

(
0, pz (1− pz)

∑
s∈S

p(s)E
[
(ωi − ω (s))2

∣∣Xi ∈ s])
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Furthermore, since
(
N(s)
n
, n1(s)

n

)
p→ (F (s), pzp(s)), by the continuous mapping theorem,

Ũ − U∗ p→ 0

Therefore,

1√
n

n∑
i=1

(Zi − pz) (ωi − ω (s))
d→ N

0, pz (1− pz)
∑
s∈S

p(s)E
[
(ωi − ω (s))2

∣∣Xi ∈ s]︸ ︷︷ ︸
Ω1


For the second term, it suffices to use Assumption 8.2 to show that

1√
n

n∑
i=1

(Zi − pz)ω (s) =
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)ω (s)
d→ N

0,
∑
s∈S

τ(s)p(s)ω (s)2

︸ ︷︷ ︸
Ω2



Lastly, note that 1√
n

∑n
i=1 (t1i − t0i)

d→ N

0, V ar [t1i − t0i]︸ ︷︷ ︸
Ω3

. Then
√
n
(
β̂1 − β0

)
d−→

N
(
0, P (D1 > D0)−2 (Ω1 +Ω2 +Ω3)

)
.

As in section 2, it is straightforward to show that the 2SLS robust variance is consistent for
P (D1 > D0)−2 times

plim
1

n

n∑
i=1

[(Zi − pz) [ωi] + (t1i − t0i)]2

= plim
1

n

n∑
i=1

((Zi − pz)ωi)2 + plim
1

n

n∑
i=1

(t1i − t0i)2

= plim
1

n

n∑
i=1

(Zi − pz)2 (ωi − ω (s))2 + plim
1

n

n∑
i=1

(Zi − pz)2 ω(s)2 + plim
1

n

n∑
i=1

(t1i − t0i)2

Independently for each s and independently of
(
Z(n), S(n)

)
, let {ωsi : 1 ≤ i ≤ n} be i.i.d

with marginal distribution equal to the distribution of ωi|Xi ∈ s. Using similar arguments
as those in Lemma B.3 of BCS 2017a,

1

n

n∑
i=1

(Zi − pz)2 (ωi − ω (s))2

=
∑
s∈S

 1

n

n1(s)∑
i=1

(1− pz)2 (ωsi − ω (s))2 +
1

n

n0(s)∑
i=1

(−pz)2 (ωsi − ω (s))2


=
∑
s∈S

n1(s)

n

1

n1(s)

n1(s)∑
i=1

(1− pz)2 (ωsi − ω (s))2 +
n0(s)

n

1

n0(s)

n0(s)∑
i=1

(−pz)2 (ωsi − ω (s))2


p→
∑
s∈S

{
pzp(s) (1− pz)2 E

[
(ωsi − ω (s))2

]
+ (1− pz) p(s) (−pz)2 E

[
(ωsi − ω (s))2

]}
= pz (1− pz)

∑
s∈S

p(s)E
[
(ωi − ω (s))2

∣∣Xi ∈ s]
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The key steps are to use the Almost Sure Representation theorem to construct ñ1(s)
n

d
= n1(s)

n

such that ñ1(s)
n

a.s.→ pzp(s) and then to note that by independence of
(
Z(n), S(n)

)
and

{ωsi : 1 ≤ i ≤ n}, for any ε > 0,

P


∣∣∣∣∣∣ 1

n1(s)

n1(s)∑
i=1

(ωsi − ω (s))2 − E
[
(ωsi − ω (s))2

]∣∣∣∣∣∣ > ε


= E

P

∣∣∣∣∣∣∣

1

n ñ1(s)
n

n
ñ1(s)

n∑
i=1

(ωsi − ω (s))2 − E
[
(ωsi − ω (s))2

]∣∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣
ñ1(s)

n




Also, note that by the weak law of large numbers, for any sequence nk →∞ as k →∞,

1

nk

nk∑
i=1

(ωsi − ω (s))2 p→ E
[
(ωsi − ω (s))2

]
Since n ñ1(s)

n
→∞ almost surely, by independence of ñ1(s)

n
and {ωsi : 1 ≤ i ≤ n},

P


∣∣∣∣∣∣∣

1

n ñ1(s)
n

n
ñ1(s)

n∑
i=1

(ωsi − ω (s))2 − E
[
(ωsi − ω (s))2

]∣∣∣∣∣∣∣ > ε

∣∣∣∣∣∣∣
ñ1(s)

n

 a.s.→ 0

Therefore, the first and third terms coincide with Ω1 and Ω3. The second term converges to

plim
1

n

n∑
i=1

(Zi − pz)2 ω(s)2 =

S∑
s=1

ω (s)2 p (s) pz (1− pz)

This is larger than Ω2 as long as τ (s) ≤ pz (1− pz) for all s ∈ S, and strictly so for some
s ∈ S.

I Proof of Proposition 5

The sample normal equations for this regression are given by

τn
(
β̂2, η̂

)
=

1

n

n∑
i=1

[
1 (Xi ∈ s)s∈S

(Zi − pz)

](
Yi − β̂2Di −

S∑
s=1

η̂s1 (Xi ∈ s)

)
= 0.

We can write
(
β̂2 − β0, η̂ − η0

)
= Â−1τn (β0, η0) if we let η0 = (η0s, s ∈ S), t1 (s) =

E (t1i|Xi ∈ s), t0 (s) = E (t0i|Xi ∈ s),

η0s =E (Y |s)− E (D|s)β0 = pzt1 (s) + (1− pz) t0 (s)

= (1− pz) t1 (s) + pzt0 (s)− (1− 2pz) [t1 (s)− t0 (s)] .

and

Â =
1

n

n∑
i=1

[
1 (Xi ∈ s)s∈S Di diag

(
1 (Xi ∈ s)s∈S

)
(Zi − pz)Di (Zi − pz) 1 (Xi ∈ s)′s∈S .

]
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Using Assumption 8.1 and 8.2 we can show that Â = A+ oP (1), where

A =

[
p (s)E (D|s) diag (p (s) , s ∈ S)

pz (1− pz)P (D1 > D0) 0

]

In the following we will show that τn (β0, η0) = Op
(

1√
n

)
, which by non-singularity of A

implies that
(
β̂2 − β0, η̂ − η0

)
= OP

(
1√
n

)
. Then the second row of the relation

(A+ oP (1))
(
β̂2 − β0, η̂ − η0

)′
= τn (β0, η0)

implies that, using the above η0s,

P (D1 > D0)
√
n
(
β̂2 − β0

)
=

1√
n

n∑
i=1

(Zi − pz)
pz (1− pz)

(
Yi − β0Di −

S∑
s=1

η0s1 (Xi ∈ s)

)
+ oP (1)

=
1√
n

n∑
i=1

[
(Zi − pz)

(
t1i − Et1i

pz
+
t0i − Et0i

1− pz

−
∑
s∈S

(
E (t1i − Et1i|Xi ∈ s)

pz
+
E (t0i − Et0i|Xi ∈ s)

1− pz
− 1− 2pz
pz (1− pz)

[t1 (s)− t0 (s)]

)
1 (Xi ∈ s)

)
+ (t1i − t0i)

]
+ oP (1)

=
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω (s)) +
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
1− 2pz

pz (1− pz)
(t1 (s)− t0 (s))

+
1√
n

n∑
i=1

(t1i − t0i) + oP (1) .

where we recall that ωi = t1i−Et1i
pz

+ t0i−Et0i
1−pz and ω (s) = E [ωi|Xi ∈ s]. Using similar

arguments to those in proposition 4,

∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω (s))
d→ N

0, pz (1− pz)
∑
s∈S

p(s)E
[
(ωi − ω (s))2

∣∣Xi ∈ s]︸ ︷︷ ︸
Ω1



∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
1− 2pz

pz (1− pz)
(t1 (s)− t0 (s))

d→ N

0,
∑
s∈S

p(s)τ(s)

(
1− 2pz

pz (1− pz)
(t1 (s)− t0 (s))

)2

︸ ︷︷ ︸
Ω̄2


1√
n

n∑
i=1

(t1i − t0i)
d→ N

0, V ar [t1i − t0i]︸ ︷︷ ︸
Ω3





34 Ansel, Hong, and Li: OLS and 2SLS in Randomized Experiments

Note that the first two sums in the influence function are orthogonal:

Cov

[∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω (s)) ,
∑
s∈S

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
1− 2pz

pz (1− pz)
(t1 (s)− t0 (s))

]

=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 (ωi − ω (s))

1− 2pz
pz (1− pz)

(t1 (s)− t0 (s))

]

=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 1− 2pz

pz (1− pz)
(E [ (ωi − ω (s)) (t1 (s)− t0 (s))|Xi ∈ s, Zi])

]

=
∑
s∈S

1√
n

n∑
i=1

E
[
1 (Xi ∈ s) (Zi − pz)2 (ωi − E [ωi|Xi ∈ s])

1− 2pz
pz (1− pz)

(t1 (s)− t0 (s))

]
= 0

And the third sum is orthogonal to the first two sums by the same arguments in proposition
4. Therefore, P (D1 > D0)

√
n
(
β̂2 − β0

)
d−→ N

(
0, Ω1 + Ω̄2 +Ω3

)
. It is also easy to show

using similar arguments to those in proposition 4 that the 2SLS nominal variance consistently
estimates P (D1 > D0)−2 times

plim
1

n

n∑
i=1

[
(Zi − pz)
pz (1− pz)

(
Yi − β0Di −

S∑
s=1

η0s1 (Xi ∈ s)

)]2

= plim
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) (ωi − ω (s))2

+ plim
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
(

1− 2pz
pz (1− pz)

)2

(t1 (s)− t0 (s))2

+ plim
1

n

n∑
i=1

(t1i − t0i)2

= Ω1 + Ω̃2 +Ω3

where

Ω̃2 =
∑
s∈S

p (s) pz (1− pz)
(

1− 2pz
pz (1− pz)

(t1 (s)− t0 (s))

)2

which is larger than Ω̄2 if pz (1− pz) > τ (s) for some s, unless S = 1 or pz = 1
2
.

J Proof of Proposition 6

We choose to work with the representation in (11), using which we write

√
n
(
β̂3 − β0

)
=
√
n

∑S
s=1

(
ξ̂1s − ξ̂0s − β0

(
ζ̂1s − ζ̂0s

)) ∑n
i=1 1(Xi∈s)

n∑S
s=1

(
ζ̂1s − ζ̂0s

) ∑n
i=1 1(Xi∈s)

n

(26)
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For the denominator, under Assumption 8, Lemma B.3 of BCS 2017a implies that

ζ̂1s =
1
n

∑n
i=1 1 (Xi ∈ s)ZiDi

1
n

∑n
i=1 1 (Xi ∈ s)Zi

p−→ P (D1 = 1|s) ,

ζ̂0s =
1
n

∑n
i=1 1 (Xi ∈ s) (1− Zi)Di

1
n

∑n
i=1 1 (Xi ∈ s) (1− Zi)

p−→ P (D0 = 1|s) .

Together with 1
n

∑n
i=1 1 (xi ∈ s)

p−→ p (s) ≡ p (xi ∈ s),

S∑
s=1

(
ζ̂1s − ζ̂0s

) ∑n
i=1 1 (Xi ∈ s)

n

p−→ P (D1 = 1)− P (D0 = 1) = P (D1 > D0) .

Using p̂ (s) = 1
n

∑n
i=1 1 (Xi ∈ s), p̂ (s) p̂z (s) = 1

n

∑n
=1 1 (Xi ∈ s)Zi, t1 (s) = E [t1i|Xi ∈ s],

and t0 (s) = E [t0i|Xi ∈ s]

S∑
s=1

(
ξ̂1s − ξ̂0s − β0

(
ζ̂1s − ζ̂0s

)) ∑n
i=1 1 (Xi ∈ s)

n

=
S∑
s=1

p̂ (s)

[ 1
n

∑n
i=1 t1i1 (Xi ∈ s)Zi

p̂ (s) p̂z
−

1
n

∑n
i=1 t0i1 (Xi ∈ s) (1− Zi)

p̂ (s) (1− p̂z)

]

=

S∑
s=1

1

n

n∑
i=1

1 (Xi ∈ s)
[

(t1i − t1 (s))Zi
p̂z

− (t0i − t0 (s)) (1− Zi)
(1− p̂z)

]

+

S∑
s=1

1

n

n∑
i=1

1 (Xi ∈ s) (t1 (s)− t0 (s))

=

S∑
s=1

1

n

n∑
i=1

1 (Xi ∈ s)
[

(t1i − t1 (s))Zi
pz

− (t0i − t0 (s)) (1− Zi)
(1− pz)

]
+
∑
s∈S

(R1ns +R2ns)

+

S∑
s=1

1

n

n∑
i=1

1 (Xi ∈ s) (t1 (s)− t0 (s))

=

S∑
s=1

1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
[
t1i − t1 (s)

pz
+
t0i − t0 (s)

1− pz

]
+
∑
s∈S

(R1ns +R2ns)

+
1

n

n∑
i=1

(t1i − t0i) (27)

In the above

R1ns =
pz − p̂z

p̂z (1− p̂z)
1

n

n∑
i=1

1 (Xi ∈ s) [(t1i − t1 (s))Zi + (t0i − t0 (s)) (1− Zi))

R2ns =

(
1

p̂z (1− p̂z)
− 1

pz (1− pz)

)
×

1

n

n∑
i=1

1 (Xi ∈ s) [(1− pz) (t1i − t1 (s))Zi − pz (t0i − t0 (s)) (1− Zi)] .



36 Ansel, Hong, and Li: OLS and 2SLS in Randomized Experiments

Rewriting,

R1ns =
pz − p̂z

p̂z (1− p̂z)

{
1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) [(t1i − t1 (s))− (t0i − t0 (s))]

+ pz
1

n

n∑
i=1

1 (Xi ∈ s) (t1i − t1 (s)) + (1− pz)
1

n

n∑
i=1

1 (Xi ∈ s) (t0i − t0 (s))

}

R2ns =

(
1

p̂z (1− p̂z)
− 1

pz (1− pz)

){
1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) [(t1i − t1 (s)) + (t0i − t0 (s))]

+pz
1

n

n∑
i=1

(1− Zi) 1 (Xi ∈ s) (t1i − t1 (s))− (1− pz)
1

n

n∑
i=1

Zi1 (Xi ∈ s) (t0i − t0 (s))

}

=

(
1

p̂z (1− p̂z)
− 1

pz (1− pz)

){
1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) [(t1i − t1 (s)) + (t0i − t0 (s))]

+ pz
1

n

n∑
i=1

(1− Zi − (1− pz)) 1 (Xi ∈ s) (t1i − t1 (s))− (1− pz)
1

n

n∑
i=1

(Zi − pz) 1 (Xi ∈ s) (t0i − t0 (s))

+pz (1− pz)
1

n

n∑
i=1

1 (Xi ∈ s) (t1i − t1 (s))− (1− pz) pz
1

n

n∑
i=1

1 (Xi ∈ s) (t0i − t0 (s))

}

Using Assumption 8, Lemmas B.2 and B.3 of BCS 2017a, and arguments similar to those
in propositions 4 and 5, we can show that

∑
s∈S R1ns = oP (1)OP

(
1√
n

)
= oP

(
1√
n

)
and∑

s∈S R2ns = oP (1)OP
(

1√
n

)
= oP

(
1√
n

)
.

Since t1i−t1(s)
pz

+ t0i−t0(s)
1−pz = t1i−Et1i−(t1(s)−Et1i)

pz
+ t0i−Et0i−(t0(s)−Et0i)

1−pz = ωi − ω (s), (27)
can be written as
S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) [ωi − ω (s)] +
1√
n

n∑
i=1

(t1i − t0i) + oP (1) , (28)

The first part of this influence function corresponds exactly to the first term in (25). Therefore
regardless of pz there is no need to worry about the variation induced by the sampling scheme
for Zi within the cluster.
In the special case of unconfoundedness, (28) becomes
S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz)
[
Y1i

pz
+

Y0i

1− pz
− E

[
Y1i

pz
+

Y0i

1− pz

∣∣∣∣Xi ∈ s]]

+
1√
n

n∑
i=1

(Y1i − Y0i)− (µ1 − µ0) + oP (1) ,

(29)

Using Assumption 8, σ̂2
3 is consistent for the plim of P (D1 > D0)−2 times 1

n

∑n
i=1 ψ

2
i where

ψi = (Zi − pz)
((

t1i − t̄1
pz

+
t0i − t̄0
1− pz

−Σ
n,X,

t1
pz

+
t0

1−pz

Σ−1
n,X

(
Xi − X̄

)))
+ pz (1− pz)

(
t1i − t0i − t̄1 + t̄0 −Σn,X,t1−t0Σ

−1
n,X

(
Xi − X̄

))
= (Zi − pz)

((
ωi − ω̄ −Σn,X,ωΣ−1

n,X

(
Xi − X̄

)))
+ pz (1− pz)

(
t1i − t0i − t̄1 + t̄0 −Σn,X,t1−t0Σ

−1
n,X

(
Xi − X̄

))
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for Σn,X = 1
n

∑n
i=1

(
Xi − X̄

) (
Xi − X̄

)′ and Σn,X,t = 1
n

∑n
i=1

(
Xi − X̄

)
(ti − t̄). With Xi

being the cluster dummies, ωi − ω̄ −Σn,X,ωΣ−1
n,X

(
Xi − X̄

)
is the residual from a saturated

regression of ωi on the cluster dummies, and converges to
∑
s∈S 1 (xi ∈ s) (ωi − ω (s)). For

the same reason, t1i−t0i− t̄1 + t̄0−Σn,X,t1−t0Σ−1
n,X

(
Xi − X̄

)
is the residual from a saturated

regression of t1i − t0i on the cluster dummies, and converges to∑
s∈S

1 (xi ∈ s) (t1i − t0i − E (t1i − t0i|s)) .

Therefore 1
n

∑n
i=1 ψ

2
i is in turn consistent for the variance of

S∑
s=1

1√
n

n∑
i=1

1 (Xi ∈ s) (Zi − pz) [ωi − ω (s)] +
1√
n

n∑
i=1

∑
s∈S

1 (xi ∈ s) (t1i − t0i − E (t1i − t0i|s)) ,

which is asymptotically smaller than the variance of (28) but larger than the variance of its
first component. Next we will need to add a consistent estimate of

1

n

n∑
i=1

∑
s∈S

1 (xi ∈ s)E (t1i − t0i|s)2 .

This is obtained by φ̂′ 1
n

∑n
i=1

(
Vi − V̄

) (
Vi − V̄

)′
φ̂, which is the variance of the fitted value

of the saturated cluster dummy regression. We can then use σ̄2
3 in Corollary 3 to obtain a

consistent estimate of the variance of (28).

We can also directly estimate the variance of β̂3 by estimating the first representation of the
influence function in (27). Let t̂1iZi =

(
Yi −Diβ̂3

)
Zi, t̂0i (1− Zi) =

(
Yi −Diβ̂3

)
(1− Zi),

t̂1 (s) =

n∑
i=1

t̂1iZi1 (Xi ∈ s) /
n∑
i=1

Zi1 (Xi ∈ s)

t̂0 (s) =

n∑
i=1

t̂0i (1− Zi) 1 (Xi ∈ s) /
n∑
i=1

(1− Zi) 1 (Xi ∈ s)

and construct

Ω̂ =
1

n

n∑
i=1

(∑
s∈S

1 (Xi ∈ s)

[(
t̂1iZi − t̂1 (s)Zi

)
p̂z

−
(
t̂0i (1− Zi)− t̂0 (s) (1− Zi)

)
(1− p̂z)

])2

+
1

n

n∑
i=1

[
S∑
s=1

1 (Xi ∈ s)
(
t̂1 (s)− t̂0 (s)

)]2

Lemma B.3 of BCS 2017a and the continuous mapping theorem imply that t̂1 (s)
p−→ t1 (s)

and t̂0 (s)
p−→ t0 (s). Slutsky’s theorem then implies that Ω̂ consistently estimates the va-

riance of (27).

K Proof of Proposition 7

This estimator can be implemented using OLS and 2SLS by fully interacting Zi, the cluster
dummies, and the additional regressors Xi. To simplify notation we denoteWi = (1 Xi) and
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the regression functions in (12) as γ̂′0sWi, γ̂′1sWi, τ̂ ′0sWi and τ̂ ′1sWi. Consider first the OLS
case under Assumption 5.

β̂S =
∑
s∈S

p̂ (s) W̄s (γ̂1s − γ̂0s)

where W̄s = 1
n

∑n
i=1 1 (Xi ∈ s)Wi/p̂ (s), γ̂0s

p−→ γ0s = (E (WW ′|s))−1
(E (WY0|s)), and

γ̂1s
p−→ γ1s = (E (WW ′|s))−1

(E (WY1|s)), for

γ̂1s = H−1
1n

(
1

n

n∑
i=1

1 (Xi ∈ s)ZiWiYi

)
and H1n =

(
1

n

n∑
i=1

1 (Xi ∈ s)ZiWiW
′
i

)
. (30)

γ̂0s = H−1
0n

(
1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)WiYi

)
and H0n =

(
1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)WiW
′
i

)
.

(31)

In the normal equations EW (Yj −W ′γjs|s) = 0 for j = 0, 1, and W includes the constant
term. Therefore E (Yj −W ′γjs|s) = 0 for j = 0, 1, so that β̂S

p−→ β0 = ∆ = E (Y1 − Y0). In
the following, we will not require pz (s) ≡ pz. Note that

β̂S − β0 =
∑
s∈S

p̂ (s) W̄s [γ̂1s − γ1s − γ̂0s + γ0s]︸ ︷︷ ︸
(1)

+
∑
s∈S

p̂ (s) W̄s (γ1s − γ0s)−∆︸ ︷︷ ︸
(2)

,

where we can write (1) as

∑
s∈S

p̂ (s) W̄s

[
H−1

1n

1

n

n∑
i=1

1 (Xi ∈ s)WiZi
(
Y1i −W ′iγ1s

)
−H−1

0n

1

n

n∑
i=1

1 (Xi ∈ s)Wi (1− Zi)
(
Y0i −W ′iγ0s

)]
.

Using p̂ (s)
p→ p (s), W̄s

p→ E (W |s), E (W ′|s)E (WW ′|s)−1
= (1, 0, ...),

H1n
p→ p (s) pz (s)E

(
WW ′|s

)
, H0n

p→ p (s) (1− pz (s))E
(
WW ′|s

)
,

1

n

n∑
i=1

1 (Xi ∈ s)WiZi
(
Y1i −W ′iγ1s

)
= OP

(
1√
n

)
,

1

n

n∑
i=1

1 (Xi ∈ s)Wi (1− Zi)
(
Y0i −W ′iγ0s

)
= OP

(
1√
n

)
,

we can write (1) as∑
s∈S

E (W |s)E
(
WW ′|s

)−1 1

n

n∑
i=1

1 (Xi ∈ s)Wi

(
Zi
Y1i −W ′iγ1s

pz (s)
− (1− Zi)

Y0i −W ′iγ0s

1− pz (s)

)
+ oP

(
1√
n

)

=
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s)
[
(Zi − pz (s))

(
Y1i −W ′iγ1s

pz (s)
+
Y0i −W ′iγ0s

1− pz (s)

)
+
[
Y1i − Y0i −W ′i (γ1s − γ0s)

]]
+ oP

(
1√
n

)
Therefore,

(1) + (2) =
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz (s))

(
Y1i −W ′iγ1s

pz (s)
+
Y0i −W ′iγ0s

1− pz (s)

)

+
1

n

n∑
i=1

(Y1i − Y0i −∆) + oP

(
1√
n

)
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This obviously is more efficient than (29) since W ′iγjs, j = 0, 1 is the linear projection of
Yij − E (Yij |s) within cluster s, and results in a smaller variance.
Next we generalize the above to LATE. Consider

β̂S =

∑
s∈S p̂ (s) W̄s (γ̂1s − γ̂0s)∑
s∈S p̂ (s) W̄s (τ̂1s − τ̂0s)

so that for β0 = E (Y1 − Y0|D1 > D0),

β̂S − β0 =

∑
s∈S p̂ (s) W̄s

(
γ̂1s − γ̂0s − (τ̂1s − τ̂0s)′ β0

)∑
s∈S p̂ (s) W̄s (τ̂1s − τ̂0s)

Since the denominator is E (D1 −D0) + oP (1) = P (D1 > D0) + oP (1), we focus on the
numerator, and write

(P (D1 > D0) + oP (1))
(
β̂S − β0

)
=
∑
s∈S

p̂ (s) W̄s

(
γ̂1s − γ̂0s − (τ̂1s − τ̂0s)′ β0

)
.

γ1s and γ0s are defined by

γ̂1s = H−1
1n

(
1

n

n∑
i=1

1 (Xi ∈ s)ZiWiYi

)
p−→ γ1s =

(
E
(
WW ′|s

))−1
(E (WY ∗1 |s))

γ̂0s = H−1
0n

(
1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)WiYi

)
p−→ γ0s =

(
E
(
WW ′|s

))−1
(E (WY ∗0 |s)) ,

and τ1s and τ0s are analogously defined by

τ̂1s = H−1
1n

(
1

n

n∑
i=1

1 (Xi ∈ s)ZiWiDi

)
p→ τ1s =

(
E
(
WW ′|s

))−1
(E (WD1|s))

τ̂0s = H−1
0n

(
1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)WiDi

)
p→ τ0s =

(
E
(
WW ′|s

))−1
(E (WD0|s)) .

Define η̂js = γ̂js − τ̂ ′jsβ0 for j = 0, 1, so that η̂js
p−→ ηjs = E (WW ′|s)−1

E (Wtj |s), where

η̂1s =

(
1

n

n∑
i=1

1 (Xi ∈ s)ZiWiW
′
i

)−1
 1

n

n∑
i=1

1 (Xi ∈ s)ZiWi

(
Y ∗1i −D′1iβ0

)︸ ︷︷ ︸
t1i



η̂0s =

(
1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)WiW
′
i

)−1
 1

n

n∑
i=1

1 (Xi ∈ s) (1− Zi)Wi

(
Y ∗0i −D′0iβ0

)︸ ︷︷ ︸
t0i


Then we proceed similar as the ATE case to write the numerator as∑
s∈S

p̂ (s) W̄s [η̂1s − η1s − η̂0s + η0s]︸ ︷︷ ︸
(1)

+
∑
s∈S

p̂ (s) W̄s (η1s − η0s)︸ ︷︷ ︸
(2)

,
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where by noting that

1

n

n∑
i=1

1 (Xi ∈ s)WiZi
(
t1i −W ′iη1s

)
= OP

(
1√
n

)
,

1

n

n∑
i=1

1 (Xi ∈ s)Wi (1− Zi)
(
t0i −W ′iη0s

)
= OP

(
1√
n

)
,

we can write (1) as

∑
s∈S

E (W |s)E
(
WW ′|s

)−1 1

n

n∑
i=1

1 (Xi ∈ s)Wi

(
Zi
t1i −W ′iη1s

pz (s)
− (1− Zi)

t0i −W ′iη0s

1− pz (s)

)
+ oP

(
1√
n

)

=
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s)
[
(Zi − pz (s))

(
t1i −W ′iη1s

pz (s)
+
t0i −W ′iη0s

1− pz (s)

)
+
[
t1i − t0i −W ′i (η1s − η0s)

]]
+ oP

(
1√
n

)
Therefore,

(1) + (2) =
∑
s∈S

1

n

n∑
i=1

1 (Xi ∈ s) (Zi − pz (s))

(
t1i −W ′iη1s

pz (s)
+
t0i −W ′iη0s

1− pz (s)

)

+
1

n

n∑
i=1

(t1i − t0i) + oP

(
1√
n

) (32)

Again this ought to be more efficient than (27) since W ′iηjs is the within cluster linear
projection of tji − tj (s). The more variables the projection is on, the smaller the variance.
As dim (W )→∞ at an appropriate rate, W ′iηjs → E (tji|Wi) for j = 0, 1, so that the above
equation becomes the efficient influence function in (24) conditional on both the cluster
indicators and the extra regressors.


