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1 Introduction

With the availability of larger datasets, estimation of the Berry et al. (1995) (BLP) model through

minimization of the simulated GMM objective function has become increasingly more computationally

intensive. For instance, the Nielson RMS retail scanner dataset records sales information at the

week-level for around 40,000 stores. By defining a market as a week/store combination and restricting

attention to only California grocery stores that sold fresh strawberries in 2014, Compiani (2018)

already has 86,562 markets. The traditional asymptotic theory for simulation estimators of nonlinear

models under independent simulation draws either used a fixed number of simulation draws for

each observation (McFadden (1989), Pakes and Pollard (1989)) or required that the number of

simulation draws (R) increases faster than the than the square root of the number of markets

(
√
T ) in order to eliminate asymptotic bias (Lee (1995)). However, choosing a large number of

simulation draws may be impractical when T is very large, which is becoming more common in the

age of big data. It would be desirable to develop an asymptotic theory that eliminates asymptotic

bias under the case of R � T . Unfortunately we are unaware of any such results in the case of

independent simulation draws where different draws are used in different markets. We instead adopt

the framework of overlapping simulation draws where the same draws are used in all markets, even

though we acknowledge that there are efficiency gains from using independent simulation draws

(Lee (1995), Kristensen and Salanié (2017)).

Our main contribution is to derive the asymptotic distribution of the BLP estimator in the case

of overlapping simulation draws in a large R and large T setting. We show that our estimator scaled

by
√
m for m = min(R, T ) has zero asymptotic bias under the relatively weak conditions of R→∞

and T →∞, and it has an asymptotic variance term that consists of two parts, one for the sampling

variance and another for the simulation variance.

An insightful paper that explicitly derives the asymptotic distribution of the BLP estimator in

a many markets setting and accounting for simulation noise is Freyberger (2015). His main results

focus on the case of independent simulation draws, but he also states without proof a related result

under overlapping simulation draws. In order for the asymptotic bias to disappear in the case

of overlapping simulation draws, he requires lim
T,R→∞

T
R < ∞. We show that this condition is not

necessary in order for the asymptotic bias to disappear. By changing the rate of convergence from
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√
T to

√
m for m = min(R, T ), we can remove the asymptotic bias and allow for the case of R� T ,

as long as R→∞ and T →∞.

On the computational front, we propose using Hamiltonian Markov Chain Monte Carlo (HMCMC)

(originally developed by Duane et al. (1987) and discussed at length in Neal et al. (2011)) to

implement the Laplace-type estimator of Chernozhukov and Hong (2003), which we show to be

consistent for the true parameters and also asymptotically normal. We use HMCMC instead of

standard MCMC because the former incorporates information about the gradient of the objective

when searching for the optimum while the latter essentially uses a random walk. We compare the

performance of our HMCMC routine to two other routines that seem to be commonly used: the

nested fixed point (NFP) method originally proposed by Berry et al. (1995) and discussed further in

e.g. Berry (1994) and Nevo (2000) and the mathematical programming with equilibrium constraints

(MPEC) method discussed in e.g. Dubé et al. (2012) and Su and Judd (2012). We find that our

HMCMC method generally gives less biased estimates and empirical coverage frequencies closer to

the nominal level than both NFP and MPEC. We acknowledge that many other methods exist

such as Bayesian Hierarchal Models (Yang et al. (2003)) or Nonparametric Instrumental Variables

(Compiani (2018)), but a comparison with these methods is beyond the scope of the paper.

Section 2 reviews the BLP model in greater detail. Section 3 contains the main components of

the asymptotic theory, demonstrating consistency of the BLP estimator and deriving the asymptotic

distribution which is normal with mean zero and variance which takes into account simulation noise.

Section 4 provides a way for applied researchers to obtain consistent estimates of the standard errors.

Section 5 discusses consistency and asymptotic normality of the Laplace-type estimator. Section

6 compares our results with Freyberger (2015)’s results. Section 7 outlines the results of Monte

Carlo studies that compare HMCMC to NFP and MPEC and illustrate the severe undercoverage of

confidence intervals obtained using the typical GMM standard errors which do not take into account

simulation noise. Section 8 concludes. Section 9 contains proofs and additional comparisons with

Freyberger (2015).
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2 BLP Model

We follow the standard setup in Berry et al. (1995). Each consumer r is choosing between J

products and an outside good in T independent markets. Each consumer has her own individual

taste parameters βr for products with observed characteristics xjt and unobserved characteristics

ξjt. Note that the ξjt may be correlated among products in the same market. Each consumer also

has an idiosyncratic horizontal preference component εrjt that is i.i.d. Type 1 extreme value. The

price of product j in market t is pjt.

The utility of consumer r choosing product j in market t is given by

urjt = β0
r + x′jtβ

x
r − αpjt + ξjt + εrjt

The individual taste parameters βr ≡
(
β0
r , β

x
r

)′ ∈ Rd have mean E [βr] = β =
(
β0, βx

)′ and variance

V ar [βr] = V ar [Σ0vr] = Σ0Σ′0, where Σ0 is assumed to be a diagonal matrix. The randomness of

the individual taste parameters comes from the consumer types vr:

βr = β + Σ0vr, vr
iid∼ F0

Define θ0 ≡ (θ0,1, θ0,2)′, where θ0,1 = (β,−α)′ and θ0,2 = diag (Σ0) is the d×1 vector of the diagonal

elements of Σ0. We rewrite the utility function using the mean utilities δ:

urjt = δ0jt + µ0rjt + εrjt

X ′jt =
[
1, x′jt, pjt

]
δ0jt ≡ δjt (θ0) = β0 + x′jtβ

x − αpjt + ξjt ≡ X ′jtθ0,1 + ξjt

µ0rjt = µrjt (θ0,2, vr) =
[
1, x′jt

]
Σ0vr.

Note that we will suppress dependence of δjt (θ) on Xjt and ξjt to simplify notation. The observed

market share for product j in market t is the probability that the utility from purchasing product

j is greater than the utility from purchasing any other product in market t. Let N (t) denote the

set of products in market t. Let δ0t and Xt be vectors of δ0jt and Xjt for j = 1, ..., J . The observed
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market shares are

Sjt ≡ sjt (δ0t, Xt, F0; θ0) =

∫
exp (δ0jt + µ0rjt)

1 +
∑

k∈N (t) exp (δ0kt + µ0rkt)
dF0(vr).

The BLP model is solved using a simulated GMM approach. Let Zt ∈ RL×J be a matrix of

instruments that are uncorrelated with the unobserved product characteristics ξt. The population

moment conditions at the true parameters are γ (θ0) = E [Zt (δ0t −X ′tθ0,1)] = E [Ztξt] = 0. To

form the sample moments, we need to obtain estimates of δt at arbitrary values of θ. We do

so by solving for the fixed point from equating the simulated market shares ŝjt
(
δt, Xt, F̂ ; θ

)
=

1
R

∑R
r=1

exp(δjt+µrjt(θ2,vr))
1+
∑
k∈N (t) exp(δkt+µrkt(θ2,vr))

to the observed market shares Sjt for all products j in all

markets t. Berry et al. (1995) prove that δ(k+1)
t = δ

(k)
t + log (St) − log

(
ŝt

(
δ

(k)
t , Xt, F̂ ; θ

))
is a

contraction mapping and that a unique fixed point δ̂t (θ) exists. We will suppress the dependence

of δ̂t (θ) on Xt to simplify notation. Note that δ̂t (θ) depends on θ2 = diag (Σ) through µrt. The

θ1 are already absorbed into the δ and do not affect the solution of the fixed point algorithm. The

GMM estimates of θ0 are found by minimizing a quadratic form in the sample moment conditions

γ̂ (θ) = 1
T

∑T
t=1 Zt

(
δ̂t (θ)−X ′tθ1

)
using a positive-definite weighting matrix WT .

θ̂ = arg min
θ

γ̂ (θ)′WT γ̂ (θ)

3 Asymptotic Theory of Simulation Estimation

In order to derive the asymptotic distribution of θ̂, we need to first derive the asymptotic distribution

of the sample moment conditions
√
mγ̂(θ0) scaled by m = min(R, T ). Our strategy will be to take

a first order Taylor expansion of the market shares and then invert the linearized market shares

to obtain the linearized product qualities δ̂ (θ0) which will be shown to be
√
R consistent for δ0.

Next, we will express the sample moment conditions as the sum of two terms. The first term is

a sample average while the second term is a two-sample U-statistic in the sample of simulation

draws vr and the sample of covariates Xt, instruments Zt, and product characteristics ξt. Using

projection arguments for two-sample U-statistics, we show asymptotic normality of the sample

moments. In order to show consistency of θ̂ for θ0, we will show that the sample moments converge
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uniformly to the population moments over the parameter space Θ. Afterwards, we will show that

θ̂ is
√
m consistent for θ0 and derive the asymptotic distribution of

√
m
(
θ̂ − θ0

)
. We also provide

a consistent estimate of the asymptotic variance.

3.1 Nonsingularity of Jacobian Matrix

Recall that the true (observed) market shares are

sjt(δ0t, Xt, F0; θ0) =

∫
exp (δ0jt + µ0rjt)

1 +
∑

k∈N (t) exp (δ0kt + µ0rkt)
dF0(vr) ≡

∫
gjt(δ0t, Xt, vr; θ0)dF0(vr).

The simulated market shares at any θ are

ŝjt(δ̂t, Xt, F̂ ; θ) =
1

R

R∑
r=1

exp
(
δ̂jt (θ) + µrjt (θ2, vr)

)
1 +

∑
k∈N (t) exp

(
δ̂kt (θ) + µrkt (θ2, vr)

) ≡ ∫ gjt(δ̂t, Xt, vr; θ)dF̂ (vr).

We can also define the market shares using arbitrary δ, X, θ, and F as

sjt(δt, Xt, F ; θ) =

∫
exp (δjt (θ) + µrjt (θ2, vr))

1 +
∑

k∈N (t) exp (δkt (θ) + µrkt (θ2, vr))
dF (vr) ≡

∫
gjt(δt, Xt, vr; θ)dF (vr).

Let g(δ,X, vr; θ) ≡ {gjt(δ,X, vr; θ)}J,Tj,t=1. We now state a result that is proven in Berry (1994) and

Berry et al. (2013) regarding the nonsingularity of the Jacobian matrix of the market shares with

respect to δ.

Lemma 1. For Gδ(δ,X, vr; θ) ≡ ∇δg(δ,X, vr; θ),
∫
Gδ(δ,X, vr; θ)dF (vr) is nonsingular for all X,

θ, δ, and F .

3.2
√
R Consistency of δ̂ at θ0

The next proposition proves
√
R consistency of δ̂ (θ0) and provides a linearization that will appear

in the two sample U-statistic for the sample moments. The strategy is to take a first order Taylor

expansion of s(δ̂, X, F̂ ; θ0)−s(δ0, X, F0; θ0) with respect to both δ and F around some intermediate

value between δ̂ (θ0) and δ0 and between F̂ and F0. Since F is a function, we use the Intermediate

Value Theorem for functionals.
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Proposition 2. (
√
R consistency of δ̂ at θ0) Suppose the following conditions are satisfied:

(i) Let δ̂ (θ0) and δ0 lie in an open, bounded, and convex subset D of RJT .

(ii) Let F̂ and F0 lie in an open and convex subset of the Banach space F of distribution functions

Rd 7→ [0, 1] equipped with the sup-norm.

Then, for Ev[g(δ0, X, v; θ0)] ≡
∫
g(δ0, X, v; θ0)dF0(v), as R→∞ for any fixed T ,

√
R(δ̂ (θ0)− δ0) = −

(∫
Gδ(δ0, X, vr; θ0)dF0(vr)

)−1 1√
R

R∑
r=1

{g(δ0, X, vr; θ0)− Ev[g(δ0, X, v; θ0)]}

+Op

(
1√
R

)
.

Proof. See appendix section 9.2.

3.3 Asymptotic Distribution of Sample Moment Conditions

Next we derive the asymptotic distribution of
√
mγ̂(θ0) =

√
m 1
T

∑T
t=1 Zt

(
δ̂t (θ0)−X ′tθ1

)
. Let

g̃(θ0) = 1
T

∑T
t=1 Zt (δ0t −X ′tθ0,1). We will express γ̂(θ0)− g̃ (θ0) as a two sample U-statistic in two

i.i.d. samples {Xt, Zt, ξt}Tt=1 and {vr}Rr=1 which are independent of each other.

Theorem 3. (Asymptotic Distribution of sample moment conditions): Suppose the assumptions in

proposition 2 are satisfied. Then for m ≡ min(T,R) and k ≡ lim
T→∞,R→∞

R
T ,

√
mγ̂(θ0)

d→ N(0,Σ) ≡ N(0, (1 ∧ k)Ω + (1 ∧ 1/k)Σh),

where Ω = V ar (Zt(δ0t −X ′tθ0,1)), Σh = V ar [h (vr; θ0)], and

h (vr; θ0) = −
∫ {

Zt

(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1

(gt(δ0t, Xt, vr; θ0)− Ev [gt(δ0t, Xt, v; θ0)])

}
dP (Zt, Xt, ξt),

where P (·) is the joint distribution of Zt, Xt, ξt.

Proof. We give only a proof sketch. For a complete proof, see appendix section 9.3. The idea is to

write the sample moment conditions scaled by
√
m as the sum of two terms which are independent
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of each other and asymptotically normal:

√
mγ̂(θ0) =

√
m√
R

1√
R

R∑
r=1

h (vr; θ0) +

√
m√
T

√
T g̃(θ0) +Op

(√
m

R

)
+Op

( √
m√
TR

)
d→ N (0, (1 ∧ 1/k)Σh + (1 ∧ k)Ω) .

The first term is one of the projection terms of a two-sample U-statistic and captures the simulation

variance while the second term captures the sampling variance.

3.4 Uniform Consistency of γ̂(θ) for γ(θ)

Before we can show consistency of θ̂ for θ, we need to show that the simulated moment conditions

γ̂(θ) are consistent for the population moments γ(θ) uniformly over θ ∈ Θ. The approach we take

is to first show stochastic equicontinuity and then appeal to the fact that pointwise convergence

to a continuous function over a compact set in combination with stochastic equicontinuity implies

uniform convergence.

Theorem 4. (Uniform Consistency of γ̂(θ) for γ(θ)): Suppose the following conditions are satisfied.

(i) θ0 ∈ Interior (Θ), where Θ is a compact subset of R2d+1.

(ii) E ‖Zt‖∞ <∞.

(iii) E ‖ZtX ′t‖2 <∞.

(iv) E
[
max
j=1...J

∣∣∣∣[1, x′jt]′ ◦ vr∣∣∣∣] <∞.

Then for any κm → 0,

sup
‖θ−θ0‖≤κm

√
m ‖γ̂ (θ)− γ̂ (θ0)− γ (θ)‖ p→ 0,

sup
θ∈Θ
‖γ̂ (θ)− γ (θ)‖ p→ 0.

Proof. See appendix section 9.4.
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3.5 Consistency of θ̂

Theorem 5. (Consistency of θ̂): Suppose the following assumptions and those in Theorem 4 are

satisfied:

(i) ‖γ̂(θ̂)‖WT
≤ op(1) + inf

θ∈Θ
‖γ̂(θ)‖WT

.

(ii) WT = W + op(1) where W is positive definite.

(iii) For every open set G that contains θ0, inf
θ/∈G
‖γ(θ)‖W > ‖γ(θ0)‖W .

Then θ̂ p→ θ0.

Proof. The proof is a direct application of the argmax continuous mapping theorem in van der

Vaart and Wellner (1996) (Corollary 3.2.3) since Theorem 4 and assumption (ii) imply that the

sample objective ‖γ̂(θ)‖WT
converges uniformly to the population objective ‖γ(θ)‖W .

3.6
√
m-Consistency of θ̂

Our final goal is to derive the asymptotic distribution of
√
m
(
θ̂ − θ0

)
.

Theorem 6. (
√
m-Consistency and Asymptotic Normality of θ̂): Suppose the following assumptions

and those in Theorem 5 are satisfied:

(i) Γ ≡ ∂
∂θ lim
T,R→∞

1
T

∑T
t=1E

[
Zt

(
δ̂t (θ2)−X ′tθ1

)]∣∣∣∣
θ0

exists, and Γ′WΓ is nonsingular.

(ii) ‖γ̂(θ̂)‖WT
≤ inf

θ
‖γ̂(θ)‖WT

+ op
(
m−1

)
.

Then, for Σ = (1 ∧ k)Ω + (1 ∧ 1/k)Σh,

√
m(θ̂ − θ0)

d→ N
(

0,
(
Γ′WΓ

)−1
Γ′WΣWΓ

(
Γ′WΓ

)−1
)
.

Proof. The first four conditions in Theorem 7.2 of Newey and McFadden (1994) are satisfied by

assumption (i) in Theorem 4 and assumptions (i)-(iii) of the present theorem. The fifth condition

follows from Theorem 4.
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4 Consistent Estimation of Variance of θ̂

This section discusses how to compute standard errors that take into account simulation noise.

Using the formula for the asymptotic variance of θ̂, we can calculate the standard errors as the

square root of the diagonal of the matrix:

1

m

(
Γ̂′WT Γ̂

)−1
Γ̂′WT Σ̂WT Γ̂

(
Γ̂′WT Γ̂

)−1

Let us describe each of the components separately. The Jacobian of the sample moments can be

estimated using

Γ̂ ≡ Γ̂(θ̂) =
∂γ̂(θ̂)

∂θ
=

[
− 1
T Z
′X, 1

T Z
′ ∂δ̂t(θ)

∂θ2

∣∣∣
θ̂

]
.

In order to estimate ∂δ̂t(θ)
∂θ2

∣∣∣
θ̂
, recall that the estimated market shares are

sjt(δ̂t, Xt, F̂ ; θ̂) =

∫ exp
(
δ̂jt

(
θ̂2

)
+ µrjt

(
θ̂2, vr

))
1 +

∑
k∈N (t) exp

(
δ̂kt

(
θ̂2

)
+ µrkt

(
θ̂2, vr

))dF̂ (vr) ≡
1

R

R∑
r=1

gjt(δ̂t, Xt, vr; θ̂).

The fixed point solution δ̂ at each θ is found by equating the estimated market shares to the observed

market shares:

s(δ̂, X, F̂ ; θ) = S.

The Implicit Function Theorem implies that δ̂ is continuously differentiable in θ. Since δ̂ does not

depend explicitly on θ1, it suffices to compute the derivative with respect to θ2, evaluated at θ̂2:

∂δ̂t (θ)

∂θ2

∣∣∣∣∣
θ̂

= −

(
∂s(δ̂, X, F̂ ; θ̂)

∂δ

)−1(
∂s(δ̂, X, F̂ ; θ̂)

∂θ2

)

= −
(∫

Gδ(δ̂, X, vr; θ̂)dF̂ (vr)

)−1 ∫
Gθ2(δ̂, X, vr; θ̂)dF̂ (vr)

= −

(
1

R

R∑
r=1

Gδ(δ̂, X, vr; θ̂)

)−1
1

R

R∑
r=1

Gθ2(δ̂, X, vr; θ̂).
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Gδ(δ,X, vr; θ) is a JT × JT block diagonal matrix with ∂gjt
∂δjt

= gjt (1− gjt) and ∂gjt
∂δkt

= −gjtgkt and

Gθ2(δ,X, vr; θ) is the JT × d Jacobian matrix of g(δ,X, F ; θ) with respect to θ2. The jtth row of

Gθ2(δ̂, X, vr; θ̂) is given by, for µ̂rjt ≡ µrjt
(
θ̂2, vr

)
,

exp
(
δ̂jt

(
θ̂2

)
+ µ̂rjt

)
1 +

∑
k∈N (t) exp

(
δ̂kt

(
θ̂2

)
+ µ̂rkt

)
[1, x′jt]′ ◦ vr −

∑
k∈N (t) exp

(
δ̂kt

(
θ̂2

)
+ µ̂rkt

)
[1, x′kt] ◦ vr

1 +
∑

k∈N (t) exp
(
δ̂kt

(
θ̂2

)
+ µ̂rkt

)
 .

As noted by Berry et al. (1995), a large number of simulation draws is required for accuracy of the

numerical integrals in the expression for the derivative of δ̂ with respect to θ2.

The variance covariance matrix of the sample moments is estimated as follows:

Σ̂ = min

(
1,
R

T

)
Ω̂ +min

(
1,
T

R

)
Σ̂h,

Ω̂ =
1

T

T∑
t=1

(
Zt

(
δ̂t

(
θ̂2

)
−X ′tθ̂1

))(
Zt

(
δ̂t

(
θ̂2

)
−X ′tθ̂1

))′
,

Σ̂h =
1

R

R∑
r=1

ĥ
(
vr; θ̂

)
ĥ
(
vr; θ̂

)′
,

ĥ
(
vr; θ̂

)
= − 1

T

T∑
t=1

Zt

(
1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

))−1(
gt

(
δ̂t, Xt, vr; θ̂

)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

))
.

The optimal weighting matrix is estimated as

WT = Σ̂−1.

Theorem 7. (Consistent Estimate of Asymptotic Variance): Suppose the conditions in all of the

previous theorems are satisfied. In addition, suppose

(i) There exists κm ↓ 0 such that E

[
sup

‖θ−θ0‖≤κm

∥∥∥Zt (δ̂t (θ)−X ′tθ1

)∥∥∥] <∞.

(ii) max
r=1...R

max
t=1...T

∥∥∥gt (δ̂t, Xt, vr; θ̂
)
− gt (δ0t, Xt, vr; θ0)

∥∥∥
∞

p→ 0.

Then,

ÂsyV ar
[
θ̂
]

=
(

Γ̂′WT Γ̂
)−1

Γ̂′WT Σ̂WT Γ̂
(

Γ̂′WT Γ̂
)−1 p→

(
Γ′WΓ

)−1
Γ′WΣWΓ

(
Γ′WΓ

)−1
.

11



Proof. See appendix 9.5.

5 Consistency of Laplace type Estimator

Laplace type estimators (LTEs) provide a computationally attractive alternative to directly minimizing

the GMM objective, which is nonconvex and contains many local minima. LTEs are typically

computed using Markov Chain Monte Carlo (MCMC) methods which generate a series of parameter

draws such that the marginal distribution of this series is approximately the quasi-posterior distribution

of the parameters. It is well-known (see e.g. Chernozhukov and Hong (2003)) that LTEs can be

more generally expressed as the minimizer of a quasi-posterior risk function formed using a convex

loss function.

Theorem 8. (Asymptotic Normality of Laplace Estimator): Suppose the following conditions and

those in Theorem 6 are satisfied.

(i) Θ is a convex, compact subset of R2d+1.

(ii) The loss function ρm : R2d+1 → R+ satisfies (1) ρm(u) = ρ(
√
mu) where ρ(u) ≥ 0 and

ρ(u) = 0 iff u = 0. (2) ρ is convex and ρ(h) ≤ 1 + |h|p for some p ≥ 1. (3) ρ(u) = ρ(−u).

(ii) π : Θ→ R+ is a continuous, uniformly positive density function.

Then, for pm(θ) = exp(−mγ̂(θ)′WT γ̂(θ))π(θ)∫
Θ exp(−mγ̂(θ)′WT γ̂(θ))π(θ)dθ

,

θ̃ = arg min
θ∈Θ

∫
Θ
ρm(θ′ − θ)pm(θ′)dθ′

is consistent for θ0 and has the same asymptotic distribution as θ̂:

√
m(θ̃ − θ0)

d→ N
(

0,
(
Γ′WΓ

)−1
Γ′WΣWΓ

(
Γ′WΓ

)−1
)
.

Proof. See appendix section 9.6.

Examples of LTEs include the quasi-posterior mean, which corresponds to ρ(u) = ‖u‖22 and the

12



quasi-posterior median, which corresponds to ρ(u) = ‖u‖1.

6 Comparison with Freyberger (2015)

We now discuss how our results relate to Freyberger (2015)’s results for overlapping simulation

draws. Freyberger (2015) conjectures without proof the following asymptotic distribution under

overlapping simulation draws:

√
T
(
θ̂ − θ0

)
d→ N

(
0, V1 + λ̃2V2

)
.

λ̃ = lim
T→∞,R→∞

√
T√
R
<∞, V1 = (Γ′WΓ)−1(Γ′WΦ1WΓ)(Γ′WΓ)−1, V2 = (Γ′WΓ)−1(Γ′WΦ2WΓ)(Γ′WΓ)−1.

We show in the appendix section 9.7 that Φ1 = Ω, Φ2 = Σh + o (1), Φ̂1 = Ω̂, and Φ̂2 = Σ̂h. It

turns out that our finite sample variance estimate is numerically identical to Freyberger (2015)’s

estimate, regardless of whether R � T , R � T , or R ∼ T . Thus we are not doing any better

than Freyberger (2015) in terms of approximating the estimator’s distribution in finite sample, but

rather we are simply making the point that we can do away with Freyberger (2015)’s rate condition

lim
T→∞,R→∞

√
T√
R
< ∞. The main difference between Freyberger (2015)’s asymptotic distribution

and our asymptotic distribution is the scaling of
√
T versus

√
m. The scaling of

√
m allows

the asymptotic bias to disappear even without the rate condition lim
T→∞,R→∞

√
T√
R
< ∞ imposed

by Freyberger (2015). Intuitively, the scaling of
√
m allows our asymptotic variance to put different

weights on the sampling variation and the simulation noise depending on how R is related to T .

More weight is placed on the simulation noise Σh when R � T , and more weight is placed on the

sampling variation Ω when R � T or R ∼ T . Freyberger (2015) does not allow for the simulation

noise to dominate the sampling variation because he uses a scaling of
√
T which implicitly always

places more weight on the sampling variation. Freyberger (2015)’s Taylor expansion of
√
T (θ̂ − θ0)

is

√
T (θ̂ − θ0) =

((
Γ′WΓ

)−1
Γ′W + op(1)

)(
Q1,T +

√
T√
R
Q2,T,R +

√
T

R
C1,T,R + op

(√
T

R

))

13



where Q1,T
d→ N (0,Φ1) , Q2,T,R

d→ N (0,Φ2), and C1,T,R
p→ µ̄, which represents the asymptotic

bias. The assumption λ̃ = lim
T→∞,R→∞

√
T√
R
< ∞ implies that

√
T
R C1,T,R → 0, which means the

asymptotic bias disappears.

If we scale Freyberger (2015)’s Taylor expansion by
√
m =

√
min(R, T ), for k = lim

T→∞,R→∞
R
T ,

√
m(θ̂ − θ0)

=

√
min(R, T )√

T

√
T (θ̂ − θ0)

= ((Γ′WΓ)−1Γ′W + op(1))

(√
min(R, T )√

T
Q1,T +

√
min(R, T )√

R
Q2,T,R +

√
min(R, T )

R
C1,T,R

+op

(√
min(R, T )

R

))

= ((Γ′WΓ)−1Γ′W + op(1))

(
min

(
1,
√
k
)
Q1,T +min

(
1,

√
1

k

)
Q2,T,R +

1√
R
min

(
1,

√
1

k

)
C1,T,R

+op

(
1√
R
min

(
1,

√
1

k

)))
.

Since 0 ≤ min
(

1,
√

1
k

)
≤ 1, 1√

R
min

(
1,
√

1
k

)
C1,T,R → 0 as R→∞ even if R� T .

Now we consider our estimator’s Taylor expansion. It follows from theorems 3 and 5 that

√
m
(
θ̂ − θ0

)
=
((

Γ′WΓ
)−1

Γ′W + op (1)
)√

mγ̂(θ0)

=
((

Γ′WΓ
)−1

Γ′W + op (1)
)(√m√

T

√
T g̃(θ0) +

√
m√
R

1√
R

R∑
r=1

h (vr; θ0) +Op

(√
m

R

)
+Op

( √
m√
TR

))
.

Matching the terms in our expansion with those in Freyberger (2015)’s,

Q1,T =
√
T g̃(θ0)

d→ N (0,Ω) , Q2,R =
1√
R

R∑
r=1

h (vr; θ0)
d→ N (0,Σh) .

In the case of R� T , the leading bias term is Op
(√

m
R

)
, which converges in probability to zero.
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7 Monte Carlo

We conduct Monte Carlo simulations using empirical moments from the automobiles dataset of

Berry et al. (1995) that is posted as supplementary material to Knittel and Metaxoglou (2014).

The dataset contains information on automobiles sold in the twenty year period between 1971 and

1990. Because some models enter and exist during that period, there is an unbalanced panel with

a total of 2217 observations. The characteristics that enter the utility function are the price of the

vehicle, the ratio of horsepower to weight (HPWT), whether or not the vehicle has air conditioning

(AIR), the number of ten mile increments one could drive for one dollar’s worth of gasoline (MPD),

and the size of the vehicle (SIZE). The instruments for price are the characteristics of the vehicle,

the sum of the characteristics of all other vehicles produced by the same firm, and the sum of the

characteristics of all vehicles produced by rival firms.

We generate data using certain statistics of the automobiles data. The vector of observed product

characteristics x is drawn from a multivariate normal distribution with a mean vector equal to the

sample mean of the auto characteristics and a covariance matrix equal to the sample covariance

matrix of the auto characteristics. The unobservable product characteristics ξ are generated as the

sum of two independent mean zero normal random variables each with variance equal to half of the

sample variance of ξ. The additional instruments besides x are generated as the sum of attributes

across vehicles produced by rival firms. When forming the GMM objective, E [xjtξjt] = 0 are

included in the moment conditions because x are generated independently of ξ. The unobservable

cost characteristics η are generated as 0.001 times the sum of v1 and v3, where v3 are drawn from

a mean zero normal random variable with variance equal to the absolute difference between the

sample variance of ξ and the sample covariance of price and ξ. Similar to Berry (1994), we assume

a linear structure for marginal costs which depends only on the characteristics of the products:

mcj = x′jγ0 + ηj . Using some assumed true values for the cost parameter γ0 and the means (θ0,1)

and standard deviations (θ0,2) of the demand parameters, we simulate the market shares of the

products and the outside good and compute prices for all products in a given market as the firms’

best response functions in a game of Bertrand competition. Specifically, for each market t = 1...T ,

15



prices are determined as

p∗ = argmax
p≥0

(p−mc)

 Q∑
q=1

ωq

exp

([
1 xjt pjt

]
θ0,1 + ξjt + µrjt (θ0,2, vq)

)
1 +

∑
k∈N (t) exp

([
1 xkt pkt

]
θ0,1 + ξkt + µrkt (θ0,2, vq)

)

J

j=1

,

where ωq are the Gauss-Hermite quadrature weights and the vq are the quadrature nodes.

Using the generated data and the computed prices, we apply the Hamiltonian Markov Chain

Monte Carlo (HMCMC) algorithm to compute the LTE estimates of θ0. The benefit of using

the HMCMC algorithm as opposed to a traditional Metropolis Hastings MCMC algorithm is that

the former uses the gradient of the objective function to guide the search for the true parameter

values while the latter is essentially a random walk which can take extremely long to converge for

parameters of even moderate dimensions.

The assumed true values of θ0 and γ0, with the exception of the coefficient on price, are obtained

from Table IV in Berry et al. (1995) and repeated in Table 1.

Table 1: Assumed True Values for θ0 and γ0

Price Constant HPWT AIR MPD SIZE

θ0,1 -0.2 -7.304 2.185 0.579 -0.049 2.604

θ0,2 2.009 1.586 1.215 0.670 1.510

γ0 0.726 0.313 0.290 0.293 1.499

We compare the empirical coverage frequencies of two types of confidence intervals:

[
θ̂1 ±

1.96√
m

(
Γ̂′WT Γ̂

)−1
Γ̂′WT Σ̂WT Γ̂

(
Γ̂′WT Γ̂

)−1
]

[
θ̂1 ±

1.96√
n

(
Γ̂′WT Γ̂

)−1
Γ̂′WT Ω̂WT Γ̂

(
Γ̂′WT Γ̂

)−1
]

We use the posterior mean as θ̂ and the formulas provided in section 4 to compute Γ̂, Σ̂, and Ω̂.

Results using the posterior median as θ̂ are very similar and are available upon request.

Table 2 provides the average θ̂1 computed using HMCMC, the average bias of θ̂1, the average θ̂2,

the average bias of θ̂2, the empirical coverage frequencies for θ1 taking into account simulation noise,

and the empirical coverage frequencies for θ1 not taking into account simulation noise in settings
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with either 500 or 1000 markets and 20 products each. We use 4000 Markov Chain iterations and

burn in the first 2000 periods.

With the exception of the case of 500 markets and 50 simulation draws where there is overcoverage,

the empirical coverage is fairly close to the nominal level of 95%. However, we would like to point

out that the good coverage does not necessarily imply the parameter estimates have the correct sign

or are close to the truth. For example, in the case of 500 markets and 100 simulation draws, the

mean price coefficient is positive. In the case of 500 markets and 50 simulation draws, the mean

price coefficient is more than three times too large. In the case of 1000 markets and 50 simulation

draws, the mean price coefficient is more than three times too small.

Table 2: HMCMC results
500 markets, 20 products, 100 Monte Carlo Simulations, 50 Simulation Draws

Price Constant HPWT AIR MPD SIZE
average θ̂1 -0.052 -8.000 2.057 0.540 -0.163 2.322

average bias of θ̂1 0.148 -0.696 -0.128 -0.039 -0.114 -0.282
average θ̂2 1.640 1.878 2.085 1.171 1.790

average bias of θ̂2 -0.370 0.292 0.870 0.501 0.280
Empirical Coverage w/ simulation noise 0.990 0.990 0.990 0.990 0.990 0.980
Empirical Coverage w/o simulation noise 0.280 0.280 0.190 0.290 0.200 0.290

500 markets, 20 products, 100 Monte Carlo Simulations, 100 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 0.020 -8.429 2.050 0.506 -0.136 2.191
average bias of θ̂1 0.220 -1.125 -0.135 -0.073 -0.087 -0.413

average θ̂2 2.081 2.456 1.688 0.473 2.114
average bias of θ̂2 0.072 0.870 0.473 -0.197 0.604

Empirical Coverage w/ simulation noise 0.941 0.941 0.952 0.941 0.941 0.941
Empirical Coverage w/o simulation noise 0.262 0.262 0.286 0.262 0.238 0.262

1000 markets, 20 products, 50 Monte Carlo Simulations, 50 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 -0.703 -4.628 2.456 0.751 0.104 3.499
average bias of θ̂1 -0.503 2.676 0.271 0.172 0.153 0.895

average θ̂2 1.411 1.843 2.214 1.525 1.036
average bias of θ̂2 -0.599 0.257 0.999 0.855 -0.474

Empirical Coverage w/ simulation noise 0.95 0.95 0.95 0.95 0.95 0.95
Empirical Coverage w/o simulation noise 0.10 0.10 0.10 0.10 0.10 0.10

Next we compare our HMCMC routine to two other commonly used methods for computing

the parameter estimates: the nested fixed point (NFP) method as implemented in Conlon (2014)

and the mathematical programming with equilibrium constraints (MPEC) method as implemented
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in Dubé et al. (2012). We used KNITRO 11.0.0 with the options specified by Dubé et al. (2012).

Table 3 provides the average θ̂1 computed using MPEC, the average bias of θ̂1, the average θ̂2, the

average bias of θ̂2, the empirical coverage frequencies for θ1 taking into account simulation noise,

and the empirical coverage frequencies for θ1 in settings with either 500 or 1000 markets and 20

products each. We can see that MPEC’s coverage frequencies are far from the nominal level and

the average bias for some estimates can be quite high.

Table 3: MPEC results
500 markets, 20 products, 100 Monte Carlo Simulations, 50 Simulation Draws

Price Constant HPWT AIR MPD SIZE
average θ̂1 -5.520 21.053 4.635 2.424 1.437 11.658

average bias of θ̂1 -5.320 28.357 2.450 1.845 1.486 9.054
average θ̂2 1.205 2.537 2.366 0.755 2.296

average bias of θ̂2 -0.804 0.951 1.151 0.085 0.786
Empirical Coverage w/ simulation noise 0.47 0.47 0.45 0.44 0.52 0.53
Empirical Coverage w/o simulation noise 0.11 0.10 0.07 0.08 0.13 0.11

500 markets, 20 products, 100 Monte Carlo Simulations, 100 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 -2.373 4.410 2.948 1.383 0.519 6.201
average bias of θ̂1 -2.173 11.714 0.763 0.804 0.568 3.597

average θ̂2 0.910 2.176 1.913 0.687 1.728
average bias of θ̂2 -1.099 0.590 0.698 0.017 0.218

Empirical Coverage w/ simulation noise 0.36 0.35 0.33 0.37 0.37 0.36
Empirical Coverage w/o simulation noise 0.06 0.05 0.06 0.06 0.07 0.05

1000 markets, 20 products, 100 Monte Carlo Simulations, 50 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 -0.675 -4.798 1.983 0.730 0.014 3.424
average bias of θ̂1 -0.475 2.506 -0.202 0.151 0.063 0.820

average θ̂2 1.345 2.100 1.857 0.693 1.397
average bias of θ̂2 -0.664 0.514 0.642 0.023 -0.113

Empirical Coverage w/ simulation noise 0.60 0.59 0.59 0.58 0.57 0.59
Empirical Coverage w/o simulation noise 0.11 0.10 0.08 0.08 0.11 0.12

Table 4 provides the average θ̂1 computed using NFP, the average bias of θ̂1, the average θ̂2, the

average bias of θ̂2, the empirical coverage frequencies for θ1 taking into account simulation noise,

and the empirical coverage frequencies for θ1 in settings with either 500 or 1000 markets and 20

products each. We can see that NFP typically overcovers, and the average bias for some estimates

can be quite high.

Table 5 shows the average across-market means, mins, maxes, and quantiles of the estimated
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Table 4: NFP results
500 markets, 20 products, 100 Monte Carlo Simulations, 50 Simulation Draws

Price Constant HPWT AIR MPD SIZE
average θ̂1 2.175 0.078 -8.995 1.362 0.490 -0.185

average bias of θ̂1 2.375 7.382 -11.180 0.783 0.539 -2.789
average θ̂2 0.942 2.126 2.113 0.618 1.253

average bias of θ̂2 -1.068 0.540 0.898 -0.052 -0.257
Empirical Coverage w/ simulation noise 1 1 1 1 1 1
Empirical Coverage w/o simulation noise 1 1 0.83 1 1 1

500 markets, 20 products, 100 Monte Carlo Simulations, 100 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 1.645 0.373 -10.601 1.414 0.421 -0.251
average bias of θ̂1 1.845 7.677 -12.786 0.835 0.470 -2.855

average θ̂2 1.005 2.076 2.165 0.621 1.321
average bias of θ̂2 -1.004 0.490 0.950 -0.049 -0.189

Empirical Coverage w/ simulation noise 1 1 0.98 1 1 1
Empirical Coverage w/o simulation noise 1 1 0.77 0.99 1 1

1000 markets, 20 products, 100 Monte Carlo Simulations, 50 Simulation Draws
Price Constant HPWT AIR MPD SIZE

average θ̂1 8.997 -3.934 12.595 3.456 1.944 1.005
average bias of θ̂1 9.197 3.370 10.410 2.877 1.993 -1.599

average θ̂2 1.370 2.681 1.896 0.709 1.995
average bias of θ̂2 -0.639 1.095 0.681 0.039 0.485

Empirical Coverage w/ simulation noise 1 1 0.96 1 1 1
Empirical Coverage w/o simulation noise 1 0.98 0.70 0.98 1 0.98

own price elasticities for the first product. The elasticities of the other 19 products are very similar

and available upon request. We compute the bias between the price elasticities computed using the

estimated parameter values versus those computed using the true parameter values. We can see

that the elasticities computed using the HMCMC parameter estimates typically have smaller bias

than those computed using the MPEC or NFP parameter estimates. The one exception is the case

of 1000 markets, 20 products, and 50 Simulation Draws, in which case HMCMC has similar bias as

MPEC, but still smaller bias than NFP.

We acknowledge that improvements in the various computational methods are on-going (see e.g.

Conlon and Gortmaker (2019)) and remain a good subject for further research.
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Table 5: Means, Mins, Maxes, and Quantiles of Own Price Elasticities for 1st Product
500 markets, 20 products, 50 Simulation Draws

Mean Min 10th 25th 50th 75th 90th Max
HMCMC -0.408 -0.468 -0.442 -0.431 -0.418 -0.399 -0.362 -0.180

Bias 1.211 1.347 1.272 1.245 1.214 1.183 1.154 0.844
MPEC -43.909 -51.601 -47.327 -46.180 -44.802 -42.922 -39.445 -21.412
Bias -42.290 -49.785 -45.613 -44.503 -43.169 -41.339 -37.929 -20.388
NFP 17.063 5.227 14.699 16.679 17.624 18.238 18.729 20.049
Bias 18.682 7.042 16.413 18.355 19.256 19.820 20.245 21.073

500 markets, 20 products, 100 Simulation Draws
Mean Min 10th 25th 50th 75th 90th Max

HMCMC 0.157 0.080 0.145 0.154 0.160 0.164 0.168 0.178
Bias 1.776 1.895 1.858 1.831 1.793 1.747 1.684 1.202

MPEC -19.091 -21.664 -20.342 -19.892 -19.356 -18.688 -17.622 -10.923
Bias -17.473 -19.849 -18.628 -18.215 -17.723 -17.106 -16.106 -9.899
NFP 12.876 4.319 10.940 12.506 13.310 13.821 14.228 15.337
Bias 14.495 6.135 12.663 14.183 14.943 15.403 15.744 16.361

1000 markets, 20 products, 50 Simulation Draws
Mean Min 10th 25th 50th 75th 90th Max

HMCMC -5.536 -6.516 -6.023 -5.876 -5.691 -5.415 -4.852 -2.030
Bias -3.917 -4.685 -4.309 -4.199 -4.058 -3.833 -3.336 -1.056

MPEC -5.449 -6.218 -5.800 -5.673 -5.521 -5.336 -5.057 -2.799
Bias -3.830 -4.388 -4.087 -3.996 -3.888 -3.753 -3.540 -1.824
NFP 72.013 0.034 66.654 73.267 75.728 77.727 79.357 84.910
Bias 73.632 1.865 68.367 74.944 77.361 79.309 80.874 85.884

8 Conclusion

This paper has derived the asymptotic distribution of the parameters of the BLP model in the

case of overlapping simulation draws. Asymptotics have been performed by sending the number

of simulation draws and the number of markets to infinity but keeping the number of products in

each market fixed. By writing the sample moment condition as a two-sample U-statistic, we have

shown that the simulated GMM estimator is asymptotically normal. Our results have allowed for

the case where R � T as long as both R → ∞ and T → ∞. We have derived the form of the

asymptotic variance that accounts for both simulation variance and sampling variance and have also

provided a consistent estimate which can be used to form asymptotically valid confidence intervals.

To improve the computational performance, we have proposed using a Laplace-type estimator

implemented using Hamiltonian Markov Chain Monte Carlo (HMCMC). We have demonstrated

consistency of the Laplace-type estimator and have illustrated through Monte Carlo simulations
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the better performance of our estimator compared to Nested Fixed Point and MPEC in terms of

coverage and bias.

9 Appendix

9.1 Definitions and Theorems about Functionals

Definition. Suppose f : U → Y is a mapping from an open subset U ⊂ X of a Banach space

to another Banach space Y . Then, f is Fréchet Differentiable at u0 ∈ U if there is a bounded

linear map Df(u0) : X → Y such that for every ε > 0, there is a δ > 0 such that whenever

0 < ‖u− u0‖ < δ, we have

‖f(u)− f(u0)−Df(u0) · (u− u0)‖
‖u− u0‖

< ε.

The Fréchet Derivative of f at u0, Df(u0), is related to the directional derivative (sometimes

called the Gateaux Derivative) of f at u0 in the direction h:

Df(u0) · h = lim
t→0

f(u0 + th)− f(u0)

t
≡ f ′u0

(h).

The Mean Value Theorem can be extended to Fréchet differentiable functionals.

Theorem. (Mean Value Theorem) Let U ⊂ X be an open and convex subset of a Banach space

X and let f : U → Y be a C1 mapping from U to a Banach space Y . For u, v ∈ U , assume

{(1− t)u+ tv|t ∈ [0, 1]} ⊂ U . Then,

f(v)− f(u) =

∫ 1

0
Df((1− t)u+ tv)dt · (v − u)

= Df(u) · (v − u) +

∫ 1

0
(Df((1− t)u+ tv)−Df(u))dt · (v − u).

Corollary. (Intermediate Value Theorem) Let U ⊂ X be an open convex subset of a Banach space

X and let f : U → R be C1 map. For all u, v ∈ U , there exists a c = (1− t)u+ tv for some t ∈ [0, 1]

such that f(v)− f(u) = Df(c) · (v − u).
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9.2 Proof of Proposition 2

Proof. We will show asymptotic normality of
√
R(δ̂ (θ0)− δ0) by applying a Taylor expansion to

√
R(s(δ̂, X, F̂ ; θ0)−s(δ0, X, F0; θ0)) around some δ∗ = tδδ0+(1−tδ)δ̂ (θ0) and F ∗ = tFF0+(1−tF )F̂

for tF ∈ [0, 1] and tδ ∈ [0, 1]:

Dδs(δ
∗, X, F ∗; θ0) · (δ̂ (θ0)− δ0) +DF s(δ

∗, X, F ∗; θ0) · (F̂ − F0).

In order to apply the Intermediate Value Theorem for functionals, we need to show that s(δ,X, F ; θ0)

is Fréchet differentiable in δ and F , thatDδs(δ,X, F ; θ0) is continuous in δ, and thatDF s(δ,X, F ; θ0)

is continuous in F .

First we compute the directional derivative of s(δ,X, F ; θ0) in the direction δ̂ (θ0)− δ0 evaluated

at δ∗ and F ∗. Since g(δ,X, vr; θ0) ∈ (0, 1) , we can use Lebesgue’s Bounded Convergence Theorem

to interchange integration and differentiation.

s′δ∗
(
δ̂ (θ0)− δ0

)
= lim

t→0

∫
g
(
δ∗ + t

(
δ̂ (θ0)− δ0

)
, X, vr; θ0

)
dF ∗(vr)−

∫
g(δ∗, X, vr; θ0)dF ∗(vr)

t

=

∫
lim
t→0

g
(
δ∗ + t

(
δ̂ (θ0)− δ0

)
, X, vr; θ0

)
− g(δ∗, X, vr; θ0)

t
dF ∗(vr)

=

∫
Gδ(δ

∗, X, vr; θ0) ·
(
δ̂ (θ0)− δ0

)
dF ∗(vr)

=

∫
Gδ(δ

∗, X, vr; θ0)dF ∗(vr) ·
(
δ̂ (θ0)− δ0

)
.

The third equality follows from the fact that g(δ,X, vr; θ) is differentiable in δ. Note that s′δ (·) is a

linear map for all δ and F because for all λ1, λ2 ∈ R, h1, h2 ∈ RJT ,

s′δ (λ1h1 + λ2h2) =

∫
Gδ(δ,X, vr; θ0)dF (vr) · (λ1h1 + λ2h2)

= λ1

∫
Gδ(δ,X, vr; θ0)dF (vr) · h1 + λ2

∫
Gδ(δ,X, vr; θ0)dF (vr) · h2

= λ1s
′
δ (h1) + λ2s

′
δ (h2) .

s′δ (·) is also a bounded map for all δ because the elements of Gδ(δ,X, vr; θ0) lie in (−1, 0) ∪ (0, 1)
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for all δ, X, and vr:

∥∥s′δ (h1)
∥∥ ≤ ∥∥∥∥∫ Gδ(δ,X, vr; θ0)dF (vr)

∥∥∥∥ ‖h1‖ ≤ ‖h1‖ .

Therefore we have shown that s(δ,X, F ; θ0) is Fréchet differentiable in δ and we can write s′δ∗
(
δ̂ (θ0)− δ0

)
=

Dδs(δ
∗, X, F ; θ0) ·

(
δ̂ (θ0)− δ0

)
.

We can show that Dδs(δ,X, F ; θ0) is continuous in δ by noting that Gδ(δ,X, vr; θ0) is continuous

in δ. For all ε > 0, there exists ν > 0 such that ‖δ−δ′‖ < ν =⇒ ‖Gδ(δ,X, vr; θ0)−Gδ(δ′, X, vr; θ0)‖ <

ε. Then,

∥∥Dδs(δ,X, F ; θ0)−Dδs(δ
′, X, F ; θ0)

∥∥ =

∥∥∥∥∫ Gδ(δ,X, vr; θ0)dF (vr)−
∫
Gδ(δ

′, X, vr; θ0)dF (vr)

∥∥∥∥
≤
∫ ∥∥Gδ(δ,X, vr; θ0)−Gδ(δ′, X, vr; θ0)

∥∥ dF (vr)

≤
∫
εdF (vr) = ε.

The directional derivative of s(δ,X, F ; θ0) in the direction F̂ − F0 evaluated at δ∗ and F ∗ is

s′F ∗(F̂ − F0)

= lim
t→0

[
1

t

(
s(δ∗, X, F ∗ + t(F̂ − F0); θ0)− s(δ∗, X, F ∗; θ0)

)]
= lim

t→0

[
1

t

(∫
g(δ∗, X, vr; θ0)d(F ∗ + t(F̂ − F0))(vr)−

∫
g(δ∗, X, vr; θ0)dF ∗(vr)

)]
= lim

t→0

[
1

t

(∫
g(δ∗, X, vr; θ0)d(t(F̂ − F0))(vr)

)]
=

∫
g(δ∗, X, vr; θ0)d(F̂ − F0)(vr).

Note that s′F (·) is a linear map for all δ since for all λ1, λ2 ∈ R, F1, F2 ∈ F,

s′F (λ1F1 + λ2F2) =

∫
g(δ,X, vr; θ0)d (λ1F1 + λ2F2) (vr)

= λ1

∫
g(δ,X, vr; θ0)dF1(vr) + λ2

∫
g(δ,X, vr; θ0)dF2(vr)

= λ1s
′
F (F1) + λ2s

′
F (F2) .
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s′F (·) is also a bounded map for all δ and F because g(δ,X, vr; θ0) ∈ (0, 1) for all δ, X, and vr. For

all F1 ∈ F,

∥∥s′F (F1)
∥∥ =

∥∥∥∥∫ g(δ,X, vr; θ0)dF1(vr)

∥∥∥∥ ≤ ∥∥∥∥∫ dF1(vr)

∥∥∥∥ = ‖F1‖ .

Therefore we have shown that s(δ,X, F ; θ0) is Fréchet differentiable in F and we can write s′F ∗
(
F̂ − F0

)
≡

DF s(δ
∗, X, F ∗; θ0) ·

(
F̂ − F0

)
.

To show that DF s(δ,X, F ; θ0) is continuous in F , we will show that for all ε > 0, there

exists 0 < ν < ∞ such that ‖F − F ′‖ < ν =⇒
∥∥∫ g(δ,X, vr; θ0)d(F ′ − F )(vr)

∥∥ < ε. Since∥∥∫ g(δ,X, vr; θ0)d(F ′ − F )(vr)
∥∥ ≤ ∥∥∫ |g(δ,X, vr; θ0)| d(F ′ − F )(vr)

∥∥ ≤ ∥∥∫ d(F ′ − F )(vr)
∥∥ = ‖F − F ′‖,

we can take ε = ν.

Now that we have checked that the Fréchet derivatives of s(δ,X, F ; θ0) are continuous with

respect to δ and F , we can apply the Intermediate Value Theorem to s(δ̂, X, F̂ ; θ0)−s(δ0, X, F0; θ0).

Furthermore, Berry (1994) showed that for all X ∈ Rd+1, there exists a unique δ̂ (θ0) that solves

s(δ̂, X, F̂ ; θ0)− s(δ0, X, F0; θ0) = 0. Therefore,

0 =
√
R
(
s(δ̂, X, F̂ ; θ0)− s(δ0, X, F0; θ0)

)
=
√
R
(
Dδs(δ

∗, X, F ∗; θ0) ·
(
δ̂ (θ0)− δ0

)
+DF s(δ

∗, X, F ∗; θ0) ·
(
F̂ − F0

))
=
√
R

((
δ̂ (θ0)− δ0

)(∫
Gδ(δ

∗, X, vr; θ0)dF ∗(vr)

)
+

∫
g(δ∗, X, vr; θ0)d

(
F̂ − F0

)
(vr)

)
.

Rearranging,

√
R
(
δ̂ (θ0)− δ0

)
=−

(∫
Gδ(δ

∗, X, vr; θ0)dF ∗(vr)

)−1√
R

∫
g(δ∗, X, vr; θ0)d

(
F̂ − F0

)
(vr)

=−
(∫

Gδ(δ
∗, X, vr; θ0)dF ∗(vr)

)−1 1√
R

R∑
r=1

{g(δ∗, X, vr; θ0)− Ev[g(δ∗, X, v; θ0)]} .

We will show that
√
R
(
δ̂ (θ0)− δ0

)
converges in distribution to a Gaussian random variable. To

do so, we first need to show that G = {g (δ,X, vr; θ0) : δ ∈ D} is a Donsker class. We will show that

g (δ,X, vr; θ0) is Lipschitz in δ with a uniformly bounded Lipschitz constant, which is an example

of a parametric class (van der Vaart (1998)). Since g (δ,X, vr; θ0) is continuously differentiable in
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δ, the intermediate value theorem implies that for all δ1, δ2 ∈ D, there exists δ̃ ∈ [δ1, δ2] such that

g (δ1, X, vr; θ0)− g (δ2, X, vr; θ0) = Gδ

(
δ̃, X, vr; θ0

)
(δ1 − δ2) .

Recall that all of the elements of Gδ (δ,X, vr; θ0) lie in (−1, 0)∪ (0, 1) since ∂gjt
∂δjt

= gjt(1−gjt) for all

j = 1...J, t = 1...T , and ∂gjt
∂δkt

= −gjtgkt for all k 6= j, t = 1...T . Therefore, sup
δ∈D
‖Gδ (δ,X, vr; θ0)‖ <

∞ and g (δ,X, vr; θ0) is Lipschitz in δ with uniformly bounded Lipschitz constant ‖Gδ (δ,X, vr; θ0)‖.

Since we also showed in lemma 1 that
∫
Gδ(δ,X, v; θ)dF (v) is nonsingular for all δ, X, θ, and F , it

follows that
√
R
(
δ̂ (θ0)− δ0

)
= Op (1).

Next, note that the intermediate value theorem implies there exists δ̃ ∈ [δ∗, δ0] such that

1√
R

R∑
r=1

{g (δ∗, X, vr; θ0)− Ev [g (δ∗, X, v; θ0)]}

=
1√
R

R∑
r=1

{g (δ0, X, vr; θ0)− Ev [g (δ0, X, v; θ0)]}

+
1

R

R∑
r=1

(
Gδ

(
δ̃, X, vr; θ0

)
− Ev

[
Gδ

(
δ̃, X, v; θ0

)])√
R (δ∗ − δ0) .

Note that all of the elements of ∇2
δg (δ,X, vr; θ0) lie in (−2, 0) ∪ (0, 2) since for all t = 1...T ,

∂2gjt
∂δ2
jt

= gjt(1 − gjt)2 − 2g2
jt(1 − gjt) for all j = 1...J,

∂2gjt
∂δ2
kt

= −gjt(1 − gkt)gkt + gjtg
2
kt for all k 6= j

∂2gjt
∂δkt∂δjt

= −gjt(1 − gjt)gkt + g2
jtgkt for all k 6= j, and ∂2gjt

∂δkt∂δht
= −2gjtgktght for all k 6= j, h 6= j,

k 6= h. Therefore, sup
δ∈D

∥∥∇2
δg (δ,X, vr; θ0)

∥∥ <∞ and ∇G = {Gδ (δ,X, vr; θ0) : δ ∈ D} is a parametric

class and therefore a Donsker class. It follows then that

1

R

R∑
r=1

(
Gδ

(
δ̃, X, vr; θ0

)
− Ev

[
Gδ

(
δ̃, X, v; θ0

)])
= Op

(
1√
R

)
.

Note that δ∗ is also
√
R-consistent for δ0 since it lies between the

√
R-consistent estimator δ̂ (θ0)

and δ0. Since F̂ is consistent for F0, and F ∗ lies between F̂ and F0, F ∗ is consistent for F0. The

continuous mapping theorem implies that

(∫
Gδ(δ

∗, X, vr; θ0)dF ∗(vr)

)−1

=

(∫
Gδ(δ0, X, vr; θ0)dF0(vr)

)−1

+ op(1).
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Therefore,

√
R
(
δ̂ (θ0)− δ0

)
= −

(∫
Gδ(δ0, X, vr; θ0)dF0(vr)

)−1 1√
R

R∑
r=1

{g(δ0, X, vr; θ0)− Ev[g(δ0, X, v; θ0)]}+Op

(
1√
R

)
.

9.3 Proof of Theorem 3

Proof. From proposition 2, for all t = 1...T ,

√
R
(
δ̂t (θ0)− δ0t

)
= −

(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1 1√
R

R∑
r=1

(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)]) +Op

(
1√
R

)
.

The sample and population moments are

γ̂ (θ) =
1

T

T∑
t=1

Zt

(
δ̂t (θ)−X ′tθ1

)
γ (θ) = lim

T,R→∞

1

T

T∑
t=1

E
[
Zt

(
δ̂t (θ)−X ′tθ1

)]
.

Note that γ (θ0) = E [Zt (δ0t −X ′tθ0,1)] = E [Ztξt] = 0.

Let g̃(θ0) = 1
T

∑T
t=1 Zt (δ0t −X ′tθ0,1). Then

√
T g̃(θ0)

d→ N(0,Ω), where

Ω = lim
T→∞

1

T

T∑
t=1

V ar
(
Zt(δ0t −X ′tθ0,1)

)
= V ar

(
Zt(δ0t −X ′tθ0,1)

)
.
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Our sample moments scaled by
√
m , where m = min(R, T ), can be rewritten as

√
m(γ̂(θ0)− g̃(θ0) + g̃(θ0))

=

√
m√
R

√
R

1

T

T∑
t=1

Zt(δ̂t (θ0)− δ0t) +

√
m√
T

√
T g̃(θ0)

= −
√
m√
R

1

T

T∑
t=1

Zt

(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1 1√
R

R∑
r=1

(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)])

+Op

(√
m

R

)
+

√
m√
T

√
T g̃(θ0)

=
√
m

1

TR
STR(θ0) +Op

(√
m

R

)
+

√
m√
T

√
T g̃(θ0).

Since X1, ..., XT , Z1, ..., ZT , ξ1, ..., ξT and v1, ..., vR are drawn i.i.d. from two different independent

distributions, the first term is a two-sample U-statistic:

1

TR
STR(θ0) =

1

TR

T∑
t=1

R∑
r=1

q(Zt, Xt, vr; θ0, δ0t)

q(Zt, Xt, vr; θ0, δ0t) = −Zt
(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1

(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)]) .

We can decompose the two sample U-statistic into the sum of two projection terms and a remainder

term. The first projection term integrates out the vr while the second term integrates out the Zt,

Xt, and ξt.

1

TR
STR(θ0) =

1

T

T∑
t=1

f(Zt, δ0t, Xt; θ0) +
1

R

R∑
r=1

h (vr; θ0) +
1

TR

T∑
t=1

R∑
r=1

q̃ (Zt, Xt, vr; θ0, δ0t) .
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f(Zt, δ0t, Xt; θ0)

=

∫
q(Zt, Xt, vr; θ0, δ0t)dF0(vr)

= −Zt
∫ (∫

∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1 ∫
(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)]) dF0(vr)

= 0.

h (vr; θ0)

=

∫
q(Zt, Xt, vr; θ0, δ0t)dP (Zt, Xt, ξt)

= −
∫ {

Zt

(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1

(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)])

}
dP (Zt, Xt, ξt).

Neumeyer (2004) showed that

1

TR

T∑
t=1

R∑
r=1

q̃ (Zt, Xt, vr; θ0, δ0t) = Op

(
1√
TR

)
.

It follows from the Lindeberg-Levy central limit theorem that

√
m

1

TR
STR(θ0) =

√
m√
R

1√
R

R∑
r=1

h (vr; θ0) +Op

( √
m√
TR

)
d→ N (0, (1 ∧ k)Σf + (1 ∧ 1/k)Σh) .

where k = lim
T→∞,R→∞

R
T , Σf = V ar(f(Zt, δ0t, Xt; θ0)) = 0, and Σh = V ar (h (vr; θ0)).

Since {Xt, Zt, ξt}Tt=1 are independent of {vr}Rr=1,

√
mγ̂(θ0) =

√
m√
R

1√
R

R∑
r=1

h (vr; θ0) +

√
m√
T

√
T g̃(θ0) +Op

(√
m

R

)
+Op

( √
m√
TR

)
d→ N (0, (1 ∧ 1/k)Σh + (1 ∧ k)Ω) .

9.4 Proof of Theorem 4

Proof. First we will show stochastic equicontinuity. Recall that the implicit function theorem
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applied to s(δ̂, X, F̂ ; θ) = S implies that δ̂ (θ) is a continuously differentiable function of θ. By the

intermediate value theorem, there exists θ∗ ∈ [θ, θ0] such that δ̂t (θ) − δ̂t (θ0) = ∂δ̂t(θ∗)
∂θ (θ − θ0). It

follows that

‖γ̂ (θ)− γ̂ (θ0)− (γ (θ)− γ (θ0))‖

=

∥∥∥∥∥ 1T
T∑
t=1

{
Zt
(
δ̂t (θ)− δ̂t (θ0)−

(
X ′tθ1 −X ′tθ0,1

))}
− lim
T,R→∞

1

T

T∑
t=1

E
[
Zt
(
δ̂t (θ)− δ̂t (θ0)−

(
X ′tθ1 −X ′tθ0,1

))]∥∥∥∥∥
≤

∥∥∥∥∥ 1T
T∑
t=1

Zt
∂δ̂t (θ

∗)

∂θ2
− lim
T,R→∞

1

T

T∑
t=1

E

[
Zt
∂δ̂t (θ

∗)

∂θ2

]∥∥∥∥∥
2

‖θ2 − θ0,2‖+

∥∥∥∥∥ 1T
T∑
t=1

ZtX
′
t − E

[
ZtX

′
t

]∥∥∥∥∥
2

‖θ1 − θ0,1‖

≤ sup
θ∈Θ

∥∥∥∥∥ 1T
T∑
t=1

Zt
∂δ̂t (θ)

∂θ2
− lim
T,R→∞

1

T

T∑
t=1

E

[
Zt
∂δ̂t (θ)

∂θ2

]∥∥∥∥∥
2

‖θ2 − θ0,2‖+

∥∥∥∥∥ 1T
T∑
t=1

ZtX
′
t − E

[
ZtX

′
t

]∥∥∥∥∥
2

‖θ1 − θ0,1‖ .

Recall that ∂δ̂(θ)
∂θ1

= 0 and ∂δ̂(θ)
∂θ2

= −
(

1
R

∑R
r=1Gδ

(
δ̂, X, vr; θ

))−1
1
R

∑R
r=1Gθ2

(
δ̂, X, vr; θ

)
. If we

can show that E
[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

]
< ∞ , then since ∂δ̂(θ)

∂θ2
is continuous in θ and Θ is a compact

set, we will have that the uniform law of large numbers holds (see e.g. Lemma 2.4 in Newey and

McFadden (1994)):

sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

Zt
∂δ̂t (θ)

∂θ2
− lim
T,R→∞

1

T

T∑
t=1

E

[
Zt
∂δ̂t (θ)

∂θ2

]∥∥∥∥∥
2

= op(1).

Recall that Zt ∈ RL×J for finite L and that E
[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

]
<
√
LE

[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
∞

]
. It

therefore suffices to show that E
[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
∞

]
<∞. Note that

E

[
sup
θ∈Θ

∥∥∥∥∥Zt∂δ̂t (θ)

∂θ2

∥∥∥∥∥
∞

]

≤ E [‖Zt‖∞] + E

[
sup
θ∈Θ

∥∥∥∥∥∂δ̂t (θ)

∂θ2

∥∥∥∥∥
∞

]

≤ E [‖Zt‖∞] + E

sup
θ∈Θ

∥∥∥∥∥∥
(

1

R

R∑
r=1

∇δgt
(
δ̂t, Xt, vr; θ

))−1
∥∥∥∥∥∥
∞

sup
θ∈Θ

∥∥∥∥∥ 1

R

R∑
r=1

∇θ2gt
(
δ̂t, Xt, vr; θ

)∥∥∥∥∥
∞

 .
We showed in lemma 1 that

∫
∇δgt(δt, Xt, vr; θ)dF (vr) is strictly diagonally dominant for all θ, δt,

Xt, and F , which implies 1
R

∑R
r=1∇δgt (δt, Xt, vr; θ) is strictly diagonally dominant for all θ, δt, and

Xt. The Ahlberg-Nilson-Varah bound (Ahlberg and Nilson (1963); Varah (1975)) states that for all
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t = 1...T ,

sup
θ∈Θ

∥∥∥∥∥∥
(

1

R

R∑
r=1

∇δgt
(
δ̂t, Xt, vr; θ

))−1
∥∥∥∥∥∥
∞

≤ sup
θ∈Θ

1

min1≤i≤JT

(
|aiit (θ)| −

∑
j 6=i |a

ij
t (θ)|

) ,
where aijt (θ) is the i, jth element of 1

R

∑R
r=1∇δgt

(
δ̂t, Xt, vr; θ

)
. Since aijt (θ) ∈ (−1, 0) ∪ (0, 1)

for all θ, there exists a constant C such that max
t=1...T

sup
θ∈Θ

∥∥∥∥( 1
R

∑R
r=1∇δgt

(
δ̂t, Xt, vr; θ

))−1
∥∥∥∥
∞

<

C. Next we show E

[
sup
θ∈Θ

∥∥∥ 1
R

∑R
r=1∇θ2gt

(
δ̂t, Xt, vr; θ

)∥∥∥
∞

]
< ∞ by showing that the vector

E

[
sup
θ∈Θ

1
R

∑R
r=1

∣∣∣∣∂gjt(δ̂t,Xt,vr;θ)∂θ2

∣∣∣∣] < ∞ for all j = 1...J . Note that for all t = 1...T , j = 1...J ,

and r = 1...R,

sup
θ∈Θ

∣∣∣∣∣∣
∂gjt

(
δ̂t, Xt, vr; θ

)
∂θ2

∣∣∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣ exp(δ̂jt + µrjt)

1 +
∑

k∈N (t) exp(δ̂kt + µrkt)

([
1, x′jt

]′ ◦ vr − ∑k∈N (t) exp(δ̂kt + µrkt)xkt ◦ vr
1 +

∑
k∈N (t) exp(δ̂kt + µrkt)

)∣∣∣∣∣
≤ max

k=1...J

∣∣∣[1, x′kt]′ ◦ vr∣∣∣ sup
θ∈Θ

∣∣∣∣∣
(

exp(δ̂jt + µrjt)

1 +
∑

k∈N (t) exp(δ̂kt + µrkt)

)(
1 +

∑
k∈N (t) exp(δ̂kt + µrkt)

1 +
∑

k∈N (t) exp(δ̂kt + µrkt)

)∣∣∣∣∣
≤ 2 max

k=1...J

∣∣∣[1, x′kt]′ ◦ vr∣∣∣ .
Since E

[
max
j=1...J

∣∣∣∣[1, x′jt]′ ◦ vr∣∣∣∣] <∞ by assumption, E
[
sup
θ∈Θ

1
R

∑R
r=1

∣∣∣∣∂gjt(δ̂t,Xt,vr;θ)∂θ2

∣∣∣∣] ≤
E

[
1
R

∑R
r=1 max

j=1...J

∣∣∣∣[1, x′jt]′ ◦ vr∣∣∣∣] <∞ and E
[
sup
θ∈Θ

∥∥∥∂δ̂t(θ)∂θ2

∥∥∥
∞

]
≤

CE

[
sup
θ∈Θ

∥∥∥ 1
R

∑R
r=1∇θ2gt

(
δ̂t, Xt, vr; θ

)∥∥∥
∞

]
<∞. This combined with E [‖Zt‖∞] <∞ implies that

E

[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
∞

]
<∞ which implies that E

[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

]
<∞. It follows that

sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

Zt
∂δ̂t (θ)

∂θ2
− lim
T,R→∞

1

T

T∑
t=1

E

[
Zt
∂δ̂t (θ)

∂θ2

]∥∥∥∥∥
2

= op(1).

Additionally, since E [‖ZtX ′t‖2] <∞, the weak law of large numbers implies that

∥∥∥∥∥ 1

T

T∑
t=1

ZtX
′
t − E

[
ZtX

′
t

]∥∥∥∥∥
2

= op(1).
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Therefore, stochastic equicontinuity holds:

sup
‖θ−θ0‖≤κm

√
m ‖γ̂ (θ)− γ̂ (θ0)− (γ (θ)− γ (θ0))‖ /

(
1 +
√
m ‖θ − θ0‖

)
≤ sup
‖θ−θ0‖≤κm

‖γ̂ (θ)− γ̂ (θ0)− (γ (θ)− γ (θ0))‖ / ‖θ − θ0‖

≤sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

Zt
∂δ̂t (θ)

∂θ2
− lim
T,R→∞

1

T

T∑
t=1

E

[
Zt
∂δ̂t (θ)

∂θ2

]∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T

T∑
t=1

ZtX
′
t − E

[
ZtX

′
t

]∥∥∥∥∥
2

=op(1).

Using similar arguments, we can show that for all θ′, θ′′ ∈ Θ,

∥∥γ̂ (θ′)− γ̂ (θ′′)∥∥ ≤ sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

Zt
∂δ̂t (θ)

∂θ2

∥∥∥∥∥
2

∥∥θ′2 − θ′′2∥∥+

∥∥∥∥∥ 1

T

T∑
t=1

ZtX
′
t

∥∥∥∥∥
2

∥∥θ′1 − θ′′1∥∥
≤ BT

∥∥θ′ − θ′′∥∥
for BT = sup

θ∈Θ

∥∥∥ 1
T

∑T
t=1 Zt

∂δ̂t(θ)
∂θ2

∥∥∥
2

+
∥∥∥ 1
T

∑T
t=1 ZtX

′
t

∥∥∥
2
≤ 1

T

∑T
t=1

(
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

+ ‖ZtX ′t‖2
)

=

Op(1) since E
[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

]
<∞ and E [‖ZtX ′t‖2] <∞.

Since γ (θ) = lim
T,R→∞

1
T

∑T
t=1E

[
Zt

(
δ̂t (θ)−X ′tθ1

)]
is continuous in θ, Θ is a compact set, and

‖γ̂ (θ)− γ (θ)‖ p→ 0 for each θ, Lemma 2.9 in Newey and McFadden (1994) implies that

sup
θ∈Θ
‖γ̂ (θ)− γ (θ)‖ p→ 0.

9.5 Proof of Theorem 7

Proof. Recall that

∂δ̂ (θ)

∂θ2
= −

(
1

R

R∑
r=1

Gδ

(
δ̂, X, vr; θ

))−1
1

R

R∑
r=1

Gθ2

(
δ̂, X, vr; θ

)
.

We showed in theorem 4 that E
[
sup
θ∈Θ

∥∥∥Zt ∂δ̂t(θ)∂θ2

∥∥∥
2

]
<∞. Since θ̂ p→ θ0 and ∂δ̂(θ)

∂θ2
is continuous in θ,
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by Lemma 4.3 of Newey and McFadden (1994) and the weak law of large numbers,

Γ̂ =

[
− 1
T

∑T
t=1 ZtX

′
t,

1
T

∑T
t=1 Zt

∂δ̂t(θ)
∂θ2

∣∣∣
θ̂

]
p→
[
−E [ZtX

′
t] , lim

T,R→∞
1
T

∑T
t=1E

[
Zt

∂δ̂t(θ)
∂θ2

∣∣∣
θ0

] ]
.

Since we also assumed E ‖ZtX ′t‖2 <∞ and Zt
(
δ̂t (θ)−X ′tθ1

)
is integrable for θ in a neighborhood

of θ0, we can interchange differentiation and expectation so that plimΓ̂ = Γ.

Furthermore, WT = Σ̂−1 p→W = Σ−1. Therefore, Γ̂′WT Γ̂
p→ Γ′WΓ.

To show that Ω̂
p→ Ω, note that since δ̂

(
θ̂2

)
p→ δ0 , θ̂ p→ θ0, and there exists κm ↓ 0 such that

E

[
sup

‖θ−θ0‖≤κm

∥∥∥Zt (δ̂t (θ)−X ′tθ1

)∥∥∥] <∞, by Lemma 4.3 of Newey and McFadden (1994),

1

T

T∑
t=1

(
Zt

(
δ̂t

(
θ̂2

)
−X ′tθ̂1

))(
Zt

(
δ̂t

(
θ̂2

)
−X ′tθ̂1

))′
− E

[(
Zt
(
δ0t −X ′tθ0,1

)) (
Zt
(
δ0t −X ′tθ0,1

))′] p→ 0.

To show that Σ̂h
p→ Σh, we first show that max

r=1...R

∥∥∥ĥ(vr; θ̂)− h̃ (vr; θ0)
∥∥∥
∞

p→ 0, where

ĥ
(
vr; θ̂

)
= − 1

T

T∑
t=1

Zt

(
1

R

R∑
r′=1

∇δgt(δ̂t, Xt, vr′ ; θ̂)

)−1(
gt(δ̂t, Xt, vr; θ̂)−

1

R

R∑
r=1

gt(δ̂t, Xt, vr; θ̂)

)

h̃ (vr; θ0) = − 1

T

T∑
t=1

Zt

(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1

(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)]) .

Note that for all t = 1...T , ∇δgt (δt, Xt, vr; θ) is continuous in δt and θ, and ∇δgt (δt, Xt, vr; θ) ∈

(−1, 0)∪ (0, 1) for all δt, Xt, vr, and θ. Since θ̂
p→ θ0 and δ̂

(
θ̂2

)
p→ δ0, by Lemma 4.3 of Newey and

McFadden (1994),

max
t=1...T

∥∥∥∥∥ 1

R

R∑
r=1

∇δgt(δ̂t, Xt, vr; θ̂)−
∫
∇δgt(δ0t, Xt, vr; θ0)dF0(vr)

∥∥∥∥∥
∞

p→ 0.

By the Continuous Mapping Theorem,

max
t=1...T

∥∥∥∥∥∥
(

1

R

R∑
r=1

∇δgt(δ̂t, Xt, vr; θ̂)

)−1

−
(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1
∥∥∥∥∥∥
∞

p→ 0.

Similarly, note that for all t = 1...T , gt (δt, Xt, vr; θ) is continuous in δt and θ, and gt (δt, Xt, vr; θ) ∈
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(0, 1) for all δt, Xt, vr, and θ. Since θ̂
p→ θ0 and δ̂

(
θ̂2

)
p→ δ0, by Lemma 4.3 of Newey and McFadden

(1994),

max
t=1...T

∥∥∥∥∥ 1

R

R∑
r=1

gt

(
δ̂t, Xt, vr; θ̂

)
− Ev [gt (δ0t, Xt, v; θ0)]

∥∥∥∥∥
∞

p→ 0.

Note that the Ahlberg-Nilson-Varah (Ahlberg and Nilson (1963); Varah (1975)) bound on the strictly

diagonally dominant matrices
∫
∇δgt (δ0t, Xt, vr; θ0) dF (vr) implies that there exists a constant C

such that

max
t=1...T

∥∥∥∥∥
(∫
∇δgt (δ0t, Xt, vr; θ0) dF0 (vr)

)−1
∥∥∥∥∥
∞

< C.

Also, since gt (δt, Xt, vr; θ) ∈ (0, 1) for all δt, Xt, vr, and θ, there exists B such that

max
t=1...T

max
r=1...R

∥∥∥∥∥gt (δ̂t, Xt, vr; θ̂
)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)∥∥∥∥∥
∞

< B.

We assumed in theorem 4 that E ‖Zt‖∞ <∞, which implies that ‖Zt‖∞ = Op (1).

Furthermore, we assumed

max
r=1...R

max
t=1...T

∥∥∥gt (δ̂t, Xt, vr; θ̂
)
− gt (δ0t, Xt, vr; θ0)

∥∥∥
∞

p→ 0.
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Therefore,

max
r=1...R

∥∥∥ĥ(vr; θ̂)− h̃ (vr; θ0)
∥∥∥
∞

≤ max
r=1...R

∥∥∥∥∥∥ 1

T

T∑
t=1

Zt

( 1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

))−1

−
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1


(
gt

(
δ̂t, Xt, vr; θ̂

)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

))∥∥∥∥∥
∞

+ max
r=1...R

∥∥∥∥∥ 1

T

T∑
t=1

Zt

(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1 (
gt

(
δ̂t, Xt, vr; θ̂

)
− gt (δ0t, Xt, vr; θ0)

)∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

T

T∑
t=1

Zt

(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1
(

1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)
− Ev [gt (δ0t, Xt, v; θ0)]

)∥∥∥∥∥
∞

≤ max
r=1...R

max
t=1...T

∥∥∥∥∥∥Zt
( 1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

))−1

−
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1


(
gt

(
δ̂t, Xt, vr; θ̂

)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

))∥∥∥∥∥
∞

+ max
r=1...R

max
t=1...T

∥∥∥∥∥Zt
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1 (
gt

(
δ̂t, Xt, vr; θ̂

)
− gt (δ0t, Xt, vr; θ0)

)∥∥∥∥∥
∞

+ max
t=1...T

∥∥∥∥∥Zt
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1
(

1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)
− Ev [gt (δ0t, Xt, v; θ0)]

)∥∥∥∥∥
∞

≤max
t=1...T

‖Zt‖∞ max
t=1...T

∥∥∥∥∥∥
(

1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

))−1

−
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1
∥∥∥∥∥∥
∞

max
r=1...R

max
t=1...T

∥∥∥∥∥gt (δ̂t, Xt, vr; θ̂
)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)∥∥∥∥∥
∞

+ max
t=1...T

‖Zt‖∞ max
t=1...T

∥∥∥∥∥
(∫
∇δgt (δ0t, Xt, vr′ ; θ0) dF0 (vr′)

)−1
∥∥∥∥∥
∞{

max
r=1...R

max
t=1...T

∥∥∥gt (δ̂t, Xt, vr; θ̂
)
− gt (δ0t, Xt, vr; θ0)

∥∥∥
∞

+ max
t=1...T

∥∥∥∥∥ 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)
− Ev [gt (δ0t, Xt, v; θ0)]

∥∥∥∥∥
∞

}

=op (1) .
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Then it follows that

Σ̂h =
1

R

R∑
r=1

ĥ
(
vr; θ̂

)
ĥ
(
vr; θ̂

)′
=

1

R

R∑
r=1

(
h̃ (vr; θ0) + op (1)

)(
h̃ (vr; θ0) + op (1)

)′
=

1

R

R∑
r=1

h̃ (vr; θ0) h̃ (vr; θ0)′ + op (1) .

Note that 1
R

∑R
r=1 h̃ (vr; θ0) h̃ (vr; θ0)′ is a two-sample V-statistic, which is known to satisfy a

weak law of large numbers (see e.g. van der Vaart (1998)). Therefore, for k (δ0t, Xt, vr; θ0) =

−Zt
(∫
∇δgt(δ0t, Xt, v; θ0)dF0(v)

)−1
(gt(δ0t, Xt, vr; θ0)− Ev[gt(δ0t, Xt, v; θ0)]),

1

R

R∑
r=1

h̃ (vr; θ0) h̃ (vr; θ0)′
p→ E

[
k (δ0t, Xt, vr; θ0) k (δ0t, Xt, vr; θ0)′

]
= Σh.

We have shown that Σ̂ = min
(
1, RT

)
Ω̂ +min

(
1, TR

)
Σ̂h

p→ Σ = (1 ∧ k)Ω + (1 ∧ 1/k)Σh. Therefore,

ÂsyV ar
[
θ̂
]

=
(

Γ̂′WT Γ̂
)−1

Γ̂′WT Σ̂WT Γ̂
(

Γ̂′WT Γ̂
)−1 p→

(
Γ′WΓ

)−1
Γ′WΣWΓ

(
Γ′WΓ

)−1
.

9.6 Proof of Theorem 8

Proof. We first check that assumptions 1-4 of Chernozhukov and Hong (2003) are satisfied.

Condition (i) of Theorem 4 in combination with condition (i) of the present theorem is assumption

1 of Chernozhukov and Hong (2003). Condition (ii) of the present theorem is assumption 2 of

Chernozhukov and Hong (2003). We assumed in Theorem 5 that inf
θ/∈G
‖γ(θ)‖W > ‖γ(θ0)‖W for

every open set G that contains θ0, which is equivalent to saying that for any sequence {θm} ∈ Θ,

lim sup
m→∞

‖γ (θm) ‖W ≤ ‖γ(θ0)‖W implies ‖θm − θ0‖ → 0. Since γ (θ) is a continuous function of θ and

theorem 4 implies that ‖γ̂(θ̂)‖WT
converges in probability to ‖γ(θ)‖W uniformly over Θ, it follows by

Lemma 1 of Chernozhukov and Hong (2003) that assumption 3 is satisfied: for any κ > 0, there exists
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ε such that lim inf
m→∞

P

(
inf

‖θ−θ0‖≥κ
(‖γ̂(θ)‖WT

− ‖γ̂(θ0)‖WT
) ≥ ε

)
= 1. Assumption 4(i) is a quadratic

expansion of the sample objective function around θ0, which we know to exist from differentiability

of γ̂(θ) at θ0 (condition (i) in Theorem 6). Assumption 4(ii) is the asymptotic normality of

Γ′W
√
mγ̂(θ0), which we showed in Theorem 6. Assumption 4(iii) follows from nonsingularity of

Γ′WΓ.

We show assumption 4(iv) by showing that the remainder term in the quadratic expansion of

the sample objective function around θ0 converges in probability to zero uniformly over θ in a δm

ball around θ0. Define

Rm(θ) =
m

2
γ̂(θ)′WT γ̂(θ)− m

2
γ̂(θ0)′WT γ̂(θ0)

−
√
m(θ − θ0)Γ′W

√
mγ̂(θ0)− 1

2

√
m(θ − θ0)′Γ′WΓ

√
m(θ − θ0),

where we can write Rm(θ) = R1m(θ) +R2m(θ) for

R1m(θ) = m

(
1

2
γ̂(θ)′WT γ̂(θ)− 1

2
γ̂(θ0)′WT γ̂(θ0)− (θ − θ0)Γ′WT γ̂(θ0)− 1

2
(θ − θ0)′Γ′WΓ(θ − θ0)

)
,

R2m (θ) = m(θ − θ0)Γ′ (WT −W ) γ̂(θ0).

We can show that for any κm → 0,

sup
‖θ−θ0‖≤κm

|R2m(θ)|
1 +m‖θ − θ0‖2

= op(1),

due to consistency of WT for W and
√
mγ̂(θ0) = Op(1). The more difficult term is R1m (θ), which
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can be decomposed into six terms expressed in terms of ε(θ) ≡ γ̂(θ)−γ̂(θ0)−γ(θ)
1+
√
m‖θ−θ0‖

:

1

m
R1m(θ) =

1

2

(
1 +
√
m‖θ − θ0‖

)2
ε(θ)′WT ε(θ)︸ ︷︷ ︸

r1(θ)

+ γ̂(θ0)′WT (γ(θ)− Γ(θ − θ0))︸ ︷︷ ︸
r2(θ)

+
(
1 +
√
m‖θ − θ0‖

)
ε(θ)′WT γ̂(θ0)︸ ︷︷ ︸

r3(θ)

+
(
1 +
√
m‖θ − θ0‖

)
ε(θ)′WTγ(θ)︸ ︷︷ ︸

r4(θ)

+
1

2
γ(θ)′ (WT −W ) γ(θ)︸ ︷︷ ︸

r5(θ)

+
1

2
γ(θ)′Wγ(θ)− 1

2
(θ − θ0)′Γ′WΓ(θ − θ0)︸ ︷︷ ︸
r6(θ)

.

It remains to show that for any κm → 0, sup
‖θ−θ0‖≤κm

m|rj(θ)|
1+m‖θ−θ0‖2

= op(1) for all j = 1, ..., 6. Using

the Taylor expansion γ(θ) = Γ(θ − θ0) + o (‖θ − θ0‖), sup
‖θ−θ0‖≤κm

√
m ‖ε(θ)‖ p→ 0 (the stochastic

equicontinuity result shown in Theorem 4), and consistency of WT for W ,

sup
‖θ−θ0‖≤κm

m |r1(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

mε(θ)′WT ε(θ) = op(1),

sup
‖θ−θ0‖≤κm

m |r2(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

o (
√
m ‖θ − θ0‖)′

1 +m ‖θ − θ0‖2
∣∣WT

√
mγ̂(θ0)

∣∣ = op(1),

sup
‖θ−θ0‖≤κm

m |r3(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

2
√
m

∣∣∣∣ε(θ)′WT

√
mγ̂(θ0)√

m ‖θ − θ0‖

∣∣∣∣ = op(1),

sup
‖θ−θ0‖≤κm

m |r4(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

2
√
m

∣∣∣∣ε(θ)′WT

√
mγ(θ)√

m ‖θ − θ0‖

∣∣∣∣ = op(1),

sup
‖θ−θ0‖≤κm

m |r5(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

( √
m ‖γ(θ)‖√
m ‖θ − θ0‖

)2

‖WT −W‖ = op(1),

sup
‖θ−θ0‖≤κm

m |r6(θ)|
1 +m ‖θ − θ0‖2

≤ sup
‖θ−θ0‖≤κm

o
(
‖θ − θ0‖2 ‖W‖

)
‖θ − θ0‖2

= op(1).
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9.7 Comparison with Freyberger (2015)

We reproduce the formulas for Φ1 and Φ2 in Freyberger (2015) and compare them to our Ω and

Σh. In the following expressions, we reproduce Freyberger (2015)’s notation under the assumption

of overlapping simulation draws: vrt = vr for all t. First note that Freyberger (2015) uses νjt when

defining the market shares while we use gjt.

νjt (θ, xt, ξt, vr) =
exp

(
X ′jtθ1 + ξjt + µrjt

)
1 +

∑
k∈N (t) exp

(
X ′ktθ1 + ξjt + µrkt

) = gjt (δt, Xt, vr; θ)

σt (θ, xt, ξt, Pt) =

∫
νt (θ, xt, ξt, v) dPt (v) =

∫
gt (δt, Xt, v; θ) dF (v) .

Freyberger (2015) defines H0t as the Jacobian matrix of the true market shares with respect to ξt,

which is the same as our Jacobian matrix of the true market shares with respect to δt = X ′tθ1 + ξt.

H0t =
∂σt (θ0, ξt (θ0, P0t) , P0t)

∂ξ
=

∫
∇δgt (δ0t, Xt, vr; θ0) dF0 (vr) .

Freyberger (2015) also defines

ε0rt = νt (θ0, xt, ξt (θ0, P0t, st) , vr)−
∫
νt (θ0, xt, ξt (θ0, P0t, st) , v) dP0t (v) .

Freyberger (2015) uses zt ∈ RJ×p to denote the matrix of instruments for market t while we use

Zt ∈ Rp×J . His expression for Φ1 coincides with our Ω under our assumption that the data are i.i.d.

across markets.

Φ1 = lim
T→∞

E

[
1

T

T∑
t=1

z′tξt (θ0, P0t, st) ξt (θ0, P0t, st)
′ zt

]

= lim
T→∞

E

[
1

T

T∑
t=1

Zt
(
δ0t −X ′tθ01

) (
δ0t −X ′tθ01

)′
Z ′t

]

= E
[
Zt
(
δ0t −X ′tθ01

) (
δ0t −X ′tθ01

)′
Z ′t

]
= Ω.

Freyberger (2015)’s Φ2 is not exactly the same as our Σh, but only differs by a o(1) term. To see

this, note that Φ2 = lim
T→∞

1
T

∑T
t=1 V ar

[
z′tH

−1
0t ε0rt

]
can be rewritten using the fact that vr are i.i.d.
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as lim
T→∞

V ar
[

1
TR

∑T
t=1

∑R
r=1 q (Zt, Xt, vr; θ0, δ0t)

]
, where

q (Zt, Xt, vr; θ0, δ0t) = −Zt
(∫
∇δgt (δ0t, Xt, v; θ0) dF0 (v)

)−1(
gt (δ0t, Xt, vr; θ0)−

∫
gt (δ0t, Xt, vr; θ0) dF0 (vr)

)
.

Recall that 1
TR

∑T
t=1

∑R
r=1 q (Zt, Xt, vr; θ0, δ0t) is a two-sample U-statistic whose decomposition is

1

TR

T∑
t=1

R∑
r=1

q (Zt, Xt, vr; θ0, δ0t) =
1

R

R∑
r=1

h (vr; θ0) + op (1) .

h (vr; θ0) = −
∫ {

Zt

(∫
∇δgt (δ0t, Xt, v; θ0) dF0 (v)

)−1 (
gt (δ0t, Xt, vr; θ0)−

∫
gt (δ0t, Xt, vr; θ0) dF0 (vr)

)}
dP (Zt, Xt, ξt) .

It follows that Φ2 = lim
T→∞

V ar [h (vr; θ0) + op (1)] = Σh + o (1). Next we explain why Φ̂1 = Ω̂ and

Φ̂2 = Σ̂h. Note that

Ĥt =
∂σt

(
θ̂, xt, ξ̂t, Prt

)
∂ξ

=
1

R

R∑
r=1

diag
(
νt

(
θ̂, xt, ξ̂t, vr

))
− νt

(
θ̂, xt, ξ̂t, vr

)
νt

(
θ̂, xt, ξ̂t, vr

)′
=

1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

)
.

ν̄t

(
θ̂, xt, ξ̂t, vr

)
= νt

(
θ̂, xt, ξ̂t, vr

)
− σt

(
θ̂, xt, ξ̂t, Prt

)
= gt

(
δ̂t, Xt, vr; θ̂

)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

)
.

It follows that

Φ̂1 =
1

T

T∑
t=1

z′tξ̂tξ̂
′
tzt =

1

T

T∑
t=1

Zt

(
δ̂t −X ′tθ̂1

)(
δ̂t −X ′tθ̂1

)′
Z ′t = Ω̂.

Φ̂2 =
1

RT

R∑
r=1

T∑
t=1

z′tĤ
−1
t ν̄t

(
θ̂, xt, ξ̂t, vr

)
ν̄t

(
θ̂, xt, ξ̂t, vr

)′ (
Ĥ−1
t

)′
zt

=
1

R

R∑
r=1

ĥ
(
vr; θ̂

)
ĥ
(
vr; θ̂

)′
= Σ̂h.
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ĥ
(
vr; θ̂

)
= − 1

T

T∑
t=1

Zt

(
1

R

R∑
r′=1

∇δgt
(
δ̂t, Xt, vr′ ; θ̂

))−1(
gt

(
δ̂t, Xt, vr; θ̂

)
− 1

R

R∑
r′=1

gt

(
δ̂t, Xt, vr′ ; θ̂

))
.

We can also show that our standard errors are the same as Freyberger (2015)’s standard errors.

Our estimate of the finite sample variance of θ̂ is 1
m

(
Γ̂′WT Γ̂

)−1
Γ̂′WT Σ̂WT Γ̂

(
Γ̂′WT Γ̂

)−1
where

1

m
Σ̂ =

1

m
min

(
1,
R

T

)
Ω̂ +

1

m
min

(
1,
T

R

)
Σ̂h

=
1

T
Ω̂ +

1

R
Σ̂h

=
1

T

(
Φ̂1 +

T

R
Φ̂2

)
.

1
T

(
Γ̂′WT Γ̂

)−1
Γ̂′WT

(
Φ̂1 + T

R Φ̂2

)
WT Γ̂

(
Γ̂′WT Γ̂

)−1
is Freyberger (2015)’s estimate of the finite

sample variance of θ̂.
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