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Abstract
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1 Introduction

Inference on possibly nonsmooth functions of parameters has received much attention in the econo-

metrics literature, as in Woutersen and Ham (2013) and Hirano and Porter (2012). In particular, a

recent insightful paper by Fang and Santos (2014) studies inference for functions of the parameters

that are only Hadamard directionally differentiable and not necessarily differentiable. Fang and

Santos (2014) show that while the asymptotic distribution obtained using the bootstrap is invalid

unless the target function of the parameter is differentiable, asymptotic inference using a consistent

estimate of the first order directional derivative is valid as long as the target function is Hadamard

directionally differentiable. In each of their examples studied, Fang and Santos (2014) constructed

consistent analytical estimates of the directional derivative that are tailored to each particular case.

As an alternative to using analytical estimates, we show that numerical differentiation provides

a comprehensive approach to estimating the directional derivative. The main advantage of using

the numerical directional derivative is its computational simplicity and ease of implementation.

In order to compute an estimate of the directional derivative, the user only needs to specify one

tuning parameter (the stepsize), and she does not need to perform any additional calculations

beyond evaluating the target function twice for each random draw from an approximation of the

limiting distribution of the parameter estimates.

Dümbgen (1993) developed a rescaled bootstrap that was implemented for the specific problem

of matrix eigenvalues. However, his Proposition 1 essentially provides pointwise consistency of the

numerical delta method under directional differentiability. We build on and go beyond these initial

contributions by demonstrating how to perform uniformly valid inference under convexity. We also

generalize to the second order directional delta method and study its application to a wider range

of problems.

The results of this paper also complement Woutersen and Ham (2013), who provide a general

inference method for functions of parameters that can be nondifferentiable and even discontinuous.

In contrast, our numerical differentiation method only applies to directionally differentiable func-

tions but can be easier to implement. We also contribute to the understanding of the statistical

properties of numerical differentiation, which was analyzed in Hong et al. (2010) for different pur-

poses. Most importantly, this paper follows up and complements the insights in Fang and Santos
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(2014), as well as the extensive analytic derivations in Amemiya (1985).

In some applications, the first order directional derivative may vanish on a set of parameters,

which motivates the use of the second order numerical directional delta method. For example,

the test statistics for moment inequality models often use the negative square test function, which

has the property that the first order directional derivative is exactly zero over the null set. We

demonstrate the pointwise consistency of the second order numerical directional derivative and

demonstrate that it can be used to approximate the limiting distribution for the second order

directional delta method.

The rest of this paper is organized as follows. Section 2 describes the setup of the model that

is mostly based on summarizing Fang and Santos (2014), and describes inference based on numer-

ical differentiation. Section 3 first discusses pointwise validity of the numerical directional delta

method for all Hadamard directionally differentiable functions and then demonstrates the uniform

asymptotic validity of the numerical directional delta method for convex and Lipschitz functions.

Convexity and Lipschitz continuity are satisfied in all the examples provided in Fang and Santos

(2014) as well as for test statistics used in certain moment inequality models. Extensions of the uni-

form asymptotic validity results to statistics containing nuisance parameters is discussed in section

3.3. Section 4 describes the second order numerical directional delta method, and an application to

partially identified models such as those studied in Bugni et al. (2015) is illustrated in subsection

A.4 of the appendix. Section 5 reports Monte Carlo simulation results on the coverage frequencies

of various types of confidence intervals obtained using the first order numerical directional delta

method as well as the rejection frequencies for a moment inequalities test based on critical values

obtained using the second order numerical directional delta method. Section 6 proposes a multiple

point first order numerical directional derivative that could be used to reduce bias, and section 7

concludes. The appendix contains a list of commonly used symbols, verification of convexity and

Lipschitz continuity for several examples, proofs, and other technical material.

2 Numerical Directional Delta Method

Fang and Santos (2014) study inference on a nondifferentiable mapping φ (θ) of the parameter

θ ∈ Θ, where θ can be either finite or infinite dimensional, under the requirement that θ ∈ Dφ and

φ : Dφ ⊂ D→ E for D endowed with norm || · ||D and E endowed with norm || · ||E. The domain of
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φ is Dφ.

The true parameter is denoted θ0, for which a consistent estimator θ̂n is available which con-

verges in distribution at a suitable rate rn →∞: rn

(
θ̂n − θ0

)
 G0 in the sense of equation (2.8)

of Kosorok (2007) 1, where the limit distribution G0 is tight and is supported on D0 ⊂ D. Examples

of nondifferentiable φ(·) functions arise in a variety of econometric applications such as moment

inequalities models (Andrews and Shi (2013),Ponomareva (2010)) and threshold regression models

(Hansen (2017)). Using the notation of Fang and Santos (2014), we describe each of these examples

in more detail below.

Generalization of Fang and Santos (2014) Example 2.1 Define φ (θ) = aθ+ + bθ−, where

θ+ = max{θ, 0} and θ− = −min{θ, 0}. Let X ∈ R, θ0 = E[X], and D = E = R.

Generalization of Fang and Santos (2014) Example 2.2 θ = (θ1, . . . , θK) for θk ∈ Rd,

φ (θ) = max (θ1, . . . , θK). D = Rd × Rd × . . .× Rd and E = R.

Fang and Santos (2014) Example 2.3 Define φ (θ0) = supf∈F E [Y f (Z)] as in Andrews and

Shi (2013). Here, Y ∈ R, Z ∈ Rd, and θ0 ∈ `∞ (F). F ⊂ `∞
(
Rd
)

is a set of functions satisfying

θ0 (f) ≡ E [Y f (Z)] for all f ∈ F . D = `∞ (F) and E = R.

Ponomareva (2010) Example In theorem 3.5, inference is performed on φ(θ0) = maxx∈X E [m (Zi) |Xi = x]

where θ0 (x) = E [m (Zi) |Xi = x] is the conditional expectation function, D = `∞
(
Rd
)

and E = R.

The goal of subsequent analysis is to approximate the distribution of φ
(
θ̂n

)
, or with proper

scaling and centering, that of rn

(
φ
(
θ̂n

)
− φ (θ0)

)
, for statistical inference concerning φ (θ0). The

asymptotic distribution bootstrap (ADB) method (coined by Woutersen and Ham (2013) and fur-

ther illustrated in theorems 3 and 4 in Chernozhukov and Hong (2003)) uses the empirical distri-

bution formed by repeated draws from

rn

(
φ

(
θ̂n +

Z∗n
rn

)
− φ

(
θ̂n

))
. (1)

In the above, Z∗n is a function of the data and additional randomness, and its distribution given

the data converges to G1 in probability, denoted Z∗n
P
 G1 in the sense of section 2.2.3 of Kosorok

1Xn  Xn in the metric space (D, d) if and only if supf∈BL1
|E∗f(Xn)− Ef(X)| → 0 where BL1 is the space of

functions f : D 7→ R with Lipschitz norm bounded by 1.
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(2007). Here, G1 is an identical copy of G0, the random variable whose distribution is the limiting

distribution of rn(θ̂n − θ0). Examples of Z∗n include the following:

1. Bootstrap: here Z∗n = rn

(
θ̂∗n − θ̂n

)
, where θ̂∗n are parameter estimates obtained using multi-

nomial, wild, or other commonly used bootstrap implementations. The bootstrap sam-

ple size can also be different from the observed sample size. For example, we can take

Z∗n = rmn

(
θ̂∗mn − θ̂n

)
, where mn →∞ as n→∞, and θ̂∗mn is computed from a multinomial

bootstrap sample of size mn that are i.i.d draws from the empirical distribution. Similar

modifications apply to the next few methods.

2. When θ is a finite dimensional parameter, typically rn =
√
n and G0 = N (0,Σ) for some

variance covariance matrix Σ. Using a consistent estimate Σ̂ of Σ, Z∗n can be a random vector

whose distribution given the data is given by N
(

0, Σ̂
)

.

3. For correctly specified parametric models, one can use Z∗n = rn

(
θ̂∗n − θ̂n

)
, where θ̂∗n are

MCMC draws from the (pseudo) posterior distribution based on the likelihood or other ob-

jective functions (Chernozhukov and Hong (2003)).

4. In Hong and Li (2014), we propose a technique called the numerical bootstrap, which pro-

duces estimates θ (Z∗n) based on the numerical bootstrap empirical measure Z∗n ≡ Pn +

εn
√
n (P ∗n − Pn), where Pn is the empirical measure, P ∗n is the bootstrap empirical measure,

εn is a positive scalar step size parameter that satisfies εn → 0, and
√
nεn →∞. We show that

the finite sample distribution of Z∗n = ε−2γ
n (θ (Z∗n)− θ (Pn)) converges to the same limiting

distribution as that of nγ
(
θ̂n − θ0

)
for a class of estimators that converge at rate nγ for some

γ ∈
[

1
4 , 1
)
.

Intuitively, ADB approximates the distribution of φ
(
θ̂n

)
around φ (θ0) with that of φ

(
θ̂∗n

)

around φ
(
θ̂n

)
, where θ̂∗n is a suitable version of the bootstrap in case (1); a draw from a consistent

estimate of the asymptotic distribution N
(
θ̂n,

1
r2n

Σ̂
)

in case (2); a draw from the MCMC chain in

in case (3); and a draw from θ̂n + r−1
n Z∗n in case (4).

Fang and Santos (2014) showed that the ADB is asymptotically valid only if φ (θ) is Hadamard

differentiable. The delta method, however, is applicable more generally even when ADB fails, as
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long as φ (θ) is Hadamard directionally differentiable even if it is not Hadamard differentiable. Fang

and Santos (2014) make use of the following definition:

Definition 2.1 The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ tangen-
tially to a set D0 ⊂ D if there is a continuous map φ′θ : D0 → E such that:

lim
n→∞

∣∣∣∣
∣∣∣∣
φ (θ + tnhn)− φ (θ)

tn
− φ′θ (h)

∣∣∣∣
∣∣∣∣
E

= 0, (2)

for all {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n→∞ and θ + tnhn ∈ Dφ.

When φ (·) is directionally differentiable in the sense defined above and when the support of

the limiting distribution G0 is contained in D0, Fang and Santos (2014) showed that under suitable

regularity conditions, rn

(
φ
(
θ̂n

)
− φ (θ0)

)
 φ′θ0 (G0) . Based on this result, Fang and Santos

(2014) suggested that this limiting distribution can be consistently estimated by φ̂′n (Z∗n), where Z∗n

is a consistent estimate of G0 (such as the bootstrap, MCMC or asymptotic normal approximation),

and in particular φ̂′n (·) is a consistent estimate of φ′θ0 (·) in a sense that is precisely defined in their

Assumption 3.3.

FS Assumption 3.3 For each fixed θ0, each compact set K ⊆ D, and for any sequence δn ↓ 0,

dδ,K

(
φ̂′n (·) , φ′θ0 (·)

)
≡ sup

h∈Kδ

∥∥∥φ̂′n (h)− φ′θ0 (h)
∥∥∥
E

= op (1) as n→∞. (3)

In the above Kδ denotes the δ-enlargement of a set K: Kδ ≡ {a ∈ D : inf
b∈K
‖a− b‖D < δ}.

We show that the one-sided numerical derivative provides a φ̂′n (·) for which this assumption holds

whenever φ (·) is Lipschitz. In particular, Definition 2 motivates the following estimate φ̂′n (·) based

on a one-sided finite difference formula. For εn → 0 slowly (in the sense that rnεn →∞, where rn

is the convergence rate of θ̂n to θ0), define

φ̂′n (h) ≡
φ
(
θ̂n + εnh

)
− φ

(
θ̂n

)

εn

(4)

as the numerical directional derivative of φ in the direction of h ∈ D0. The rate requirement on

the step size εn is needed to separate numerical differentiation error from the estimation error in

θ̂n, and serves the dual purposes of model selection and numerical differentiation.

For functions that are not Lipschitz, section 3.1 shows that the one-sided numerical derivative

will continue to consistently estimate the directional derivative as long as the function is Hadamard
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directionally differentiable.

The Numerical Directional Delta Method Given the definition in (4), the numerical direc-

tional delta method estimates the limiting distribution of rn

(
φ
(
θ̂n

)
− φ (θ0)

)
using the distribu-

tion of the random variable:

φ̂′n (Z∗n) ≡
φ
(
θ̂n + εnZ∗n

)
− φ

(
θ̂n

)

εn
(5)

which can be approximated by the following:

1. Draw Zs from the distribution of Z∗n for s = 1, . . . , S.

2. For the given εn, evaluate for each s:

φ̂′n (Zs) ≡
φ
(
θ̂n + εnZs

)
− φ

(
θ̂n

)

εn
. (6)

The empirical distribution of φ̂′n (Zs) , s = 1, . . . , S can then be used for confidence interval con-

struction, hypothesis testing, or variance estimation. Consider the case when φ (·) ∈ R is a scalar.

For example, a 1− τ two-sided equal-tailed confidence interval for φ (θ0) can be formed by

[
φ(θ̂)− 1

rn
c1−τ/2, φ(θ̂)− 1

rn
cτ/2

]

where cτ/2 and c1−τ/2 are the τ/2 and 1−τ/2 empirical percentiles of φ̂′n (Zs). Symmetric confidence

intervals can be formed by, where d1−τ is the 1− τ percentile of |φ̂′n(Z∗n)|,
[
φ(θ̂)− 1

rn
d1−τ , φ(θ̂) +

1

rn
d1−τ

]

Note that the random variable φ̂′n (Zs) only requires two evaluations of the φ(·) function for each

draw of Zs. The computational simplicity of the numerical derivative is one of its main advantages.

In equation (5), Z∗n can be any of the four choices discussed in the ADB method after equation (1).

In particular, Fang and Santos (2014) recommended the bootstrap Z∗n = rn

(
θ̂∗n − θ̂n

)
. Following

the tradition of the literature (except Andrews and Buchinsky (2000)), we take S =∞ in analyzing

φ̂′n(Z∗n). Subsampling is also a special case of (5) when Z∗n is the
(
n
b

)
point discrete distribution of

rb

(
θ̂n,b,i − θ̂n

)
(equation (2.1) page 42 of Politis et al. (1999)) and when εn = 1/

√
b. When all

(
n
b

)

are used in subsampling, no simulation error is involved (S = ∞). Simulating Zs from Zn is only
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relevant when one randomly draws from the
(
n
b

)
blocks.

We now give the form of φ̂′n (Z∗n) in examples 2.1 and 2.3 of Fang and Santos (2014).

Fang and Santos (2014) Example 2.1 With Z∗n ∼ N
(
0, σ̂2

n

)
and σ̂2

n the usual sample variance:

φ̂′n (Z∗n) ≡
a
(
θ̂n + εnZ∗n

)+
+ b

(
θ̂n + εnZ∗n

)−
− aθ̂+

n + bθ̂−n

εn
.

Fang and Santos (2014) Example 2.3 Note that θ̂n (f) ≡ θ (Pn) (f) ≡ 1
n

∑n
i=1 yif (zi). Its

multinomial bootstrap version is given by θ̂∗n (f) ≡ θ (P ∗n) (f) ≡ 1
n

∑n
i=1 y

∗
i f (z∗i ). Alternatively the

multiplier bootstrap can be used: θ (P ∗n) (f) ≡ 1
n

∑n
i=1 ξ

∗
i yif (zi) for positive random variables ξ∗i

with Eξ∗i = 1. In this case θ̂n = θ (Pn), Z∗n =
√
n (θ (P ∗n)− θ (Pn)), so that with the multinomial

bootstrap,

φ̂′n (Z∗n) ≡supf∈F θ (Pn + εn
√
n (P ∗n − Pn)) (f)− supf∈F θ (Pn) (f)

εn

=
supf∈F

1
n

∑n
i=1 (yif (zi) + εn

√
n (y∗i f (z∗i )− yif (zi)))− supf∈F

1
n

∑n
i=1 yif (zi)

εn
,

or with multiplier bootstrap

φ̂′n (Z∗n) =
supf∈F

1
n

∑n
i=1 (yif (zi) + εn

√
n (ξ∗i yif (zi)− yif (zi)))− supf∈F

1
n

∑n
i=1 yif (zi)

εn
.

A similar procedure can be applied to each of the examples in Fang and Santos (2014).

In the context of a matrix eigenvalue application and a minimum distance application, Dümbgen

(1993) presented a ”rescaled bootstrap method” which corresponds essentially to the numerical

delta method, where the rescaling sample size is inversely related to the step size in numerical

differentiation. Dümbgen (1993) showed pointwise consistency which is essentially Theorem 3.1

in section 3.1, but did not present uniformity results. The idea of using numerical differentiation

for directionally differentiable parameters also appeared in Song (2014), although Song (2014)

only considered finite dimensional θ ∈ Rd and scalar functions φ (·) ∈ R that are (1) translation

equivalent: φ (θ + c) = φ (θ) + c for c ∈ R; and (2) scale equivalent: φ (αθ) = αφ (θ) for α ≥ 0.

Under these conditions Song (2014) gives the following more specialized form of the numerical

derivative formula φ̂′n (Z∗n) ≡ φ
(
Z∗n + ε−1

n

(
θ̂n − φ

(
θ̂n

)))
. If φ (·) is only scale equivalent as in an

L1 version of Andrews and Soares (2010) and Bugni et al. (2015) discussed in subsection 3.3, then

8

 Electronic copy available at: https://ssrn.com/abstract=2606416 



equivalently, φ̂′n (Z∗n) ≡ φ
(
Z∗n + ε−1

n θ̂n

)
− φ

(
ε−1
n θ̂n

)
.

3 Asymptotic validity

This section shows that the numerical directional delta method provides consistent inference under

general conditions. We first verify pointwise consistency and then discuss uniform validity.

3.1 Pointwise asymptotic distribution

In this subsection we show pointwise consistency of the numerical delta method using the definition

of Hadamard directional differentiability and (a bootstrap version of) the extended continuous

mapping theorem. The first part of the following theorem is a directional delta method due to

Dümbgen (1993), Fang and Santos (2014), and references therein. The second part of the theorem

shows consistency of the numerical delta method. Let BL1 be the space of Lipschitz functions

f : D 7→ R with Lipschitz norm bounded by 1. For random variables F1 and F2, let ρBL1 (F1, F2) =

supf∈BL1
|Ef (F1) − Ef (F2) | metrize weak convergence. As in Kosorok (2007) (pages 19-20), we

use
P
 to denote weak convergence in probability conditional on the data. 2

Theorem 3.1 Suppose D and E are Banach Spaces and φ : Dφ ⊆ D 7→ E is Hadamard directionally

differentiable at θ0 tangentially to D0. Let θ̂n : {Xi}ni=1 7→ Dφ be such that for some rn ↑ ∞, rn{θ̂n−
θ0} G0 in D, where G0 is tight and its support is included in D0. Then rn

(
φ
(
θ̂n

)
− φ (θ0)

)
 

φ′θ0 (G0). Let Z∗n
P
 G0 satisfy certain measurability assumptions stated in the appendix. Then for

εn → 0, rnεn →∞,

φ̂′n (Z∗n) ≡
φ
(
θ̂n + εnZ∗n

)
− φ

(
θ̂n

)

εn

P
 φ′θ0 (G0) .

An alternative approach to showing consistency is to use remark 3.6 and Lemma A.6 in Fang

and Santos (2014), which place Lipschitz and Hölder continuity requirements on φ̂′n (·), a consistent

estimate of the directional derivative function. These results in Fang and Santos (2014) apply more

generally to φ̂′n (·) constructed using alternative methods other than numerical differentiation. The

particular structure of the numerical delta method allows us to invoke the bootstrap extended

continuous mapping theorem directly without having to rely on these intermediate conditions.

2X̂n
P
 X means that X̂n is a random function of the data and supf∈BL1

∣∣∣∣E [f(X̂n)|Xn
]
− Ef(X)

∣∣∣∣ p→ 0 (where

Xn denotes the data).
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However, establishing these conditions turns out to be important for uniform validity considerations

in the next section, and are thus presented here.

Lemma 3.1 (Fang and Santos (2014) Remark 3.6 and Lemma A.6) If the directional deriva-
tive estimate is Hölder continuous in the direction arguments, namely, if there exists some κ > 0
and fixed constant C0 <∞ such that for all h1, h2 ∈ D0 and all n ≥ 1,

‖φ̂′n (h1)− φ̂′n (h2) ‖D ≤ C0‖h1 − h2‖κD (7)

then Fang and Santos (2014) assumption 3.3 holds as long as pointwise for each h ∈ D0,

∥∥∥φ̂′n(h)− φ′θ0(h)
∥∥∥
E

= op (1) . (8)

Our first result provides the simple finding that whenever the function φ (·) is Lipschitz (κ = 1), so

is the one-sided numerical directional derivative.

Theorem 3.2 If φ : Dφ → E is Lipschitz, satisfying ‖φ (h1) − φ (h2) ‖E ≤ C‖h1 − h2‖D for

all h1, h2 ∈ D, and for Lipschitz constant C that does not depend on n, then so is φ̂′n(h) ≡
φ(θ̂n+εnh)−φ(θ̂n)

εn
in h for all εn > 0.

Note also that φ′θ (h) is Lipschitz in h for all θ whenever φ (θ) is Lipschitz:

‖φ′θ (h1)− φ′θ (h2) ‖E ≤ lim
t↓0

∥∥∥∥
φ (θ + th1)

t
− φ (θ + th1)

t

∥∥∥∥
E
≤ C‖h1 − h2‖D. (9)

Theorem 3.2 and Lemma 3.1 imply that whenever the function φ (·) is Lipschitz, it suffices to

verify the pointwise consistency condition in (8).

Theorem 3.3 Let the conditions in Theorem 3.1 hold for φ (·) and θ̂n. If εn ↓ 0 and rnεn → ∞,

then for φ̂n (·) defined in (4) and for any h ∈ D0,
∥∥∥φ̂′n(h)− φ′θ0(h)

∥∥∥
E

= op(1).

To summarize, we have shown that if the function φ(·) is Lipschitz in its argument of the

parameter, then so is the numerical directional derivative φ̂′n(·) in its argument of the direction of

differentiation, uniformly in the step size εn. Furthermore, we have shown that φ̂′n(h) converges

in probability to φ′θ0(h) for each fixed h ∈ D0. Whenever φ (·) is Lipschitz, we have shown that

the numerical directional derivative φ̂′n(h) satisfies Fang and Santos (2014) Lemma A.6, remark 3.6

and in turn Fang and Santos (2014) Assumption 3.3. Consequently, the remaining results in Fang

and Santos (2014) imply that inference based on φ̂′n (Z∗n) is asymptotically valid, in a formal sense.

Intuitively, when εn is much larger than 1
rn

, the estimation error in θ̂n does not obscure the true

direction for which the derivative is being calculated. It turns out that whenever φ (·) is Lipschitz,

10

 Electronic copy available at: https://ssrn.com/abstract=2606416 



Hadamard differentiability is equivalent to Gateaux differentiability as noted in proposition 3.5 of

Shapiro (1990) 3.

Theorem 3.2 depends crucially on the function φ (·) being Lipschitz in the parameter argument.

This turns out to be a rather weak requirement that is satisfied by all the examples in Fang and

Santos (2014). The calculations in the appendix verify that the Lipschitz condition holds for all the

functions φ (·) in examples 2.1 to 2.5, as well as the convex projection inference problem in Fang

and Santos (2014). Consequently, the numerical delta method (4) provides a (pointwise) consistent

asymptotic approximation for the distribution of rn

(
φ
(
θ̂n

)
− φ (θ0)

)
in each of these examples,

including the convex projection problem in Fang and Santos (2014).

For example, for φ (θ) = infλ∈Λ ‖θ− λ‖ which defines the distance between θ and its projection

onto the convex set Λ, the distribution of rn

(
φ
(
θ̂n

)
− φ (θ0)

)
is accurately approximated by

φ̂′n (Z∗n) =
1

εn

(
inf
λ∈Λ
‖θ̂n + εnZ∗n − λ‖ − inf

λ∈Λ
‖θ̂n − λ‖

)
(10)

for some Z∗n
P
 G0 where rn

(
θ̂n − θ0

)
 G0. Evaluating the distribution of φ̂′n (Z∗n) requires

solving 2 × S optimization routines, where S is the number of draws from Z∗n. This is more

computationally efficient than the original solutions provided in Fang and Santos (2014), which are

based on combining a model selection scheme with analytic knowledge of the function φ (·). To

illustrate this difference, consider again Fang and Santos (2014) example 2.1.

Fang and Santos (2014) Example 2.1 Fang and Santos (2014) proposed to estimate φ′θ0 (h)

by h if θ̂n > κn, by −h if θ̂n < −κn , and by |h| when |θ̂n| < κn, where the selection parameter κn

satisfies the same rate condition as the step size parameter εn: κn → 0 but κn
√
n −→ 0. In other

words, for φ (θ0) = |θ0|, φ̂′n (h) is set to h if θ̂n is sufficiently positive, to −h if θ̂n is sufficiently

negative, and to |h| if θ̂n is sufficiently close to zero.

Instead, we use the numerical directional derivative in (4):

φ̂′n (h) ≡
φ
(
θ̂n + εnh

)
− φ

(
θ̂n

)

εn
=
|θ̂n + εnh| − |θ̂n|

εn
, (11)

is never exactly equal to h, −h, or |h|. Instead, under the condition that εn → 0 and
√
nεn →∞,

φ̂′n (h) converges in probability to h when θ0 > 0, converges to −h when θ0 < 0, and converges to

3We thank a referee for pointing this out.
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|h| when θ0 = 0. Consistent inference follows then from Slutsky’s lemma.

The Lipschitz assumption can be relaxed to Hölder continuity and Fang and Santos (2014)

Assumption 3.3 can still be satisfied under a stronger condition on the step size parameter, as the

following theorem shows.

Theorem 3.4 If φ(·) is Holder continuous with exponent κ and rκnεn → ∞, then for all compact

K ⊂ D = Rd, sup
h∈K

∥∥∥φ̂′n(h)− φ′θ0(h)
∥∥∥
E

= op(1).

In finite dimension situations, K can be replaced by Kδ ≡ {a ∈ D : infb∈K ‖a − b‖D < δ}. In

general, as in Fang and Santos (2014), Frechet directional differentiability might be needed to allow

for replacement of K by Kδ.

3.2 Uniform Inference

Uniform asymptotic validity over a class of distributions can be a desirable feature to establish for

an inference procedure (Romano and Shaikh 2008; 2012). The Lipschitz and convexity properties of

φ (·) are key to establishing uniform size control in the test of H0 : φ(θ0) ≤ 0 versus H1 : φ(θ0) > 0.

As we show in the Appendix, the φ(·) functionals considered in the examples in Fang and Santos

(2014) are not only Lipschitz but also convex, so that for λ ∈ [0, 1],

φ (λθ1 + (1− λ) θ2) ≤ λφ (θ1) + (1− λ)φ (θ2) .

We first note that convexity of the functional φ (·) implies subadditivity of the directional derivative

φ′θ0 , which then implies sublinearity since the directional derivative is positively homogeneous of

degree 1.

Lemma 3.2 When φ (·) is convex and Hadamard directionally differentiable at θ0 and D0 is a
convex set, then ∀0 ≤ λ ≤ 1,

φ′θ0 (h1 + h2) ≤ φ′θ0 (h1) + φ′θ0 (h2) , φ′θ0 (λh1 + (1− λ)h2) ≤ λφ′θ0 (h1) + (1− λ)φ′θ0 (h2) . (12)

Fang and Santos (2014) use the statistic rnφ
(
θ̂n

)
to test:

H0 : φ (θ0) ≤ 0 against H1 : φ (θ0) > 0. (13)

and suggested rejecting H0 whenever rnφ
(
θ̂n

)
≥ ĉ1−τ , where ĉ1−τ is the 1− τ quantile of φ̂′n (Z∗n)

or its simulated version in (6). This is related to the one-sided confidence interval in Part (i) of
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Theorem 2.1 in Romano and Shaikh (2012):

P
(
rn

(
φ
(
θ̂n

)
− φ (θ0)

)
≤ ĉ1−τ

)
, (14)

Whenever φ (θ) is convex and Lipschitz in θ, using the 1− τ percentile of φ̂′n (Z∗n) as ĉ1−τ provides

uniform size control for both (13) and (14) under the condition that rnεn → ∞ without requiring

εn → 0. Intuitively, convexity implies for εn >
1
rn

and for any realization z from G0,

rn

(
φ

(
θ0 +

z

rn

)
− φ (θ0)

)
≤ 1

εn
(φ (θ0 + εnz)− φ (θ0)) , (15)

so that 1
εn

(φ (θ0 + εnG0)− φ (θ0)) first order stochastically dominates rn

(
φ
(
θ0 + G0

rn

)
− φ (θ0)

)
. 4

If we denote, using notations from Romano and Shaikh (2012), the distribution functions of the

two sides of (15) by Jn (x,G0) and Jεn (x,G0), then equation (15) immediately implies that

sup
n

sup
x∈R
{Jεn (x,G0)− Jn (x,G0)} ≤ 0. (16)

Next, φ (θ) being Lipschitz ensures that rn

(
φ
(
θ0 + G0

rn

)
− φ (θ0)

)
is close to rn

(
φ
(
θ̂n

)
− φ (θ0)

)
,

whose distribution function is denoted Jn (x, P ), while 1
εn

(φ (θ0 + εnG0)− φ (θ0)) is close to φ̂′n (Z∗n),

whose conditional distribution function given the data is Jεn (x, P ), so that Jn (x,G0) and Jεn (x,G0)

in (16) can be replaced by their feasible sample versions.

Uniformity statements in line with those in Romano and Shaikh (2012) are possible under the

following assumptions. We focus on the finite dimensional case D = Rd and E = R.

Assumption 3.1 Let P be a class of distributions such that

(i) limn→∞ supP∈P ρBL1

(
rn

(
θ̂n − θ (P )

)
,G0

)
= 0, limM→∞ supP∈P P (|G0| ≥M) = 0;

(ii) for each ε > 0, limn→∞ supP∈P P (ρBL1 (Z∗n,G0) ≥ ε) = 0.

Primitive conditions for Assumption 3.1 can be found for example in the uniform central limit

theorems of Romano and Shaikh (2008).

Assumption 3.2 Define for each x, a, d, Ca,d,x = {g : φ
(
d+ g

a

)
≤ x}. Then

sup
P∈P

P (G0 ∈ ∂Ca,d,x) = 0 for all x, a, d,

where ∂Ca,d,x denotes the boundary of Ca,d,x.

4Equation (15) follows from rewriting it as, for rnεn > 1, φ
(
θ0 + z

rn

)
≤ 1

rnεn
φ (θ0 + εnz) +

(
1− 1

rnεn

)
φ (θ0) .
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Assumption 3.2 is mainly used to invoke versions of Theorem 2.11 of Bhattacharya and Rao

(1986), as in Example 3.2 of Romano and Shaikh (2012). If φ (·) is scale equivariant, then it is

sufficient to check all Cd,x ≡ {g : φ (d+ g) ≤ x}. Convexity is crucial in the following.

Theorem 3.5 Define P to be a class of DGPs such that rn

(
θ̂n − θ (P )

)
is asymptotically tight

uniformly over P ∈ P, and Assumptions 3.1, 3.2 both hold. If rnεn → ∞, εn → 0, and φ (·) is
Lipschitz and convex, then ∀ε > 0,

lim
n→∞

sup
P∈P

P

(
sup
x∈A

Jεn (x, P )− Jn (x, P ) ≤ ε
)
→ 1

lim sup
n→∞

sup
P∈P

P
(
rn

(
φ
(
θ̂n

)
− φ (θ (P ))

)
≥ ĉ1−τ

)
≤ τ.

where A is any set for which limλ→0 supP∈P supx∈A P (Jεn (·,G0) ∈ (x, x+ λ)) = o (1) and contains
a neighborhood of both J−1

εn (1− τ,G0) and J−1
n (1− τ, P ) for all large n. We have used Jεn (·,G0)

to denote the random variable defined by the right hand side of (15).

According to Theorem 3.5, whenever φ (·) is convex, the lower one-sided confidence interval
[
φ
(
θ̂n

)
− ĉ1−τ

rn
,∞
)

will have uniformly asymptotically valid coverage. Similarly, if φ (·) is instead a concave function,

then the same arguments will establish that the upper one-sided confidence interval of the form of
(
−∞, φ

(
θ̂n

)
− ĉτ

rn

]
has uniformly asymptotically valid coverage. Furthermore, if it is known that

φ (·) ≥ 0 (e.g. Andrews (2000)), we can use ε−1
n φ

(
θ̂n + εnZ∗n

)
in place of φ̂′n (Z∗n) at the cost of be-

ing more conservative. Furthermore, if the least favorable null distribution is desired in hypothesis

testing, then θ̂n can also be replaced by the least favorable null value θ0 if θ0 is known. In this case,

φ̂′n (Z∗n) = 1
tn

(φ (θ0 + tnZ∗n)− φ (θ0)) consistently estimates the null distribution for any tn → 0 by

the extended continuous mapping theorem. If we take tn = r−1
n and use the bootstrap distribution

Z∗n = rn

(
θ̂∗n − θ̂n

)
, a modified bootstrap uses rn

(
φ
(
θ0 + θ̂∗n − θ̂n

)
− φ (θ0)

)
to approximate the

null distribution of rn

(
φ
(
θ̂n

)
− φ (θ0)

)
. However, it does not provide moment selection to improve

the power of the test and does not offer uniform size control for rn

(
φ
(
θ̂n

)
− φ (θ0)

)
under drifting

sequences of θn. In some cases, if only φ (θ) = φ0 but not θ0 is known under the null, θ̂n can be

either the constrained or unconstrained estimate. Note also that the only use of convexity of φ (·) is

the stochastic dominance condition in (15) and (16). Therefore the convexity requirement of φ (·)

can be replaced by the following stochastic dominance condition:

Assumption 3.3 For all θ0, and for all t > 0, φ(θ0+tG0)−φ(θ0)
t is nondecreasing in t.

Even if φ (θ) is not convex and does not satisfy Assumption 3.3, it is still possible to establish

uniform size control over θ0 under sufficient conditions for the limiting distribution of the numerical
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directional derivative to stochastically dominate the analytic limiting distribution over all θ0 that

lie in the null set.

Assumption 3.4 For any θ0, for all η sufficiently close to zero and for all t > 0,
φ′θ0

(η+tG0)−φ′θ0 (η)

t
is nondecreasing in t.

Clearly Assumption 3.3 (which in turn is implied by φ (·) being convex) is a sufficient condition

for Assumption 3.4. Assumption 3.4 is also satisfied if φ′θ0(h) is convex in h (which in turn follows

from convexity of φ (·)), since for t2 > t1 > 0 and any realization z from G0,
φ′θ0

(η+t1z)−φ′θ0 (η)

t1
≤

φ′θ0
(η+t2z)−φ′θ0 (η)

t2
follows from rewriting φ′θ0 (η + t1z) ≤

(
1− t1

t2

)
φ′θ0(η) +

(
t1
t2

)
φ′θ0 (η + t2z). As-

sumption 3.4 plays a similar role to (15) and (16) and implies for εnrn > 1 and any realization z

from G0,

rn

(
φ′θ0

(
η +

z

rn

)
− φ′θ0 (η)

)
≤
φ′θ0(η + εnz)− φ′θ0(η)

εn
= φ′θ0

(
η

εn
+ z

)
− φ′θ0

(
η

εn

)
(17)

In order for rn

(
φ′θ0

(
η + G0

rn

)
− φ′θ0 (η)

)
to provide a good approximation to rn

(
φ
(
θ̂n

)
− φ (θ0)

)

and for φ′θ0

(
η
εn

+ G0

)
− φ′θ0

(
η
εn

)
to provide a good approximation to φ̂′n (Z∗n), we require the

following additional assumption.

Assumption 3.5 Suppose D0 is convex. For any tn ↓ 0, ηn →∞, and any given θ0:

lim
tn↓0,ηn→∞

∣∣∣∣
1

tn
(φ (θ0 + ηn + tnh)− φ (θ0 + ηn))−

(
φ′θ0

(
ηn
tn

+ h

)
− φ′θ0

(
ηn
tn

)) ∣∣∣∣ = 0.

We now state a uniformity result similar to Andrews and Soares (2010) without relying on convexity.

Theorem 3.6 Let φ (·) be Lipschitz, rnεn → ∞, and εn → 0. Define P to be a class of DGPs

such that rn

(
θ̂n − θ (P )

)
is asymptotically tight uniformly over P ∈ P, Assumptions 3.1 and

3.2 hold, and for which φ (·) satisfies either Assumption 3.3 or Assumptions 3.4 and 3.5. Then,
∀ε, δ > 0 and x = J−1

n (1− τ − ε, P ), supP∈P (Jεn (x, P ) ≤ Jn (x, P ) + ε) ≥ 1 − δ. Consequently,

lim supn→∞ supP∈P P
(
rn

(
φ
(
θ̂n

)
− φ (θ (P ))

)
≥ ĉ1−τ

)
≤ τ.

It turns out that the following additional condition is also satisfied in most of the examples in Fang

and Santos (2014) and in Andrews and Soares (2010): For all vn → v, |v| = 1, and all |an| → 0,

φ′θ0,v (·) = limn→∞ φ
′
θ0+|an|vn (·) , which is the limit of the directional derivative along direction v,

is well defined. It is not required for results in this section, and its only additional implication is

that the asymptotic size is exact along local parameter sequences drifting sufficiently slowly: for

εn/|θ0| → 0, lim
n→∞

P
(
rn

(
φ
(
θ̂n

)
− φ (θ0)

)
≥ ĉ1−τ

)
= τ .
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3.3 Dealing with Nuisance Parameters

Unlike conventional derivatives, directional derivatives are not generally linearly separable in dif-

ferent subsets of parameters unless more assumptions are made. Consider now φ (θ, α) where α are

a set of nuisance parameters. In addition to requiring that φ (·, ·) be jointly Hadamard direction-

ally differentiable in θ, α tangentially to D0 = (D0,θ,D0,α), we impose the following assumption of

separability and partial linearity in α:

Assumption 3.6 Suppose D0,α is convex and φ′θ,α
(
hθ, h

1
α + h2

α

)
= φ′θ,α

(
hθ, h

1
α

)
+ φ′θ,α

(
0, h2

α

)
.

This assumption holds for example in Hansen (2017) when θ is the threshold parameter and α

are the regression coefficients. Under Assumption 3.6, while (5) can be used to estimate φ′θ,α (hθ, hα)

jointly in θ, α, it is also possible to estimate φ′θ,α (hθ, 0) and φ′θ,α (0, hα) separately, using the nu-

merical delta method and the bootstrap respectively. For rnεn →∞,

φ̂′n (hθ, 0) =
φ
(
θ̂n + εnhθ, α̂n

)
− φ

(
θ̂n, α̂n

)

εn

φ̂′n (0, hα) =rn

(
φ
(
θ̂n, α̂n + r−1

n hα

)
− φ

(
θ̂n, α̂n

))
.

(18)

Then (5) can be replaced by, with Z∗n =
(
Z∗n,θ,Z∗n,α

)
, φ̂′n (Z∗n) ≡ φ̂′n

(
Z∗n,θ, 0

)
+ φ̂′n

(
0,Z∗n,α

)
. In par-

ticular, when Z∗n,θ = rn

(
θ̂∗n − θ0

)
and Z∗n,α = rn (α̂∗n − α0), the distribution of rn

(
φ
(
θ̂n, α̂n

)
− φ (θ0, α0)

)

is approximated by 1
εn

(
φ
(
θ̂n + εnrn

(
θ̂∗n − θ̂n

)
, α̂n

)
− φ

(
θ̂n, α̂n

))
+rn

(
φ
(
θ̂n, α̂

∗
n

)
− φ

(
θ̂n, α̂n

))
.

The Fang and Santos (2014) assumptions (2.1, 2.2, 2.3, 3.1, 3.2 and 3.3) are implicitly under-

stood to hold jointly in θ, α in the rest of this section.

Theorem 3.7 The result of Theorem 3.3 holds with (18) under Assumption 3.6.

A special case of Assumption 3.6 is when estimating α does not affect the asymptotic distri-

bution, as in for example the weighting matrix in moment inequality models (e.g., Andrews and

Soares (2010)).

Assumption 3.7 φ′θ,α (hθ, hα) = φ′θ,α (hθ, 0) for all h = (hθ, hα).

Under A3.7, it is natural to estimate φ′θ,α (h) by φ̂′n (hθ, 0), and replace φ̂′n (Z∗n) in (5) with

φ̂′n
(
Z∗n,θ, 0

)
=
φ
(
θ̂n + εnZ∗n,θ, α̂n

)
− φ

(
θ̂n, α̂n

)

εn
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Pointwise consistency of φ̂′n (hθ, 0) for φ′θ,α (hθ, 0) follows directly from Theorem 3.3 with h =

(hθ, 0). Furthermore, φ̂′n (hθ, 0) is Lipschitz in hθ as long as φ (θ, α) is Lipschitz in θ uniformly in

α:
∥∥∥φ̂′n(h1, 0)− φ̂′n(h2, 0)

∥∥∥
E

=
∥∥∥φ(θ̂n+εnh1,α̂n)−φ(θ̂n+εnh2,α̂n)

εn

∥∥∥
E
≤ C ‖h1 − h2‖D .

Under Assumption 3.7, we also obtain uniform size control with φ (θ, α) for (13) and (14),

whenever φ (θ, α) is convex in θ for each α. In this case, analogous to (15), for any realization z

from G0,θ, where Z∗n,θ
P
 G0,θ,

rn

(
φ

(
θ0 +

z

rn
, α0

)
− φ (θ0, α0)

)
≤ 1

εn
(φ (θ0 + εnz, α0)− φ (θ0, α0)) , (19)

so that 1
εn

(φ (θ0 + εnG0,θ, α0)− φ (θ0, α0)) stochastically dominates rn

(
φ
(
θ0 +

G0,θ

rn
, α0

)
− φ (θ0, α0)

)
.

Directional differentiability and Assumption 3.7 ensure that rn

(
φ
(
θ0 +

G0,θ

rn
, α0

)
− φ (θ0, α0)

)
is

close to rn

(
φ
(
θ̂n, α̂n

)
− φ (θ0, α0)

)
while 1

εn
(φ (θ0 + εnG0,θ, α0)− φ (θ0, α0)) is close to φ̂′n

(
Z∗n,θ, 0

)
.

Formally, under Assumption 3.7, Assumptions 3.3 and 3.4 are only required to hold in θ0:

Assumption 3.8 For all θ0, α0, and t > 0,
φ(θ0+tG0,θ,α0)−φ(θ0,α0)

t is nondecreasing in t.

Assumption 3.9 Suppose D0,θ is convex. For any θ0 and α0, for all η and ν sufficiently close to

zero, and for all t > 0,
φ′θ0,α0

(η+tG0,θ,ν)−φ′θ0,α0 (η,ν)

t is nondecreasing in t. Furthermore, Assumption
3.5 holds with θ0, α0 and for any h = (hθ, hα) = o (1).

Then we can state the following theorem.

Theorem 3.8 The conclusions of Theorem 3.5 hold under its stated conditions and Assumption

3.7, where we now call Jεn (xn, Pn) the distribution function of φ̂′n

(
Z∗n,θ, 0

)
, and Jn (xn, Pn) that

of rn

(
φ
(
θ̂n, α̂n

)
− φ (θ0, α0)

)
. Furthermore, the conclusions of Theorem 3.6 hold under its stated

conditions and Assumption 3.7, when ĉ1−τ refers to the (1−τ)th percentile of the conditional distri-

bution of φ̂′n

(
Z∗n,θ, 0

)
given the data, and if for any θ0 ∈ Θ, either Assumption 3.8 or Assumption

3.9 holds.

While we have required rn (α̂n − α0) = Op (1), in many applications the weaker condition α̂n
p−→

α0 suffices, such as for the variance in a t-statistic and the weighting matrix for moment conditions.

However, in these problems rn (α̂n − α0) = Op (1) always holds under stronger regularity conditions.

When φ (·, ·) is fully Hadamard differentiable, Assumption 3.6 holds with

φ′θ,α (hθ, hα) =
∂

∂θ
φθ,α (hθ, 0) +

∂

∂α
φθ,α (0, hα) .
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In this case the bootstrap can approximate the distribution of rn

(
φ
(
θ̂n, α̂n

)
− φ (θ0, α0)

)
by that

of rn

(
φ
(
θ̂n + r−1

n Z∗n,θ, α̂n + r−1
n Z∗n,α

)
− φ

(
θ̂n, α̂n

))
, or by that of

rn

(
φ
(
θ̂n + r−1

n Z∗n,θ, α̂n
)
− φ

(
θ̂n, α̂n

)
+ φ

(
θ̂n, α̂n + r−1

n Z∗n,α
)
− φ

(
θ̂n, α̂n

))
.

In particular, if φ (·) is a model parameter itself (now denoted θ), and if θ denotes the underlying

distribution (now denoted P ), then the distribution of θ̂n − θ0 = θ (Pn, α̂n) − θ (P, α0) can be

approximated by θ (P ∗n , α̂
∗
n) − θ (Pn, α̂n), where P ∗n is the bootstrap data set and α̂∗n is computed

on the same bootstrap data set. In some situations, if α is computed from an independent data

set such that α̂n ∼ N
(
α, Ω̂

)
, then α̂∗n can be draws from N

(
α̂n, Ω̂

)
. In this case an alternative

approximation is θ (P ∗n , α̂n)− θ (Pn, α̂n) + θ (Pn, α̂
∗
n)− θ (Pn, α̂n) where θ (P ∗n , α̂n)− θ (Pn, α̂n) can

also be replaced by any approximate distribution of θ̂n treating α̂n as known.

3.4 Application to Partially Identified Models: The L1 version

As an application, we relate the numerical delta method to a L1 version of the partially identified

model studied by Andrews and Soares (2010). While the current partial identification literature

chooses to work with S (x,Σ) =
∑K

k=1

(
x−k
)2

, an alternative is to choose S (·) to be a Lp norm. For

example, we may choose S (x) = minh∈Λ=Rk+
||x− h||p =

(∑k
i=1

(
x−i
)p)1/p

. For p = 2 and when a

weighting matrix W is employed,

S (x,W ) = min
h∈Λ=Rk+

√
(x− h)′W (x− h).

A consistent estimate Ŵ of the weighting matrix W is often available, and can be treated as a

nuisance parameter that does not affect the asymptotic distribution in the sense of assumption 3.7.

If such a Lp norm is used instead in Andrews and Soares (2010), then S (·) is convex and

theorem 3.5 can be applied. On the one hand, whether to take the 1/p root makes no difference

in a point identified model since optimization is invariant to monotonic transformations. On the

other hand, it implies a different directional derivative, and does make a difference in set identified

models and GMS methods.

Suppose we are testing H0 : θ0 ≥ 0 using the sample mean θ̂n. Let’s consider the case of p = 2

and a single moment equality. If we do not take the square root, we reject whenever n
(
θ̂−n

)2
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is greater than the (1− α)th percentile of

((
θ̂n
εn

+ Z∗n
)−)2

−
((

θ̂n
εn

)−)2

, where Z∗n is a normal

random variable. However, if we take the square root, we reject whenever
√
n
(
θ̂−n

)
is greater than

the (1− α)th percentile of
(
θ̂n
εn

+ Z∗n
)−
−
(
θ̂n
εn

)−
. The transformation for the critical values is not

the same as the transformation for the test statistic, and therefore the resulting rejection areas will

be different.

4 Second Order Numerical Directional Delta Method

In situations in which the first order delta method limiting distribution is degenerate, the second (or

higher) order delta method may provide the necessary nondegenerate large sample approximation.

For example, Andrews and Soares (2010) conducts inference using φ(θ) =
∑K

k=1

(
θ−k
)2

, which

has a first order directional derivative of φ′θ(h) = −∑K
k=1 2θ−k hk. Under the null hypothesis of

inf
k=1...K

θk ≥ 0, φ′θ(h) = 0, which leads to a degenerate first order delta method limiting distribution.

We will maintain the assumption that φ(·) is first order Hadamard differentiable at θ0. The

second order Hadamard directional derivative at θ0 in the direction h tangential to D0 ⊆ D is

defined as

φ′′θ0(h) ≡ lim
tn↓0,hn→h∈D0

φ(θ0 + tnhn)− φ(θ0)− tnφ′θ0(hn)
1
2 t

2
n

(20)

Sufficient conditions for the existence of φ′′θ0(h) are that φ(θ) is Hadamard differentiable uni-

formly in θ around some neighborhood of θ0 and that φ′θ (h) is directionally differentiable in θ at θ0.

Although the definition of the second order directional derivative contains only one direction h, in

principle we can use different directions h1 and h2. For g
(
tn, h

1
n, h

2
n

)
= t−1

n

(
φ′θ0+tnh1n

(
h2
n

)
− φ′θ0

(
h2
n

))
,

limtn↓0,(h1n,h2n)→(h1,h2) g
(
tn, h

1
n, h

2
n

)
= φ′′θ0 (h1, h2) for h1 ∈ D0, h2 ∈ D0. In this paper, if there is only

one argument in the φ′′θ0(·) function, then we are assuming that h1 = h2.

Note that φ′′θ0(h) is continuous with respect to h ∈ D0 , and it is also positively homogeneous of

degree 2: φ′′θ0(ch) = c2φ′′θ0(h) for all c ≥ 0 and h ∈ D0. A simple illustrative example is φ(θ) = (θ−)
2
.

For this function, the first order directional derivative is φ′θ(h) = −2θ−h, which is identically zero

for θ ≥ 0. The second order directional derivative is φ′′θ0(h) = 2 (h−)
2

1 (θ0 = 0) + 2h21 (θ0 < 0).

The first part of the following theorem is due to Römisch (2005) and Shapiro (2000); in the

second part we incorporate the numerical directional derivative. 5

5Recent independent work by Chen and Fang (2015) also studies inference under first order degeneracy
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Theorem 4.1 (Second Order Directional Delta Method): Suppose D and E are Banach Spaces and
φ : Dφ ⊆ D 7→ E is second order Hadamard directionally differentiable at θ0 tangentially to D0. Let

θ̂n : {Xi}ni=1 7→ Dφ be such that for some rn ↑ ∞, rn{θ̂n − θ0} G0 in D and assume the support
of G0 is included in D0. Then,

r2
n

[
φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)

]
 J ≡ 1

2
φ′′θ0(G0) (21)

Let εn → 0, rnεn →∞, and Z∗n
P
 G0. Then if φ′θ0 (h) ≡ 0 ∀h ∈ D0,

φ
(
θ̂n + εnZ∗n

)
− φ

(
θ̂n

)

ε2n

P
 J ≡ 1

2
φ′′θ0(G0). (22)

Pointwise asymptotic validity of the numerical directional delta method is justified by (22). There

are several alternatives for approximating 1
2φ
′′
θ0

(G0). First, the left hand side of (22) can be replaced

by φ̂′′n (Z∗n) where the second order directional derivative can be estimated by

φ̂′′n(h) ≡ φ(θ̂n + 2εnh)− 2φ(θ̂n + εnh) + φ(θ̂n)

ε2n
(23)

Theorem 4.2 Under convexity of D0 and the same conditions as in Theorem 4.1, except without

φ′θ0 (h) ≡ 0, for φ̂′′n(h) in (23), φ̂′′n (Z∗n)
P
 φ′′θ0(G0).

If the first derivative φ′θ (h) is analytically known, as in Andrews and Soares (2010), another

alternative is to estimate the second order directional derivative (21) by

φ̄′′n(h1, h2) ≡
φ′
θ̂n+εnh1

(h2)− φ′
θ̂n

(h2)

εn
(24)

Theorem 4.3 For φ̄′′n(h, h) defined in (24), φ̄′′n(Z∗n,Z∗n)
P
 φ′′θ0 (G0).

We can show that φ̄′′n(h, h) =
φ′
θ̂n+εnh

(h)−φ′
θ̂n

(h)

εn
is Lipschitz whenever φ′θ(h) is.

Theorem 4.4 If φ′θ(h) : Dφ → E is Lipschitz in θ and h , then for all εn ↓ 0, φ̄′′n(h, h) =
φ′
θ̂n+εnh

(h)−φ′
θ̂n

(h)

εn
is Lipschitz in h.

Theorem 4.1 applies when φ′θ0 (h) ≡ 0, in which case r2
n

(
φ
(
θ̂n

)
− φ (θ0)

)
 J . By Theorems

4.1, 4.2 and 4.3,
φ(θ̂n+εnZ∗n)−φ(θ̂n)

ε2n
in (22), φ̂′′n (Z∗n) in (23) and φ̄′′n (Z∗n,Z∗n) in (24) converges to the

same limiting distribution J = 1
2φ
′′
θ0

(G0) under fixed θ0 asymptotics and under a local drifting

sequence of parameters θn where rn (θn − θ0) → c for ||c|| < ∞. In the latter case, let Zn =

rn

(
θ̂n − θn

)
 G0. Then r2

n

(
φ(θ̂n)− φ (θn)

)
equals

r2
n

(
φ

(
1

rn
(rn (θn − θ0) + Zn)

)
− φ(θ0)

)
− r2

n

(
φ

(
1

rn
(rn (θn − θ0))

)
− φ(θ0)

)
 

1

2
φ′′θ0(c+ G0)− 1

2
φ′′θ0(c).
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The equalities follow from rn (θn − θ0) + Zn  c + G0, rn (θn − θ0)  c, and the definition of the

second order delta method.

The behaviors of φ̂′′n(Z∗n), φ̄′′n(Z∗n,Z∗n) and
φ(θ̂n+εnZ∗n)−φ(θ̂n)

ε2n
differ under a more distant local

drifting sequence of parameters θn−θ0
εn

→ c, when 0 < ||c|| < ∞, which implies different finite

sample behaviors.

On the one hand, 1
ε2n

(
φ(θ̂n + εnZ∗n)− φ(θ̂n)

)
 1

2φ
′′
θ0

(c+G0)− 1
2φ
′′
θ0

(c). On the other hand, for

(23),

1

2
φ̂′′n(Z∗n) =

1

2

1

ε2n

[
φ

(
εn

(
θn − θ0

εn
+

Zn
rnεn

+ 2Z∗n
))
− φ(θ0)

]
− 1

ε2n

[
φ

(
εn

(
θn − θ0

εn
+

Zn
rnεn

+ Z∗n
))
− φ(θ0)

]

+
1

2

1

ε2n

[
φ

(
εn

(
θn − θ0

εn
+

Zn
rnεn

))
− φ(θ0)

]
 

1

4
φ′′θ0(c+ 2G0)− 1

2
φ′′θ0(c+ G0) +

1

4
φ′′θ0(c).

It can also be shown that for (24),

1

2
φ̄′′n(Z∗n,Z∗n) ≡

φ′
θ̂n+εnZ∗n

(Z∗n)− φ′
θ̂n

(Z∗n)

2εn
 

1

2
φ′′θ0(c+ G0,G0)− 1

2
φ′′θ0(c,G0).

The differences between various methods of estimating the second order derivative when θn−θ0
εn
→ c

can be illustrated using a simple test of H0 : θ0 ≥ 0 against H1 : θ0 < 0, which is converted

to H0 : φ (θ0) = 0 against H1 : φ (θ0) > 0 using the test function φ(θ) = (θ−)
2
, which has

φ′θ(h) = −2θ−h and φ′′θ(h) = 2 (h−)
2

1 (θ = 0) + 2h21 (θ < 0). Consider a level α test with rejection

region {r2
nφ(θ̂n) ≥ d1−α}, where d1−α is the 1−α percentile of one of the following four distributions:

(1) 1
ε2n
φ(θ̂n+εnZ∗n); (2) 1

2
1
εn

(
φ′
θ̂n+εnZ∗n

(Z∗n)− φ′
θ̂n

(Z∗n)
)

; (3) 1
ε2n

(
φ(θ̂n + εnZ∗n)− φ(θ̂n)

)
; (4) 1

2 φ̂
′′
n(Z∗n).

Let θ0 = 0 and θn
εn
→ c. The corresponding limiting distributions are

1. 1
2φ
′′
0(c+ G0) = ((G0 + c)−)

2

2. 1
2

(
φ′G0+c(G0)− φ′c(G0)

)
= −(G0 + c)−G0 + c−G0

3. 1
2φ
′′
0(c+ G0)− 1

2φ
′′
0(c) = ((G0 + c)−)

2 − (c−)
2

4. 1
4φ
′′
0(c+ 2G0)− 1

2φ
′′
0(c+ G0) + 1

4φ
′′
0(c) = 1

2 ((2G0 + c)−)
2 −

(
G−0
)2

+ 1
2 (c−)

2

First consider the case of c > 0, which corresponds to size control. In this case it is not difficult to

see that (4) � (2) � (1) = (3) in descending order of first order stochastic dominance. Furthermore,

(1) through (4) all stochastically dominate the distribution of the test statistic under the null of
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θ0 > 0, which is lim
h→∞

1
2φ
′′
θ0

(h + G0) − 1
2φ
′′
θ0

(h) = 0 because rn (θn − θ0) → ∞ when θn−θ0
εn
→ c. By

imposing a zero first order derivative under the null, (2) and (4) provide better finite sample size

control. However, comparing the finite sample powers of these tests when θn
εn
→ c < 0 does not

give a conclusive ranking. While it is clear that the recentered version (3) is always more powerful

than the nonrecentered version (1), there does not seem to be a uniform ranking among (2), (3),

and (4). The ranking might depend on the range of the alternative hypothesis.

5 Monte Carlo Simulations

In this section we report two finite sample simulations. The first uses a simple parametric example

to show consistency of the first order numerical delta method, while the second applies the second

order numerical delta method to the moment inequalities setup in Andrews and Soares (2010).

5.1 Confidence intervals in a basic model

Consider a simple set up of i.i.d dataXi
iid∼ N(θn, 1) and θ̂n = 1

n

∑n
i=1Xi ≡ X̄. The function of inter-

est is φ (θ) = aθ++bθ−, where θ+ = max{θ, 0} and θ− = −min{θ, 0}. Functions of this type appear

in Hansen (2017)’s continuous threshold regression model and in moment inequality inference mod-

els. We approximate the distribution of rn(φ(θ̂n) − φ(θn)) using φ̂′n (Z∗n) =
φ(θ̂+εnZ∗n)−φ(θ̂)

εn
. where

Z∗n
P
 G0 and rn(θ̂n − θn)  G0. We use Z∗n = N(0, σ̂), where σ̂ =

√
1

n−1

∑n
i=1(Xi − X̄)2. For cα

denoting the α quantile of φ̂′n(Z∗n) and dα denoting the α quantile of |φ̂′n(Z∗n)|, we report (1) a sym-

metric two sided interval
[
φ(θ̂n)− 1

rn
d1−α, φ(θ̂n) + 1

rn
d1−α

]
; (2) an equal-tailed two-sided interval

[
φ(θ̂n)− 1

rn
c1−α/2, φ(θ̂n)− 1

rn
cα/2

]
; (3) an upper one-sided confidence interval

(
−∞, φ(θ̂n)− 1

rn
cα

]
;

(4) a lower one-sided confidence interval
[
φ(θ̂n)− 1

rn
c1−α,∞

)
.

For a > 0, b > 0 or a > 0, b < 0, a > |b| or a < 0, b > 0, |a| < b, φ (θ) is a convex function of θ.

Then Theorem 3.5 implies that the lower one-sided interval is uniformly valid at least conservatively.

Both the upper one-sided interval and as a result the equal-tailed two sided interval are only valid

under fixed asymptotics, but can undercover for local drifting parameter sequences between orders

of 1/
√
n and εn.

Analogously, for a < 0, b < 0 or a < 0, b > 0, a < |b| or a > 0, b < 0, |a| > b, φ (θ) is a concave

function of θ. Then Theorem 3.5 implies that the upper one-sided interval is uniformly valid at

least conservatively. Both the lower one-sided interval and as a result the equal-tailed two sided
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interval are only valid under fixed asymptotics, but can undercover for local drifting parameter

sequences between orders of 1/
√
n and εn.

For the two sided symmetric interval, note that in this model, the directional derivative φ′θ (h)

is given by (1) ah if θ > 0; (2) −bh if θ < 0; (3) ah+ + bh− if θ = 0. It satisfies the condition that

|φ′θ (h1 + h2)− φ′θ (h2) | ≤ |φ′θ (h1) |, (25)

Note that |φ′θ (G0 + c) − φ′θ (c) | and |φ′θ (G0) | are, respectively, the analytic limit and numerical

delta method limit under the Fang and Santos (2014) local sequence θn = c/
√
n. Therefore (25)

implies that the symmetric two sided interval is at least conservatively valid under the local sequence

of θn = c/
√
n. The two sided symmetric interval may undercover, however, for the local parameter

sequence of θn = cεn. In other words, when
√
nεn →∞, neither the symmetric nor the equal-tailed

two sided intervals are uniformly valid, but the symmetric interval is valid for a wider range of local

parameter sequences than the equal-tailed interval.

The set of tables titled ”Monte Carlo Simulations for the Normal Mean Model” show empirical

coverage frequencies for a = 1.5, b = 0.5, which corresponds to convex φ (θ). Results for concave

φ (θ) are analogous and omitted for brevity. Empirical coverage frequencies are computed for

four different values of εn: n−1/6, n−1/3, n−1/2, n−1; and eleven different values of θn: −2, −n−1/6,

−n−1/3, 0, n−1, n−1/1.5, n−1/2, n−1/3,n−1/6, n−1/10, and 2. The empirical coverage frequencies

for the four different kinds of confidence intervals (symmetric two-sided, equal-tailed two-sided,

upper one-sided, and lower one-sided) when εn = n−1/6, εn = n−1/3, εn = n−1/2, and εn = n−1 are

summarized in tables 1 through 4, tables 5 through 8, tables 9 through 12, and tables 13 through

16 respectively. The nominal coverage frequency is 95%.

When
√
nεn → ∞, the symmetric two-sided confidence intervals have an empirical coverage

frequency close to the nominal frequency in the regions θn ∈ {0, n−1, n−1/1.5, n−1/2} and θn
εn
→ ±∞.

The empirical coverage frequency is below the nominal frequency when θn
εn
→ c for 0 < c < ∞.

The equal-tailed two-sided confidence intervals have an empirical coverage frequency close to the

nominal frequency in the regions θn ∈ {0, n−1} and θn
εn
→ ±∞. In the region where θn

√
n → c1

for 0 < |c1| ≤ ∞ and θn
εn
→ c2 for 0 ≤ |c2| < ∞, the empirical coverage frequency is far below the

nominal frequency.

When
√
nεn →∞, the lower one-sided confidence intervals provide conservatively valid coverage
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for all values of θn , which is to be expected given the theoretical results. On the other hand, the

upper one-sided confidence intervals undercover for values of θn that satisfy θn
√
n→ c1 for |c1| > 0

and θn
εn
→ c2 for 0 ≤ |c2| <∞ while providing coverage close to the nominal frequency for the other

values of θn.

5.2 Small step size in the basic example

While the theory in the previous sections is provided for larger step sizes (
√
nεn → ∞), it turns

out that in the example above a small step size might also be a possible choice for constructing

confidence intervals in some situations. In this section we let
√
nεn → 0 and examine the conse-

quences for the numerical delta method. Let Zn =
√
n
(
θ̂n − θn

)
so that (Z∗n,Zn)  (G1,G0),

where G1 ∼ N (0, 1), G0 ∼ N (0, 1), G1 ⊥ G0. Also note that φ (θ) = aθ+ + bθ− is homogeneous of

degree one. We can write down the following heuristic calculations.

φ̂′n (Z∗n) =φ

(
θ̂n
εn

+ Z∗n

)
− φ

(
θ̂n
εn

)
= φ

(
Zn√
nεn

+
θn
εn

+ Z∗n
)
− φ

(
Zn√
nεn

+
θn
εn

)

Also note that
√
n
(
φ
(
θ̂n

)
− φ (θn)

)
= φ (Zn +

√
nθn)−φ (

√
nθn). We now consider three regimes

separately.

Case 1: If
√
nθn → 0, then

√
n
(
φ
(
θ̂n

)
− φ (θn)

)
 aG+

0 + bG−0 . Also,

φ̂′n (Z∗n) W =





aG+
1 with probability P (G0 > 0)

−bG−1 with probability P (G0 < 0)

It can be verified that |W | and aG+
0 +bG−0 have the same distribution, so that two sided symmetric

intervals are valid. By symmetry, so are the two sided equal-tailed intervals.

Case 2: If
√
nθn = an → ±∞, both two sided intervals are valid since the analytic limit and the

numeric limit have the same distribution:

√
n
(
φ
(
θ̂n

)
− φ (θn)

)
 





aG0 if an > 0

−bG0 if an < 0

φ̂′n (Z∗n) 





aG1 if an > 0

−bG1 if an < 0
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Case 3: If
√
nθn → c, where 0 < |c| < ∞, then the two distributions differ, and two sided

intervals are generally invalid since

√
n
(
φ
(
θ̂n

)
− φ (θn)

)
 a (c+ G0)+ + b (c+ G0)− − ac+ − bc−,

φ̂′n (Z∗n) 





aG1 with probability P (G0 > −c)

−bG1 with probability P (G0 < −c)

However, in a special case of case 3, when a = b = 1, the analytic limit becomes |G0 + c| − |c|

and the numeric limit becomes G1. Since |G1| first order stochastically dominates ||G0 + c| − |c|| ,

symmetric two sided intervals are at least conservatively valid.

The knife-edge case of εn = n−1/2 corresponds essentially to the bootstrap. With the bootstrap,

φ̂′n (Z∗n) φ
(
G0 + G1 + lim

√
nθn

)
− φ

(
G0 + lim

√
nθn

)

Comparing this to
√
n
(
φ
(
θ̂n

)
− φ (θn)

)
= φ (Zn +

√
nθn) − φ (

√
nθn)  φ (G0 + lim

√
nθn) −

φ (lim
√
nθn) shows that when θn = 0, the analytic limit is φ (G0) and the numerical limit is

φ (G0 + G1) - φ (G0). Since |φ (G0) | first order stochastically dominates |φ (G0 + G1) − φ (G0) |,

the bootstrap symmetric two-sided interval will undercover. However, when
√
n|θn| is larger (e.g.

when
√
nθn →∞), the bootstrap symmetric two-sided interval will not undercover.

5.3 Second Order Numerical Derivative

The purpose of these Monte Carlo simulations is to investigate the power and size of moment

inequality tests of the form H0 : inf
j=1...J

θn,j ≥ 0 and H1 : inf
j=1...J

θn,j < 0. Let φ(θ) =
∑J

j=1

(
θ−j

)2
=

∑J
j=1(−min{θj , 0})2 and φ′θ(h) = −∑J

j=1 2θ−j hj . Data are drawn from Xi
iid∼ N(θn, I2) and θ̂n =

1
n

∑n
i=1Xi ≡ X̄. We reject when r2

nφ(θ̂n) > ĉ1−α, where ĉ1−α is the 1 − α quantile of one of the

following four ways of estimating the second order numerical derivative:

1. Andrews and Soares (2010) with 4th GMS function: 1
ε2n
φ(θ̂n + εnZ∗n)

2. Derivative of Analytic First Order Derivative: 1
2

1
εn

(
φ′
θ̂n+εnZ∗n

(Z∗n)− φ′
θ̂n

(Z∗n)
)

3. Numerical Second Order Derivative 1: 1
ε2n

(
φ(θ̂n + εnZ∗n)− φ(θ̂n)

)

4. Numerical Second Order Derivative 2: 1
2 φ̂
′′
n(Z∗n) = 1

2
φ(θ̂n+2εnZ∗n)−2φ(θ̂n+εnZ∗n)+φ(θ̂n)

ε2n
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We take Z∗n = N(0, σ̂), where σ̂ =
√

1
n−1

∑n
i=1(Xi − X̄)2. We use four different choices of εn:

√
log(n)/

√
n, n−1/6, n−1/3, n−1/2 and eleven different choices of θn: −n−1/6, −n−1/3, −n−1/2,

−n−1/1.5, −n−1, 0, n−1, n−1/1.5, n−1/2, n−1/3, and n−1/6. The choice of εn =
√

log(n)/
√
n is

the one proposed by Andrews and Soares (2010). The set of tables titled ”Monte Carlo Simulations

for the Second Order Directional Delta Method” show the empirical rejection frequencies for the

four different tests.

We can see that when εn =

√
log(n)√
n

, the Andrews and Soares (2010) test has lower power than

the other three tests for alternatives of the form θn ∈ {−n−1/3,−n−1/2,−n−1/1.5,−n−1}. The

Andrews and Soares (2010) test also has worse size control than all of the other tests except for

the numerical second order derivative 1 test. The tests using the derivative of the analytic first

order derivative and the numerical second order derivative 2 have the highest power against all

alternatives and exhibit good size control.

As we go from εn =

√
log(n)√
n

to εn = n−1/6, the power of the Andrews and Soares (2010)

test increases so that it is approximately equal to the power of the tests using the derivative of the

analytic first order derivative and the numerical second order derivative 2 for all alternatives except

θn = −n−1/2, in which case the Andrews and Soares (2010) test has lower power. The Andrews

and Soares (2010) test has slightly better size control than the tests using the derivative of the

analytic first order derivative and the numerical second order derivative 2 when θn ∈ {0, n−1}.

As we decrease εn from n−1/6 to n−1/2, the power of the Andrews and Soares (2010) test for al-

ternatives of the form θn ∈ {−n−1/6,−n−1/3,−n−1/2} decreases dramatically, and the size for θn ∈

{n−1, n−1/1.5, n−1/2} increases to above the nominal size. In contrast, for the test using the numeri-

cal second order derivative 2, the power for alternatives of the form θn ∈ {−n−1/6,−n−1/3,−n−1/2,−n−1/1.5}

and the size for all nonnegative θn are not greatly affected. The power of the test using the deriva-

tive of the analytic first order derivative is not greatly affected for θn ∈ {−n−1/6,−n−1/3} but the

power does decrease dramatically for alternatives drifting faster to zero. The size of the test using

the derivative of the analytic first order derivative decreases to almost 0 when εn = n−1/2 while the

size of the test using the numerical second order derivative 2 is not greatly affected.

Note that for a given value of εn and any value of θn in the alternative, the power of the Andrews

and Soares (2010) test is always no greater than the power of the test using the numerical second
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order derivative 1. This is consistent with our prediction at the end of section 4. Moreover, for all

values of θn in the alternative and for εn ∈ {
√

log(n)/
√
n, n−1/6, n−1/3}, the power of the test using

the numerical second order derivative 2 is the greatest among the four tests. Only when εn = n−1/2

and only for alternatives θn ∈ {−n−1/1.5,−n−1} drifting very quickly to zero is its power lower

than that of the Andrews and Soares (2010) test and the test using the numerical second order

derivative 1, while still having higher power than the test using the derivative of the analytic first

order derivative.

6 Bias reduction

If the functional of interest φ (θ) admits a higher order directional Taylor expansion with a non-

degenerate first order derivative, it is possible to modify the first order numerical directional delta

method to make use of a higher order multiple point differentiation formula to reduce the bias in

approximating the first order directional derivative numerically (Hong et al. (2010)). Estimating

the first derivative using multiple point numerical differentiation is akin to the use of (one sided)

higher order kernel and local polynomial methods for bias reduction. Specifically, assume that, for

φ
(j)
θ (h) being functionals of h that are homogeneous of degree j, for hn → h,

φ (θ + thn) =
r∑

j=0

1

j!
φ

(j)
θ (hn) tj +O

(
tr+1

)
, φ

(j)
θ (hn)− φ(j)

θ (h) = O (hn − h) = o (1) . (26)

Consider a p-point operator for estimating the first order directional derivative, with p ≤ r,

Lεnθ,p (h) =
1

εn

p∑

l=0

alφ (θ + εnlh) =
1

εn

p∑

l=0

al




r∑

j=0

1

j!
φ

(j)
θ (h) εjnl

j +O
(
εr+1
n

)



=

p∑

j=0

φ
(j)
θ (h)

εj−1
n

j!

p∑

l=0

all
j +O (εpn)

The coefficients al, l = 0, . . . , p are determined by the system of equations:

p∑

l=0

all
j =

{
1 for j = 1

0 for j 6= 1, j ≤ p.
(27)

Using these choices for al and εn → 0 leads to

Lεnθ,p (h) = φ
(1)
θ (h) +O (εpn) (28)
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The p-point first order numerical derivative is

φ̂′n (Z∗n; p) ≡ Lεn
θ̂,p

(Z∗n) (29)

For example, φ̂′n (Z∗n) =
φ(θ̂n+εnZ∗n)−φ(θ̂n)

εn
corresponds to p = 1, a0 = −1, a1 = 1. When p = 2,

a0 = −3
2 , a1 = 2, a2 = −1

2 :

φ̂′n (Z∗n; 2) ≡
−1

2φ
(
θ̂n + 2εnZ∗n

)
+ 2φ

(
θ̂n + εnZ∗n

)
− 3

2φ
(
θ̂n

)
.

εn
(30)

It is straightforward to generalize Theorem 3.1 to show consistency of (29).

Theorem 6.1 Let the conditions in Theorem 3.1 and (26) hold. Then φ̂′n (Z∗n; p)
P
 φ′θ0 (G0).

7 Conclusion

We have proposed using the one-sided finite difference numerical directional derivative as a compu-

tationally simple estimator for the directional directive developed in Fang and Santos (2014). We

have demonstrated that when the φ(·) function is Lipschitz, the numerical directional derivative

is a uniformly consistent estimator for the directional derivative. Additionally, we have shown

how to conduct uniformly valid inference using the first order delta method when φ(·) is a convex

and Lipschitz function. Lastly, we have demonstrated how to consistently estimate the second

order directional derivative and use it to conduct pointwise valid inference using the second order

directional delta method.
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Dümbgen, Lutz, “On nondifferentiable functions and the bootstrap,” Probability Theory and Related
Fields, 1993, 95 (1), 125–140. 2, 8, 9

Fang, Zheng and Andres Santos, “Inference on Directionally Differentiable Functions,” arXiv preprint
arXiv:1404.3763, 2014. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 23, 28, 30, 31, 32, 37, 38, 42, 43

Hansen, Bruce E, “Regression kink with an unknown threshold,” Journal of Business & Economic Statis-
tics, 2017, 35 (2), 228–240. 4, 16, 22

Hirano, Keisuke and Jack R Porter, “Impossibility results for nondifferentiable functionals,” Econo-
metrica, 2012, 80 (4), 1769–1790. 2

Hong, Han and Jessie Li, “The Numerical Bootstrap,” 2014. working paper, Stanford University. 5

, Aprajit Mahajan, and Denis Nekipelov, “Extremum estimation and numerical derivatives,” forth-
coming, Journal of Econometrics, 2010. 2, 27

Kosorok, Michael R, Introduction to empirical processes and semiparametric inference, Springer, 2007. 4,
9, 40, 41, 42, 43, 45

Politis, D., J. Romano, and M. Wolf, Subsampling, Springer Series in Statistics, 1999. 7

Ponomareva, Maria, “Inference in Models Defined by Conditional Moment Inequalities with Continuous
Covariates,” 2010. working paper. 4

Romano, Joseph P and Azeem M Shaikh, “Inference for identifiable parameters in partially identified
econometric models,” Journal of Statistical Planning and Inference, 2008, 138 (9), 2786–2807. 12, 13, 36

and , “On the uniform asymptotic validity of subsampling and the bootstrap,” The Annals of Statistics,
2012, 40 (6), 2798–2822. 12, 13, 14, 40, 41

Römisch, Werner, “Delta method, infinite dimensional,” Encyclopedia of Statistical Sciences, 2005. 19, 43

Shapiro, Alexander, “On concepts of directional differentiability,” Journal of optimization theory and
applications, 1990, 66 (3), 477–487. 11

, “Statistical inference of stochastic optimization problems,” in “Probabilistic Constrained Optimization,”
Springer, 2000, pp. 282–307. 19

Song, Kyungchul, “Local asymptotic minimax estimation of nonregular parameters with translation-scale
equivariant maps,” Journal of Multivariate Analysis, 2014, 125, 136–158. 1, 8

van der Vaart, AW and Jon Wellner, Weak Convergence and Empirical Processes, Springer, 1996. 37,
38, 43, 44, 45

29

 Electronic copy available at: https://ssrn.com/abstract=2606416 



Woutersen, Tiemen and John C Ham, “Calculating confidence intervals for continuous and discontin-
uous functions of parameters,” cemmap working paper, Centre for Microdata Methods and Practice, 2013.
2, 4

A Appendix

A.1 List of Commonly Used Symbols

Pn empirical measure

P ∗n bootstrap empirical measure

Z∗n Pn + εn
√
n (P ∗n − Pn)

 weak convergence

P
 weak convergence conditional on the data

θ− −min(θ, 0)

θ+ max(θ, 0)

ρBL1 (F1, F2) supf∈BL1
|Ef (F1)− Ef (F2) |

BL1 the space of Lipschitz functions f : D 7→ R with Lipschitz norm bounded by 1

A.2 Verification of Lipschitz property of φ(·) in Fang and Santos (2014) exam-
ples

Fang and Santos (2014) Example 2.1 φ(θ) = |θ|, D = R, E = R.

‖φ(θ + h)− φ(θ)‖E = |φ(θ + h)− φ(θ)| = ||θ + h| − |θ|| ≤ |h| ≡ ‖h‖D

Fang and Santos (2014) Example 2.2 φ(θ) = max{θ(1), θ(2)}, D = R2, E = R.

‖φ(θ + h)− φ(θ)‖E = |φ(θ + h)− φ(θ)| =
∣∣∣max{θ(1) + h(1), θ(2) + h(2)} −max{θ(1), θ(2)}

∣∣∣

=





∣∣h(1)
∣∣ , θ(1) + h(1) ≥ θ(2) + h(2) and θ(1) ≥ θ(2)

∣∣θ(1) − θ(2) + h(1)
∣∣ , θ(1) + h(1) ≥ θ(2) + h(2) and θ(1) < θ(2)

∣∣θ(2) − θ(1) + h(2)
∣∣ , θ(1) + h(1) < θ(2) + h(2) and θ(1) ≥ θ(2)

∣∣h(2)
∣∣ , θ(1) + h(1) < θ(2) + h(2) and θ(1) < θ(2)

≤ 2(
∣∣∣h(1)

∣∣∣+
∣∣∣h(2)

∣∣∣) ≡ 2 ‖h‖R2
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Fang and Santos (2014) Example 2.3 φ(θ) = sup
f∈F

θ(f) , D = `∞(F), E = R

‖φ(θ + h)− φ(θ)‖E = |φ(θ + h)− φ(θ)| =
∣∣∣∣∣supf∈F

(θ(f) + h(f))− sup
f∈F

θ(f)

∣∣∣∣∣

≤
∣∣∣∣∣supf∈F

h(f)

∣∣∣∣∣ ≤ sup
f∈F
|h(f)| ≡ ‖h‖`∞(F)

Fang and Santos (2014) Example 2.4 For any λ in a convex, compact set Λ ⊆ Rd, φ(θ) =

sup
p∈Sd
{〈p, λ〉 − θ(p)}, D = C(Sd), E = R

‖φ(θ + h)− φ(θ)‖E = |φ(θ + h)− φ(θ)|

=

∣∣∣∣∣supp∈Sd
{〈p, λ〉 − θ(p)− h(p)} − sup

p∈Sd
{〈p, λ〉 − θ(p)}

∣∣∣∣∣ ≤ sup
p∈Sd
|h(p)| ≡ ‖h‖C(Sd)

Fang and Santos (2014) Example 2.5 φ((θ(1), θ(2))) =
∫
Rmax{θ(1)(u) − θ(2)(u), 0}w(u)du,

where w : R→ R+ is a positive, integrable weighting function. D = `∞(R)× `∞(R), E = R.

‖φ(θ + h)− φ(θ)‖E =
∣∣∣φ((θ(1) + h(1), θ(2) + h(2)))− φ((θ(1), θ(2)))

∣∣∣

=

∣∣∣∣
∫

R
max{θ(1)(u)− θ(2)(u) + h(1)(u)− h(2)(u), 0}w(u)du−

∫

R
max{θ(1)(u)− θ(2)(u), 0}w(u)du

∣∣∣∣

=





∣∣∫
R(h(1)(u)− h(2)(u))w(u)du

∣∣ , θ(1)(u)− θ(2)(u) + h(1)(u)− h(2)(u) ≥ 0

and θ(1)(u)− θ(2)(u) ≥ 0

∣∣∫
R(θ(1)(u)− θ(2)(u) + h(1)(u)− h(2)(u))w(u)du

∣∣ , θ(1)(u)− θ(2)(u) + h(1)(u)− h(2)(u) ≥ 0

and θ(1)(u)− θ(2)(u) < 0

∣∣∫
R(θ(1)(u)− θ(2)(u))w(u)du

∣∣ , θ(1)(u)− θ(2)(u) + h(1)(u)− h(2)(u) < 0

and θ(1)(u)− θ(2)(u) ≥ 0

0 , otherwise

≤Csup
u∈R

∣∣∣h(1)(u)− h(2)(u)
∣∣∣ , where C =

∫

R
w(u)du

≤C(sup
u∈R

∣∣∣h(1)(u)
∣∣∣+ sup

u∈R

∣∣∣h(2)(u)
∣∣∣) ≡ C

∥∥∥(h(1), h(2))
∥∥∥
`∞(R)×`∞(R)
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Fang and Santos (2014) Subset Projection Let H be a metric space with a norm ‖·‖H that

admits the triangle inequality, so that for any elements a, b ∈ H:

−‖a− b‖H ≤ ‖a‖H − ‖b‖H ≤ ‖a− b‖H .

Let Λ ⊆ H be a known set (that does not even have to be convex). We now show that φ (θ) ≡

inf
v∈Λ
‖θ − v‖H is Lipschitz: |φ (θ1) − φ (θ2) | ≤ ‖θ1 − θ2‖H. For this purpose, choose two sequences

v1n ∈ Λ and v2n ∈ Λ such that φ (θ1) = limn→∞ ‖θ1 − v1n‖H , φ (θ2) = limn→∞ ‖θ2 − v2n‖H . By

definition, limn→∞ ‖θ1 − v1n‖H ≤ ‖θ1 − v2n‖H , limn→∞ ‖θ2 − v2n‖H ≤ ‖θ2 − v1n‖H . Then we can

write, using the triangle inequality,

φ (θ1)− φ (θ2) ≤ lim
n→∞

[‖θ1 − v2n‖H − ‖θ2 − v2n‖H] ≤ ‖θ1 − θ2‖H

φ (θ2)− φ (θ1) ≤ lim
n→∞

[‖θ2 − v1n‖H − ‖θ1 − v1n‖H] ≤ ‖θ1 − θ2‖H .

Therefore we have shown that |φ (θ2)− φ (θ1) | ≤ ‖θ1 − θ2‖H.

A.3 Convexity of φ(·) in Fang and Santos (2014) examples

Fang and Santos (2014) Example 2.1 For any λ ∈ [0, 1] and θ1, θ2 ∈ R,

φ(λθ1 + (1− λ)θ2) = |λθ1 + (1− λ)θ2| ≤ λ |θ1|+ (1− λ) |θ2| = λφ(θ1) + (1− λ)φ(θ2) (31)

Fang and Santos (2014) Example 2.2 For any λ ∈ [0, 1] and θ1, θ2 ∈ D,

φ(λθ1 + (1− λ)θ2) = max{λθ(1)
1 + (1− λ)θ

(1)
2 , λθ

(2)
1 + (1− λ)θ

(2)
2 }

≤ λmax{θ(1)
1 , θ

(2)
1 }+ (1− λ)max{θ(1)

2 , θ
(2)
2 } = λφ(θ1) + (1− λ)φ(θ2)

Fang and Santos (2014) Example 2.3 For any λ ∈ [0, 1] and θ1, θ2 ∈ D,

φ(λθ1 + (1− λ)θ2) = sup
f∈F
{λθ1(f) + (1− λ)θ2(f)}

≤ λsup
f∈F

θ1(f) + (1− λ)sup
f∈F

θ2(f) = λφ(θ1) + (1− λ)φ(θ2)

Fang and Santos (2014) Example 2.5 Note that φ((θ(1), θ(2))) =
∫
Rmax{θ(1)(u)−θ(2)(u), 0}w(u)du,

where w : R → R+, can be written as h(g(θ)) , where g(θ) = g(θ(1), θ(2)) = max{θ(1) − θ(2), 0}

and h(γ) =
∫
R γ(u)w(u)du. We can show that g(θ) is convex and h(γ) is linear and nondecreasing
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, which implies that their composition h(g(θ(1), θ(2))) is convex. g(θ) is convex because for any

λ ∈ [0, 1] and θ1, θ2 ∈ D,

g(λθ1 + (1− λ)θ2) = max{λθ(1)
1 + (1− λ)θ

(1)
2 − (λθ

(2)
1 + (1− λ)θ

(2)
2 ), 0}

≤ λmax{θ(1)
1 − θ

(2)
1 , 0}+ (1− λ)max{θ(1)

2 − θ
(2)
2 , 0}

= λg(θ1) + (1− λ)g(θ2).

Also h(γ) =
∫
R γ(u)w(u)du is nondecreasing because w(u) is positive, and it’s linear because

integration is a linear operator.

Convex Set Projection Let H be a metric space with a norm ‖·‖H. Let Λ ⊆ H be a known

convex set. φ(θ) ≡ inf
v∈Λ
‖θ − v‖H can be interpreted as the shortest distance between θ and a

point in Λ. We will now verify convexity by showing that for any λ ∈ [0, 1] and θ1, θ2 ∈ H,

φ(λθ1 + (1− λ)θ2) ≤ λφ(θ1) + (1− λ)φ(θ2).

For any λ ∈ [0, 1] and θ1, θ2 ∈ H, there exists sequences v1n and v2n such that φ(θ1) =

lim
n→∞

‖θ1 − v1n‖H and φ(θ2) = lim
n→∞

‖θ1 − v2n‖H. By convexity of Λ, for each n, λv1n+(1−λ)v2n ∈ Λ.

Then for each n,

φ(λθ1 + (1− λ)θ2) = inf
v∈Λ
‖λθ1 + (1− λ)θ2 − v‖H

≤ ‖λθ1 + (1− λ)θ2 − (λv1n + (1− λ)v2n)‖H

≤ λ ‖θ1 − v1n‖H + (1− λ) ‖θ2 − v2n‖H

By taking n→∞,

φ(λθ1 + (1− λ)θ2) ≤ lim
n→∞

λ ‖θ1 − v1n‖H + (1− λ) ‖θ2 − v2n‖H = λφ(θ1) + (1− λ)φ(θ2).

A.4 Application of Directional Delta Method to Partially Identified Models

The directional delta method can be used to perform hypothesis tests, confidence set construc-

tion, model specification tests, and subvector inference in moment inequalities models. Let B be a

nonempty, compact parameter space for a partially identified parameter β0 defined by a set of J mo-

ment inequalities Pg(·, β0) ≥ 0, where g(·, β) = (gj (·, β) , j = 1, . . . , J) and Pg(·, β) are continuous
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functions of β. We are interested in testing

H0 : sup
β∈B

min
j=1...J

Pgj(·, β) ≥ 0 H1 : sup
β∈B

min
j=1...J

Pgj(·, β) < 0

For example, in Bugni et al. (2017), B = B (γ) = {β : f (β) = γ}. In Bugni et al. (2015), B

corresponds to the entire parameter space B. In Andrews and Soares (2010), B = β∗ corresponds

to a singleton parameter value for a pointwise testing procedure. The infinite dimensional parameter

θ0 (·) is a function of β ∈ B defined by θ0(β) = Pg(·, β). The hypotheses can be converted into

H0 : inf
β∈B

M (θ0) (β) = 0 H1 : inf
β∈B

M (θ0) (β) > 0

where M (·) is a mapping from the function θ(β) to another function of β, such that M (θ) (β) =

S (θ (β)), where S (x) is a nonincreasing and continuous function that satisfies S (x) ≥ 0 for all x,

S (x) = 0 for all x ≥ 0, and S (cx) = cρS (x) for either ρ = 1 or 2. Define

φ(θ) ≡ inf
β∈B

M (θ) (β) = (f ◦M) (θ), f (m) = inf
β∈B

m (β) .

We would like to obtain the limiting distribution of
√
n
ρ
(
φ
(
θ̂n

)
− φ(θ0)

)
= inf

β∈B
S
(√

nθ̂n(β)
)
−

inf
β∈B

S (
√
nθ0(β)) under H0 using the directional delta method. We can compute the first order

directional derivative using the chain rule:

φ′θ (h) = (f ◦M)′θ (h) =
(
f ′M(θ) ◦M ′θ

)
(h)

f ′m (h) = inf
β∈B0(m)

h (β)

B0 (m) =

{
β ∈ B : m (β) = inf

β∈B
m (β)

}

φ′θ (h) = inf
β∈B0(M(θ))

M ′(θ) (h) (β)

If S(x) =
∑J

j=1 x
−, then ρ = 1, M ′θ (h) (β) =

∑J
j=1

{
−hj (β) 1 (θj(β)− < 0) + hj (β)− 1 (θj(β)− = 0)

}
.

It follows from the first order directional delta method that
√
n
(
φ
(
θ̂
)
− φ(θ0)

)
 φ′θ0 (G0), where

√
n
(
θ̂n (·)− θ0 (·)

)
 G0 and G0 is a mean zero Gaussian process.

φ′θ (h) = inf
β∈B0(M(θ))

J∑

j=1

{
−hj (β) 1

(
θj(β)− < 0

)
+ hj (β)− 1

(
θj(β)− = 0

)}
.
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If S(x) =
∑J

j=1(x−)2, then ρ = 2 and

M ′θ (h) (β) = −2
J∑

j=1

θj(β)−hj (β) , φ′θ (h) = inf
β∈B0(M(θ))



−2

J∑

j=1

θj(β)−hj (β)





The chain rule for second order directional derivatives gives us

φ′′θ(h) = (f ◦M)′′θ (h) = f ′′M(θ)

(
M ′θ (h) ,M ′′θ (h)

)
,

M ′′θ (h) (β) =
J∑

j=1

{
2
(
hj (β)−

)2
1 (θj(β) = 0) + 2hj (β)2 1 (θj(β) < 0)

}
.

Using equations (4.426), (4.429), and (4.430) of Bonnans and Shapiro (2013), we can obtain the

second order directional derivative of f : f ′′m (η, w) = inf
β∈B
{w(β)− τm,η (β)}, where

τm,η (β) =





0, if β ∈ interior (B0 (m))

lim sup
β′ → β

m (β′) > inf
b∈B

m (b)

((
inf

b∈B0(M)
η(b)−η(β′)

)+
)2

2

(
m(β′)− inf

b∈B
m(b)

) if β ∈ boundary (B0 (m))

−∞ otherwise

We can equivalently write the second order directional derivative as

f ′′m (η, w) = inf
β∈B1(m,η)

{w(β)− νm,η (β)}

νm,η (β) = lim sup
β′ → β

m (β′) > inf
β∈B

m (β)

((
inf

b∈B0(m)
η (b)− η (β′)

)+
)2

2

(
m (β′)− inf

β∈B
m (β)

)

where B1 (m, η) ≡
{
β ∈ boundary (B0 (m)) : η (β) = inf

b∈B0(m)
η (b)

}
are the set of values on the

boundary of the identified set B0 (m) that achieve the minimum value of the function η (·).

Therefore, by the second order directional delta method, n
(
φ
(
θ̂n

)
− φ(θ0)

)
 1

2φ
′′
θ0

(G0),

where
√
n
(
θ̂n (·)− θ0 (·)

)
 G0 and G0 is a mean zero Gaussian process.

φ′′θ(h) = inf
β∈B

{
M ′′θ (h) (β)− τM(θ),M ′θ(h) (β)

}
= inf

β∈B1(M(θ),M ′θ(h))

{
M ′′θ (h)(β)− νM(θ),M ′θ(h) (β)

}

Although demonstrating validity of the directional delta method requires showing existence of
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the directional derivatives, implementing the numerical directional delta method does not require

knowledge of the analytic derivatives. For the case of ρ = 2, the non-recentered level α one-sided

test using the numerical delta method rejects when inf
β∈B

S (
√
nPng(·;β)) > ĉ1−α, where ĉ1−α is the

(1− α) percentile of one of the following distributions:

1. Numerical Second Order Derivative 1: inf
β∈B

S
(

1
εn
Z∗ng(·;β)

)
− inf
β∈B

S
(

1
εn
Png(·;β)

)
.

2. Numerical Second Order Derivative 2:

1
2

(
inf
β∈B

S
(

1
εn
Z∗2ng(·;β)

)
− 2 inf

β∈B
S
(

1
εn
Z∗ng(·;β)

)
+ inf
β∈B

S
(

1
εn
Png(·;β)

))

where Z∗n = Pn + εn
√
n (Pn − P ) and Z∗2n = Pn + 2εn

√
n (Pn − P ).

For example, we can perform subvector inference by constructing a nominal 1−α confidence set

using test statistic inversion: C = {γ : infβ∈B(γ) S (
√
nPng (·;β)) ≤ ĉ1−α}. In empirical work, re-

searchers typically use a recentered form of the test statistic inf
β∈B(γ)

S
(√

nθ̂n(β)
)
− inf
β∈B

S
(√

nθ̂n(β)
)

because it results in a confidence set that is non-empty with probability one. For the recentered

test statistic, we recenter the estimates of the limiting distributions analogously as follows:

1. Numerical Second Order Derivative 1:

inf
β∈B

S
(

1
εn
Z∗ng(·;β)

)
− inf
β∈B

S
(

1
εn
Png(·;β)

)
−
(

inf
β∈B

S
(

1
εn
Z∗ng(·;β)

)
− inf
β∈B

S
(

1
εn
Png(·;β)

))
.

2. Numerical Second Order Derivative 2:

1
2

(
inf
β∈B

S
(

1
εn
Z∗2ng(·;β)

)
− 2 inf

β∈B
S
(

1
εn
Z∗ng(·;β)

)
+ inf
β∈B

S
(

1
εn
Png(·;β)

))

-

(
1
2

(
inf
β∈B

S
(

1
εn
Z∗2ng(·;β)

)
− 2 inf

β∈B
S
(

1
εn
Z∗ng(·;β)

)
+ inf
β∈B

S
(

1
εn
Png(·;β)

)))

Other approaches in the literature for obtaining critical values include

1. Minimum Resampling Test in Bugni et al. (2017):

min

{
inf

β∈B̂0(γ0)
S
(

1
κn

(
ψ (Png (·, β)) + κnĜ∗ng (·, β)

))
, inf
β∈B(γ0)

S
(

1
κn

((
Pn + κnĜ∗n

)
g (·, β)

))}

2. Subsampling Test in Romano and Shaikh (2008):

inf
β∈B

S
(√

bPbg(·;β)
)
− inf
β∈B(γ0)

S
(√

bPng(·;β)
)

.

3. Andrews and Soares (2010): S
(

1
κn

(
ψ (Png (·, β∗)) + κnĜ∗ng (·, β∗)

))

Here, κn =
√

log n/n, ψ (Png (·, β)) is one of the GMS functions in Andrews and Soares (2010),

and B̂0(γ0) = {β : S (
√
nPng(·;β)) ≤ inf

β∈B(γ0)
S (
√
nPng(·;β)) +

√
log(n)

1/3} is an estimate of the

identified set.
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Note that while the above results demonstrate pointwise validity of the directional delta method

for deriving the limiting distribution of the test statistics in Bugni et al. (2017), we are unable

to apply the uniformity results in subsection 3.2 because the test statistic φ (·) is not a convex

function of the structural parameters, and the parameters θ (·) are infinite-dimensional. For a

detailed discussion of uniformity, see Bugni et al. (2017).

A.5 Proofs

Proof of Theorem 3.1 Part 1 is exactly in Theorem 2.1 of Fang and Santos (2014). We make use

of Lemma A.1 to show part 2. Lemma A.1 at the end of this appendix provides a bootstrap version

of the extended continuous mapping theorem. Assume the following measurability conditions:

• Z∗n is asymptotically measurable jointly in the data and the bootstrap weights.

• f(Z∗n) is a measurable function of the bootstrap weights outer almost surely in the data for

every bounded, continuous map f : D 7→ R.

• G0 is Borel measurable and separable.

Define gn(h) = 1
εn

(φ(θ0 + εnh)− φ(θ0)). By Hadamard directional differentiability, for hn → h,

h ∈ D0, θ + εnhn ∈ D, gn(hn)→ g (h) = φ′θ0(h). Then we write

φ
(
θ̂n + εnZ∗n

)
− φ

(
θ̂n

)

εn
=
φ
(
θ0 + εn

(
Z∗n + θ̂n−θ0

εn

))
− φ(θ0)

εn
−
φ
(
θ0 + εn

(
ε−1
n

(
θ̂n − θ0

)))
− φ (θ0)

εn

=gn

(
Z∗n +

θ̂n − θ0

εn

)
− gn

(
ε−1
n

(
θ̂n − θ0

))

Since Z∗n
P
 G0, ε−1

n

(
θ̂n − θ0

)
= oP (1), Z∗n + ε−1

n

(
θ̂n − θ0

)
P
 G0 (also  G0). Apply Lemma A.1

to the first term on the right side, the first term
P
 φ′θ0(G0) (and also  φ′θ0(G0) by van der Vaart

and Wellner (1996) Theorem 1.11.1). The second term is oP (1) by van der Vaart and Wellner

(1996) Theorem 1.11.1. Since Xn
P
 X and Yn = oP (1) implies Xn + Yn

P
 X, summing the two

terms on the right hand side leads to φ(θ̂n+εnZ∗n)−φ(θ̂n)
εn

P
 φ′θ0(G0).

Proof of theorem 3.2 We can write

∥∥∥φ̂′n(h1)− φ̂′n(h2)
∥∥∥
E

=

∥∥∥∥∥
φ(θ̂n + εnh1)− φ(θ̂n + εnh2)

εn

∥∥∥∥∥
E

≤ C ‖h1 − h2‖D
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where C is the Lipschitz constant for φ : Dφ → E. �

Proof of Theorem 3.3 6

The proof follows from the definition of the directional delta method.

∥∥∥φ̂′n(h)− φ′θ0(h)
∥∥∥
E

=

∥∥∥∥∥
φ(θ̂n + εnh)− φ(θ̂n)

εn
− φ′θ0(h)

∥∥∥∥∥
E

≤
∥∥∥∥∥

(φ(θ̂n + εnh)− φ(θ0))

εn
− φ′θ0(h)

∥∥∥∥∥
E

+

∥∥∥∥∥
rn(φ(θ̂n)− φ(θ0))

rnεn

∥∥∥∥∥
E

p→ 0

For the first term, 1
εn

((θ̂n + εnh) − θ0) = 1
rnεn

rn(θ̂n − θ0) + h
d→ h since rnεn → ∞, and

rn(θ̂n − θ0) = Op(1). Using the directional delta method (Theorem 2.1 Fang and Santos (2014),

Theorem 1.11.1 van der Vaart and Wellner (1996)), 1
εn

(φ(θ̂n + εnh) − φ(θ0))
d→ φ′θ0(h). Since

φ′θ0(h) is constant for each fixed h, 1
εn

(φ(θ̂n + εnh) − φ(θ0))
p→ φ′θ0(h). For the second term,

rn(φ(θ̂n)− φ(θ0)) = Op(1). Consequently, rn(φ(θ̂n)−φ(θ0))
rnεn

p→ 0. �

Proof of theorem 3.4 The proof relies on the definitions of Hadamard directional differentia-

bility and Holder continuity.

sup
h∈K

∥∥∥φ̂′n(h)− φ′θ0(h)
∥∥∥
E

= sup
h∈K

∥∥∥∥∥
φ(θ̂n + εnh)− φ(θ̂n)

εn
− φ′θ0(h)

∥∥∥∥∥
E

≤ sup
h∈K

∥∥∥∥∥
(φ(θ̂n + εnh)− φ(θ0))

εn
− φ′θ0(h)

∥∥∥∥∥
E

+

∥∥∥∥∥
rn(φ(θ̂n)− φ(θ0))

rnεn

∥∥∥∥∥
E

≤ sup
h∈K

∥∥∥∥∥
(φ(θ̂n + εnh)− φ(θ0 + εnh))

εn

∥∥∥∥∥
E

+ sup
h∈K

∥∥∥∥
(φ(θ0 + εnh)− φ(θ0))

εn
− φ′θ0(h)

∥∥∥∥
E

+

∥∥∥∥∥
rn(φ(θ̂n)− φ(θ0))

rnεn

∥∥∥∥∥
E

≤ 1

rκnεn
C0

∥∥∥rn(θ̂n − θ0)
∥∥∥
κ

D
+ op(1) + op(1) = op(1). �

Proof of Lemma 3.2 For h1 and h2, it follows from the convexity of φ (·) that

φ (θ0 + t (h1 + h2)) = φ

(
1

2
(θ0 + 2th1) +

1

2
(θ0 + 2th2)

)
≤ 1

2
φ (θ0 + 2th1) +

1

2
φ (θ0 + 2th2)

6We thank Andres Santos for providing the arguments in this proof and in Theorem 3.4.
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Hence φ (θ0 + t (h1 + h2))− φ (θ0) ≤ 1
2 (φ (θ0 + 2th1)− φ (θ0)) + 1

2 (φ (θ0 + 2th2)− φ (θ0)) and

φ (θ0 + t (h1 + h2))− φ (θ0)

t
≤ (φ (θ0 + 2th1)− φ (θ0))

2t
+

(φ (θ0 + 2th2)− φ (θ0))

2t
.

Taking t→ 0 on both sides we conclude that φ′θ0 (h1 + h2) ≤ φ′θ0 (h1) + φ′θ0 (h2). �

Proof of Theorem 3.5 We first note that the arguments in the proofs of Theorem 2.11 in

Bhattacharya and Rao (1986) can be revised for a convergence in probability version: Let C be a

class of convex sets such that supP∈P P (G0 ∈ ∂C) = 0 for all C ∈ C. Let P (Z∗n ∈ C|Xn) denote

the conditional probability of Z∗n given the data (denoted Xn). Then ∀ε > 0,

lim
n→∞

sup
P∈P

P

(
sup
C∈C
|P (Z∗n ∈ C|Xn)− P (G0 ∈ C)| ≥ ε

)
→ 0, (32)

whenever ∀ε > 0, limn→∞ supP∈P P (ρBL1 (Z∗n,G0) ≥ ε) → 0. Under assumption 3.2, the key to

invoking (32) is the fact that level sets of convex functions are convex.

Under assumption 3.1 part (i), ∀ε > 0, supP∈P P
(∣∣∣ε−1

n

(
θ̂n − θ(P )

)∣∣∣ ≥ ε
)

= o (1). It can

therefore be combined with part (ii) of assumption 3.1 to show that

sup
P∈P

P

(
ρBL1

(
Z∗n +

θ̂n − θ(P )

εn
,G0

)
≥ ε
)

= o (1) . (33)

Next note that the set C = {g : 1
εn

(
φ (θ0 + εng)− φ

(
θ̂n

))
≤ x} is convex whenever φ (·) is a

convex function and is a member of the class specified in assumption 3.2. Then by (33) and (32),

sup
P∈P

P

(
sup
x

∣∣∣∣P
(
φ̂′n (Z∗n) ≤ x|Xn

)
− P

(
1

εn

(
φ (θ0 + εnG0)− φ

(
θ̂n

))
≤ x

)∣∣∣∣ ≥ ε
)

= o (1) . (34)

Finally, we use the last condition in the theorem statement to show that

sup
P∈P

sup
x∈A

∣∣∣∣P
(

1

εn

(
φ (θ0 + εnG0)− φ

(
θ̂n

))
≤ x

)
− Jεn (x,G0)

∣∣∣∣ = o (1) . (35)

Note that we do not need the last equation or the last condition of the theorem if we replace θ̂n in

φ̂′n (Z∗n) by a fixed θ in hypothesis testing settings. Similarly, the level set

C = {g : rn
(
φ
(
θ(P ) + r−1

n g
)
− φ (θ(P ))

)
≤ x}

is also convex. By Theorem 2.11 of Bhattacharya and Rao (1986), part (i) of Assumption 3.1, and
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Assumption 3.2,

sup
P∈P

sup
x∈A
|Jn (x, P )− Jn (x,G0)| = o (1) . (36)

The first conclusion of the theorem follows from combining (34), (35), (36) and (16). The second

conclusion follows from similar arguments as Lemma A.1(vi) in Romano and Shaikh (2012). �

Proof of Theorem 3.6 Consider any sequence {Pn ∈ P : n ≥ 1} that determines θn = θ (Pn) and

the laws of rn

(
θ̂n − θ (Pn)

)
, G0, and Z∗n. Note that assumptions 3.1 and 3.2 imply the following:

Assumption A.1 Let the sequence θn, Pn and G0 be such that

ρBL1

(
rn

(
θ̂n − θn

)
,G0

)
= o (1) and ρBL1 (Z∗n,G0) = oPn (1) .

Assumption A.2 For all ε small enough, and all x = J−1
n (1− τ − ε, Pn), xn is a sequence of

asymptotic equicontinuity points of J (x) being either Jεn (x,G0) or Jn (x,G0):

lim
δ→0

lim sup
n→∞

sup
|x−xn|≤δ

|J (x)− J (xn)| = 0.

First ρBL1 (Z∗n,G0) = oPn (1) in part (ii) of assumption A.1 implies that ρBL1 (Z∗n + oPn (1) ,G0) =

oPn (1), which follows from

sup
h∈BL1

|EMh (Z∗n + oPn (1))− Eh (G0)| ≤ sup
h∈BL1

|EMh (Z∗n)− Eh (G0)|+ oPn (1) .

Since rnεn →∞, ε−1
n

(
θ̂n − θn

)
= oPn (1), so that

ρBL1

(
Z∗n +

1

εn

(
θ̂n − θn

)
,G0

)
= oPn (1) .

Next note that the functions gn (Z) = 1
εn

(φ (θn + εnZ)− φ (θn)) are uniformly Lipschitz in Z with

the Lipschitz constant bounded by that of φ (·). The same arguments as in Proposition 10.7 of

Kosorok (2007) adapted to a sequence of such functions gn (·) show that

ρBL1

(
gn

(
Z∗n +

1

εn

(
θ̂n − θn

))
, gn (G0)

)
= oPn (1) .

Then we can write

φ̂′n (Z∗n) = gn

(
Z∗n +

1

εn

(
θ̂n − θn

))
− 1

εn

(
φ
(
θ̂n

)
− φ (θn)

)
= gn

(
Z∗n +

1

εn

(
θ̂n − θn

))
+ oPn (1) ,
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so that also ρBL1

(
φ̂′n (Z∗n) , gn (G0)

)
= oPn (1). Then using assumption A.2, similar arguments to

those in Lemma 10.11 in Kosorok (2007) can be used to establish

Jεn (xn, Pn)− Jεn (xn,G0) = oPn (1) . (37)

Next using part (i) of assumption A.1 and applying a nonstochastic version of the arguments in

Proposition 10.7 of Kosorok (2007), it can be shown that ρBL1 (Jn (·, Pn) , Jn (·,G0)) = o (1) . The

Jn (·,G0) part of assumption A.2 in combination with modified arguments in Lemma 10.11 in

Kosorok (2007) produces that

Jn (xn, Pn)− Jn (xn,G0) = o (1) . (38)

When φ (·) satisfies assumption 3.3, equations (15),(16), (37), and (38) imply that ∀ε, η > 0 and

n large enough, Pn (Jεn (xn, Pn) ≤ Jn (xn, Pn) + ε) ≥ 1− δ. Next we consider arguments similar to

Lemma A.1 parts (i) and (vi) and Theorem 2.4 in Romano and Shaikh (2012), If Jεn (xn, Pn) ≤

Jn (xn, Pn) + ε at xn = J−1
n (1− α− ε, Pn), then J−1

εn (1− α, Pn) ≥ J−1
n (1− α− ε, Pn). Combining

these inequalities,

Pn

(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≤ J−1

εn (1− α, Pn)
)

≥ Pn
(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≤ J−1

εn (1− α, Pn) ∩ Jεn (xn, Pn) ≤ Jn (xn, Pn) + ε
)

≥ Pn
(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≤ J−1

n (1− α− ε, Pn) ∩ Jεn (xn, Pn) ≤ Jn (xn, Pn) + ε
)

≥ Pn
(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≤ J−1

n (1− α− ε, Pn)
)
− Pn (Jεn (xn, Pn) > Jn (xn, Pn) + ε)

≥ 1− α− ε− δ.

Since both ε and δ can be arbitrarily small, lim supn→∞ Pn

(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≥ ĉ1−τ

)
≤ τ. Now

define β = lim supn→∞ supP∈P P
(
rn

(
φ
(
θ̂n

)
− φ (θ(P ))

)
≥ ĉ1−α

)
. Then one can find a sequence

of Pn ∈ P such that, for θn = θPn , β = limn→∞ Pn

(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
≥ ĉ1−α

)
. Find a subse-

quence µn of n for which θn converges, with its limit denoted θ. The previous arguments allow us to

claim that lim supµn→∞ Pµn

(
rµn

(
φ
(
θ̂n

)
− φ (θµn)

)
≥ ĉ1−α

)
≤ α. Since Pµn , θµn is a subsequence

of Pn, θn, it is also the case that β = limµn→∞ Pµn

(
rµn

(
φ
(
θ̂n

)
− φ (θµn)

)
≥ ĉ1−α

)
≤ α. Now sup-

pose φ (·) does not satisfy assumption 3.3, but assumptions 3.4 and 3.5 hold. For tn = r−1
n , εn, define

gtn,n (h) = 1
tn

(φ (θn + tnh)− φ (θn)). We first show that ρBL1

(
φ̂′n (Z∗n) , gεn,n (G0)

)
= oPn (1), and
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ρBL1

(
rn

(
φ
(
θ̂n

)
− φ (θn)

)
, gr−1

n ,n (G0)
)

= o (1).

Next we can use Assumption 3.5 to show that both

ρBL1

(
gεn,n (G0) , φ′θ0

(
ηn
εn

+ G0

)
− φ′θ0

(
ηn
εn

))
= o (1)

ρBL1

(
gr−1
n ,n (G0) , φ′θ0 (ηnrn + G0)− φ′θ0 (ηnrn)

)
= o (1)

Define then J ′εn (x,G0) and J ′n (x,G0), respectively, as the CDFs of φ′θ0

(
ηn
εn

+ G0

)
− φ′θ0

(
ηn
εn

)
and

φ′θ0 (ηnrn + G0)− φ′θ0 (ηnrn). Using Assumption A.2 and arguments analogous to Lemma 10.11 in

Kosorok (2007) then shows that for each sequence xn of asymptotic equicontinuity points,

Jεn (xn, Pn)− Jεn (xn,G0) =oPn (1) , Jn (xn, Pn)− Jn (xn,G0) = o (1) ,

Jεn (xn,G0)− J ′εn (xn,G0) =o (1) , Jn (xn,G0)− J ′n (xn,G0) = o (1) .

So that Jεn (xn, Pn) − J ′εn (xn,G0) = oPn (1) and Jn (xn, Pn) − J ′n (xn,G0) = o (1). Then by As-

sumption 3.4, J ′εn (xn,G0) ≤ J ′n (xn,G0).

Then for each ε > 0 and n sufficiently large, Jn (xn, Pn) ≥ J ′n (xn,G0)− ε
2 , and

lim
n→∞

Pn (Jεn (xn, Pn) ≤ Jn (xn, Pn) + ε) ≥ lim
n→∞

Pn

(
Jεn (xn, Pn) ≤ J ′n (xn,G0) +

ε

2

)
→ 1. �

Proof for Theorem 3.8 First consider Assumption 3.8. Since φ (·) is Lipschitz in θ uniformly

in α, the same arguments as in the proof of Theorem 3.6 show that

ρBL1

(
1

εn

(
φ
(
θ̂n + εnZ∗n,θ, α̂n

)
− φ (θn, α̂n)

)
,

1

εn
(φ (θn + εnG0,θ, α̂n)− φ (θn, α̂n))

)
= oPn (1) .

Next by repeated use of the first part of Theorem 2.1 in Fang and Santos (2014),

ε−1
n

(
φ
(
θ̂n, α̂n

)
− φ (θn, α̂n)

)
= oPn (1). Together they imply that (with G0,θ independent of

α̂n):

ρBL1

(
φ̂′n
(
Z∗n,θ, 0

)
,

1

εn
(φ (θn + εnG0,θ, α̂n)− φ (θn, α̂n))

)
= oPn (1) .

By two additional applications of Fang and Santos (2014) Theorem 2.1,

ρBL1

(
rn

(
φ
(
θ̂n, α̂n

)
− φ (θn, α̂n)

)
, rn
(
φ
(
θn + r−1

n G0,θ, α̂n
)
− φ (θn, α̂n)

))
= o (1) .

Denote, by Jεn (·, Pn), Jεn (·,G0), Jn (·, Pn) and Jn (·,G0), the four distributions in the above two
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equations. Then by a suitable version of A.2 and suitable modification of Lemma 10.11 in Kosorok

(2007), and by noting that Jεn (x,G0) ≤ Jn (x,G0), we have that

lim
n→∞

Pn (Jεn (xn, Pn) ≤ Jn (xn, Pn) + ε) = 1. (39)

Note that Assumption A.2 holds for Jn (·, Pn) and Jn (·,G0) when Jn (·, Pn)  φ′θ0,α0
(G0,θ, 0) by

Fang and Santos (2014) Theorem 2.1, and when xn belongs to the set of continuity points of the

limiting φ′θ0,α0
(G0,θ, 0).

When Assumption 3.9 holds instead, Jεn (·,G0) and Jn (·,G0) are further approximated by

J ′εn (·,G0) = φ′θ0,α0

(
θn − θ0

εn
+ G0,θ,

αn − α0

εn

)
− φ′θ0,α0

(
θn − θ0

εn
,
αn − α0

εn

)

and J ′n (·,G0) = φ′θ0,α0
(rn (θn − θ0) + G0,θ, rn (αn − α0)) − φ′θ0,α0

(rn (θn − θ0) , rn (αn − α0)). So

that ρBL1

(
Jεn (·,G0) , J ′εn (·,G0)

)
= oPn (1), and ρBL1 (Jn (·,G0) , J ′n (·,G0)) = o (1). Then we use

J ′εn (x,G0) ≤ J ′n (x,G0) to conclude that (39) holds. �

Proof for Theorem 4.1 The first part of the theorem is exactly Theorem 2 in Römisch (2005).

The second part will be argued using Lemma A.1. Define gn(h) = 1
ε2n

(
φ(θ0 + εnh)− φ(θ0)− φ′θ0(h)

)
.

By definition of (20), for hn → h, h ∈ D0, θ + εnhn ∈ D, gn(hn) → g (h) = 1
2φ
′′
θ0

(h). Then write,

noting that φ′θ0 (h) ≡ 0,

φ(θ̂n + εnZ∗n)− φ(θ̂n)

ε2n
=
φ
(
θ0 + εn

(
Z∗n + θ̂n−θ0

εn

))
− φ(θ0)

ε2n
−
φ
(
θ0 + εn

(
ε−1
n

(
θ̂n − θ0

)))
− φ (θ0)

ε2n

=gn

(
Z∗n +

θ̂n − θ0

εn

)
− gn

(
ε−1
n

(
θ̂n − θ0

))
.

Since Z∗n
P
 G0, ε−1

n

(
θ̂n − θ0

)
= oP (1), Z∗n + ε−1

n

(
θ̂n − θ0

)
P
 G0 (also  G0). Apply Lemma A.1

to the first term on the right side, the first term
P
 1

2φ
′′
θ0

(G0) (and also  1
2φ
′′
θ0

(G0) by van der

Vaart and Wellner (1996) Theorem 1.11.1). The second term is oP (1) by van der Vaart and Wellner

(1996) Theorem 1.11.1. Since Xn
P
 X and Yn = oP (1) implies Xn + Yn

P
 X, summing the two

terms on the right hand side leads to φ(θ̂n+εnZ∗n)−φ(θ̂n)
ε2n

P
 1

2φ
′′
θ0

(G0). �

Proof for Theorem 4.2 Note 1
εn

(
θ̂n − θ0

)
p→ 0, 1

εn

(
θ̂n − θ0 + εnZ∗n

)
P
 G0. For gn (h) =

1
ε2n

(
φ(θ0 + εnh)− φ(θ0)− εnφ′θ0(h)

)
and g (h) = 1

2φ
′′
θ0

(h), gn (hn) → g (h) when hn → h. Then by

43

 Electronic copy available at: https://ssrn.com/abstract=2606416 



van der Vaart and Wellner (1996) Theorem 1.11.1 and Lemma A.1, jointly,

1

ε2n

[
φ(θ̂n + 2εnZ∗n)− φ(θ0)− φ′θ0(θ̂n − θ0 + 2εnZ∗n)

]
=gn

(
2Z∗n +

θ̂n − θ0

εn

)
P
 

1

2
φ′′θ0(2G0)

1

ε2n

[
φ(θ̂n + εnZ∗n)− φ(θ0)− φ′θ0(θ̂n − θ0 + εnZ∗n)

]
=gn

(
Z∗n +

θ̂n − θ0

εn

)
P
 

1

2
φ′′θ0 (G0)

Furthermore, 1
ε2n

[
φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)

]
= gn

(
θ̂n−θ0
εn

)
p→ g (0) = 0. By linearity of φ′θ0(h),

R(θ̂n, θ0, h) = φ′θ0

(
1

εn

(
θ̂n − θ0 + 2εnh

))
− 2φ′θ0

(
1

εn

(
θ̂n − θ0 + εnh

))
+ φ′θ0

(
1

εn

(
θ̂n − θ0

))
= 0

Therefore by the above joint convergence and continuous mapping,

φ̂′′n(Z∗n) =
1

ε2n

[
φ(θ̂n + 2εnZ∗n)− 2φ(θ̂n + εnZ∗n) + φ(θ̂n)

]

=gn

(
2Z∗n +

θ̂n − θ0

εn

)
− gn

(
Z∗n +

θ̂n − θ0

εn

)
+ gn

(
θ̂n − θ0

εn

)
+

1

εn
R(θ̂n, θ0,Z∗n,Z∗n)

p→1

2
φ′′θ0(2h)− 2

1

2
φ′′θ0(h) +

1

2
φ′′θ0(0) =

1

2
4φ′′θ0(h)− 2

1

2
φ′′θ0(h) = φ′′θ0(h)

�

Proof for Theorem 4.3 Note that for g
(
tn, h

1
n, h

2
n

)
= t−1

n

(
φ′θ0+tnh1n

(
h2
n

)
− φ′θ0

(
h2
n

))
,

φ̄′′n(Z∗n,Z∗n) = g
(
εn,Z∗n + ε−1

n

(
θ̂n − θ0

)
,Z∗n

)

Since
(
Z∗n + ε−1

n

(
θ̂n − θ0

)
,Z∗n

)
P
 (G0,G0) and g

(
tn, h

1
n, h

2
n

)
→ g (h1, h2) when

(
h1
n, h

2
n

)
→

(h1, h2), the result follows from Vaart and Wellner (1996) Theorem 1.11.1 and Lemma A.1. �

Proof for Theorem 4.4 Using the triangle inequality,

∥∥φ̄′′n(h1, h1)− φ̄′′n(h2, h2)
∥∥
E =

∥∥∥∥∥
φ′
θ̂n+εnh1

(h1)− φ′
θ̂n

(h1)− φ′
θ̂n+εnh2

(h2) + φ′
θ̂n

(h2)

εn

∥∥∥∥∥
E

=

∥∥∥∥∥
φ′
θ̂n+εnh1

(h1)− φ′
θ̂n+εnh2

(h1) + φ′
θ̂n

(h2)− φ′
θ̂n

(h1) + φ′
θ̂n+εnh2

(h1)− φ′
θ̂n+εnh2

(h2)

εn

∥∥∥∥∥
E

≤ Cθ ‖h1 − h2‖D + Ch ‖h1 − h2‖D + Ch ‖h1 − h2‖D

where Cθ is the Lipschitz constant on θ and Ch is the Lipschitz constant on h for φ′θ(h). �
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Proof for Theorem 6.1 The arguments are similar to those of Theorem 3.1. Let

L̄εnθ,p (h0, h2, . . . , hp) =
1

εn

[
a0φ (θ + εnh0) +

p∑

l=1

ajφ (θ + εnlhl)

]

For h0 → 0, hl → h for l = 1, . . . , p, and εn → 0, it follows from (26) and (27) that

L̄εnθ,p (h0, . . . , hp) = φ
(1)
θ (h) +O

(
ĥ− h

)
+O (εpn) (40)

Define gn (h0, . . . , hp) = L̄εnθ0,p (h0, . . . , hp), and g (h) = φ
(1)
θ (h). Then by (40), gn (h0, . . . , hp) →

g (h). Next write

φ̂′n (Z∗n; p) ≡ Lεn
θ̂,p

(Z∗n) = L̄εnθ0,p

(
θ̂n − θ0

εn
,Z∗n +

θ̂n − θ0

lεn
, l = 1, . . . , p

)
.

Since
(
θ̂n−θ0
εn

,Z∗n + θ̂n−θ0
lεn

, l = 1, . . . , p
)

P
 (0,G0, . . . ,G0), it follows from the bootstrap extended

continuous mapping Theorem Lemma A.1 that φ̂′n (Z∗n; p) ≡ Lεn
θ̂,p

(Z∗n)
P
 φ

(1)
θ0

(Z∗n). �

Lemma A.1 (Bootstrap extended continuous mapping theorem) Under the conditions of

Vaart and Wellner (1996) Theorem 1.11.1 and Kosorok (2007) Theorem 10.8, gn

(
X̂n

)
P
 g (X).

Proof: We use the notation in Kosorok (2007) Theorem 10.8 which argues that X̂n
P
 X implies

that unconditionally X̂n  X, so that gn

(
X̂n

)
 g (X) by van der Vaart and Wellner (1996)

Theorem 1.11.1. Let EM denote the expectation conditional on the data. Write

sup
h∈BL1

∥∥∥∥EMh
(
gn

(
X̂n

))
− Eh (g (X))

∥∥∥∥ ≤ sup
h∈BL1

∥∥∥∥EMh
(
gn

(
X̂n

))
− EMh

(
g
(
X̂n

))∥∥∥∥

+ sup
h∈BL1

∥∥∥∥EMh
(
g
(
X̂n

))
− Eh (g (X))

∥∥∥∥

Since h ∈ BL1,

∥∥∥∥EMh
(
gn

(
X̂n

))
− EMh

(
g
(
X̂n

))∥∥∥∥ ≤ EM

[
‖gn

(
X̂n

)
− g

(
X̂n

)
‖ ∧ 2

]
. Next

by van der Vaart and Wellner (1996) Theorem 1.11.1,
(
gn

(
X̂n

)
, g
(
X̂n

))
 (g (X) , g (X)) and

gn

(
X̂n

)
− g

(
X̂n

)
 0, so that argue as before equation 10.8 on page 190 of Kosorok (2007),

E∗EM

[
‖gn

(
X̂n

)
− g

(
X̂n

)
‖ ∧ 2

]
→ 0 =⇒ EM

[
‖gn

(
X̂n

)
− g

(
X̂n

)
‖ ∧ 2

]
= oP (1) .

By Kosorok (2007) Theorem 10.8, suph∈BL1

∥∥∥∥EMh
(
g
(
X̂n

))
− Eh (g (X))

∥∥∥∥ = oP (1). It then

follows that suph∈BL1

∥∥∥∥EMh
(
gn

(
X̂n

))
− Eh (g (X))

∥∥∥∥ = oP (1) . �
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Monte Carlo Simulations for the Normal Mean Model
φ(θ) = 1.5θ1(θ > 0)− 0.5θ1(θ < 0)
Number of Monte Carlo Simulations is 2000

Table 1: Empirical Two-Sided Symmetric Coverage Frequencies for εn = n−1/6 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.948 0.999 0.952 0.948 0.949 0.961 0.900 0.886 0.906 0.961
n = 4000 0.953 0.948 1.000 0.956 0.948 0.952 0.949 0.896 0.904 0.908 0.952
n = 6000 0.950 0.952 1.000 0.955 0.954 0.946 0.953 0.905 0.893 0.910 0.957
n = 8000 0.943 0.952 1.000 0.955 0.956 0.948 0.941 0.897 0.902 0.919 0.949
n = 10000 0.952 0.940 1.000 0.945 0.952 0.953 0.952 0.900 0.899 0.929 0.953

Table 2: Empirical Two-Sided Equal-tailed Coverage Frequencies for εn = n−1/6 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.801 0.583 0.952 0.917 0.612 0.500 0.566 0.780 0.901 0.961
n = 4000 0.952 0.815 0.587 0.953 0.924 0.630 0.479 0.559 0.808 0.915 0.951
n = 6000 0.951 0.800 0.566 0.958 0.935 0.644 0.492 0.565 0.794 0.916 0.957
n = 8000 0.943 0.809 0.553 0.958 0.943 0.672 0.497 0.550 0.798 0.923 0.949
n = 10000 0.953 0.812 0.548 0.951 0.930 0.673 0.478 0.551 0.801 0.929 0.953

Table 3: Empirical upper One-Sided Coverage Frequencies for εn = n−1/6 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.948 0.792 0.566 0.946 0.916 0.623 0.511 0.582 0.802 0.911 0.961
n = 4000 0.950 0.808 0.571 0.952 0.922 0.632 0.503 0.584 0.822 0.929 0.949
n = 6000 0.956 0.800 0.551 0.952 0.934 0.655 0.504 0.578 0.818 0.932 0.949
n = 8000 0.944 0.801 0.540 0.957 0.945 0.680 0.512 0.571 0.817 0.944 0.943
n = 10000 0.953 0.810 0.529 0.950 0.936 0.680 0.491 0.566 0.822 0.948 0.953

Table 4: Empirical lower One-Sided Coverage Frequencies for εn = n−1/6 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.963 0.999 0.952 0.948 0.949 0.961 0.950 0.947 0.959 0.956
n = 4000 0.946 0.965 1.000 0.956 0.948 0.952 0.949 0.946 0.952 0.950 0.955
n = 6000 0.944 0.969 1.000 0.955 0.954 0.946 0.953 0.955 0.942 0.950 0.950
n = 8000 0.951 0.974 1.000 0.955 0.956 0.948 0.941 0.952 0.950 0.947 0.954
n = 10000 0.956 0.963 1.000 0.945 0.952 0.953 0.952 0.952 0.948 0.947 0.957

Table 5: Empirical Two-Sided Symmetric Coverage Frequencies for εn = n−1/3 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.953 0.956 0.946 0.942 0.949 0.961 0.900 0.938 0.949 0.961
n = 4000 0.953 0.952 0.955 0.949 0.946 0.951 0.949 0.896 0.956 0.953 0.952
n = 6000 0.950 0.953 0.946 0.950 0.951 0.946 0.953 0.905 0.946 0.943 0.957
n = 8000 0.943 0.953 0.960 0.951 0.950 0.948 0.941 0.897 0.947 0.944 0.949
n = 10000 0.952 0.951 0.958 0.941 0.949 0.953 0.952 0.900 0.955 0.947 0.953

Table 6: Empirical Two-Sided Equal-tailed Coverage Frequencies for εn = n−1/3 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.951 0.744 0.955 0.925 0.652 0.553 0.731 0.939 0.948 0.961
n = 4000 0.952 0.951 0.760 0.955 0.931 0.679 0.541 0.749 0.956 0.951 0.951
n = 6000 0.951 0.953 0.759 0.960 0.942 0.686 0.546 0.765 0.946 0.943 0.957
n = 8000 0.943 0.952 0.754 0.961 0.944 0.709 0.549 0.756 0.948 0.943 0.949
n = 10000 0.953 0.951 0.751 0.952 0.936 0.712 0.527 0.765 0.955 0.947 0.953

Table 7: Empirical upper One-Sided Coverage Frequencies for εn = n−1/3 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.948 0.952 0.746 0.953 0.929 0.671 0.571 0.753 0.940 0.937 0.961
n = 4000 0.950 0.949 0.765 0.959 0.934 0.685 0.569 0.769 0.953 0.945 0.949
n = 6000 0.956 0.955 0.774 0.960 0.944 0.694 0.557 0.780 0.952 0.945 0.949
n = 8000 0.944 0.950 0.755 0.963 0.950 0.722 0.566 0.777 0.952 0.952 0.943
n = 10000 0.953 0.956 0.756 0.958 0.942 0.720 0.544 0.781 0.952 0.953 0.953

Table 8: Empirical lower One-Sided Coverage Frequencies for εn = n−1/3 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.949 0.956 0.946 0.942 0.949 0.961 0.950 0.947 0.959 0.956
n = 4000 0.946 0.952 0.955 0.949 0.946 0.951 0.949 0.946 0.952 0.950 0.955
n = 6000 0.944 0.947 0.946 0.950 0.951 0.946 0.953 0.955 0.942 0.950 0.950
n = 8000 0.951 0.953 0.960 0.951 0.950 0.948 0.941 0.952 0.950 0.947 0.954
n = 10000 0.956 0.946 0.958 0.941 0.949 0.953 0.952 0.952 0.948 0.947 0.957
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Table 9: Empirical Two-Sided Symmetric Coverage Frequencies for εn = n−1/2 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.953 0.934 0.906 0.924 0.972 0.960 0.935 0.938 0.949 0.961
n = 4000 0.953 0.952 0.945 0.908 0.920 0.975 0.945 0.943 0.956 0.953 0.952
n = 6000 0.950 0.953 0.941 0.906 0.916 0.970 0.964 0.953 0.946 0.943 0.957
n = 8000 0.943 0.953 0.948 0.912 0.923 0.967 0.958 0.947 0.947 0.944 0.949
n = 10000 0.952 0.951 0.948 0.905 0.916 0.973 0.959 0.951 0.955 0.947 0.953

Table 10: Empirical Two-Sided Equal-tailed Coverage Frequencies for εn = n−1/2 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.952 0.921 0.938 0.925 0.761 0.662 0.930 0.939 0.948 0.961
n = 4000 0.952 0.951 0.941 0.941 0.927 0.770 0.665 0.941 0.956 0.951 0.951
n = 6000 0.951 0.953 0.941 0.941 0.932 0.784 0.673 0.953 0.946 0.943 0.957
n = 8000 0.943 0.952 0.947 0.943 0.937 0.808 0.676 0.947 0.948 0.943 0.949
n = 10000 0.953 0.951 0.947 0.940 0.929 0.804 0.661 0.951 0.955 0.947 0.953

Table 11: Empirical upper One-Sided Coverage Frequencies for εn = n−1/2 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.948 0.953 0.922 0.975 0.957 0.774 0.677 0.948 0.940 0.937 0.961
n = 4000 0.950 0.949 0.950 0.973 0.957 0.784 0.697 0.951 0.953 0.945 0.949
n = 6000 0.956 0.955 0.952 0.972 0.966 0.799 0.688 0.951 0.952 0.945 0.949
n = 8000 0.944 0.950 0.950 0.978 0.967 0.824 0.696 0.945 0.952 0.952 0.943
n = 10000 0.953 0.956 0.945 0.976 0.963 0.820 0.679 0.948 0.952 0.953 0.953

Table 12: Empirical lower One-Sided Coverage Frequencies for εn = n−1/2 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.949 0.952 0.906 0.911 0.946 0.961 0.950 0.947 0.959 0.956
n = 4000 0.946 0.952 0.952 0.908 0.909 0.946 0.949 0.946 0.952 0.950 0.955
n = 6000 0.944 0.947 0.939 0.906 0.910 0.940 0.953 0.955 0.942 0.950 0.950
n = 8000 0.951 0.953 0.952 0.912 0.912 0.940 0.941 0.952 0.950 0.947 0.954
n = 10000 0.956 0.946 0.951 0.905 0.907 0.948 0.952 0.952 0.948 0.947 0.957

Table 13: Empirical Two-Sided Symmetric Coverage Frequencies for εn = n−1 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.953 0.952 0.950 0.955 0.972 0.831 0.955 0.938 0.949 0.961
n = 4000 0.953 0.952 0.952 0.955 0.956 0.976 0.827 0.946 0.956 0.953 0.952
n = 6000 0.950 0.953 0.943 0.954 0.954 0.972 0.846 0.953 0.946 0.943 0.957
n = 8000 0.943 0.953 0.950 0.956 0.956 0.971 0.833 0.947 0.947 0.944 0.949
n = 10000 0.952 0.951 0.949 0.949 0.951 0.973 0.822 0.951 0.955 0.947 0.953

Table 14: Empirical Two-Sided Equal-tailed Coverage Frequencies for εn = n−1 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.952 0.953 0.949 0.955 0.961 0.823 0.954 0.939 0.948 0.961
n = 4000 0.952 0.951 0.951 0.953 0.954 0.971 0.819 0.946 0.956 0.951 0.951
n = 6000 0.951 0.953 0.943 0.954 0.954 0.965 0.839 0.953 0.946 0.943 0.957
n = 8000 0.943 0.952 0.949 0.956 0.955 0.967 0.831 0.947 0.948 0.943 0.949
n = 10000 0.953 0.951 0.948 0.949 0.951 0.971 0.820 0.951 0.955 0.947 0.953

Table 15: Empirical upper One-Sided Coverage Frequencies for εn = n−1 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.948 0.953 0.942 0.999 0.999 0.988 0.832 0.951 0.940 0.937 0.961
n = 4000 0.950 0.949 0.955 0.999 0.998 0.996 0.841 0.951 0.953 0.945 0.949
n = 6000 0.956 0.955 0.954 1.000 0.998 0.993 0.844 0.951 0.952 0.945 0.949
n = 8000 0.944 0.950 0.950 1.000 1.000 0.997 0.846 0.945 0.952 0.952 0.943
n = 10000 0.953 0.956 0.945 1.000 1.000 0.998 0.835 0.948 0.952 0.953 0.953

Table 16: Empirical lower One-Sided Coverage Frequencies for εn = n−1 using Zn = N(0, σ̂)
θn −2 −n−1/6 −n−1/3 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6 n−1/10 2

n = 2000 0.945 0.949 0.952 0.903 0.909 0.946 0.961 0.950 0.947 0.959 0.956
n = 4000 0.946 0.952 0.952 0.906 0.905 0.946 0.949 0.946 0.952 0.950 0.955
n = 6000 0.944 0.947 0.939 0.905 0.908 0.939 0.953 0.955 0.942 0.950 0.950
n = 8000 0.951 0.953 0.952 0.910 0.909 0.940 0.941 0.952 0.950 0.947 0.954
n = 10000 0.956 0.946 0.951 0.902 0.905 0.948 0.952 0.952 0.948 0.947 0.957
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Monte Carlo Simulations for the Second Order Directional Delta Method
Number of Monte Carlo Simulations is 2000

Table 1: Rejection Frequencies using Andrews and Soares, εn =
√
log(n)/

√
n, and Zn = N(0, σ̂)

θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.778 0.144 0.082 0.068 0.051 0.056 0.041 0.017 0.000 0.000
n = 4000 1.000 0.871 0.170 0.074 0.060 0.056 0.049 0.046 0.015 0.000 0.000
n = 6000 1.000 0.928 0.147 0.076 0.064 0.052 0.057 0.042 0.013 0.000 0.000
n = 8000 1.000 0.946 0.160 0.069 0.055 0.049 0.052 0.043 0.012 0.000 0.000
n = 10000 1.000 0.957 0.160 0.070 0.049 0.057 0.055 0.038 0.009 0.000 0.000

Table 2: Rejection Frequencies using Derivative of Analytic First Order Derivative, εn =
√
log(n)/

√
n, and Zn = N(0, σ̂)

θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.258 0.083 0.048 0.048 0.043 0.025 0.003 0.000 0.000
n = 4000 1.000 0.987 0.260 0.078 0.050 0.043 0.046 0.033 0.004 0.000 0.000
n = 6000 1.000 0.995 0.257 0.077 0.057 0.046 0.042 0.024 0.002 0.000 0.000
n = 8000 1.000 0.998 0.257 0.080 0.043 0.042 0.036 0.025 0.003 0.000 0.000
n = 10000 1.000 0.999 0.267 0.072 0.050 0.050 0.050 0.026 0.003 0.000 0.000

Table 3: Rejection Frequencies using Numerical Second Order Derivative 1, εn =
√
log(n)/

√
n, and Zn = N(0, σ̂)

θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.845 0.167 0.092 0.075 0.061 0.068 0.051 0.019 0.000 0.000
n = 4000 1.000 0.925 0.186 0.088 0.067 0.061 0.059 0.051 0.017 0.000 0.000
n = 6000 1.000 0.959 0.173 0.086 0.073 0.062 0.067 0.049 0.017 0.000 0.000
n = 8000 1.000 0.973 0.175 0.080 0.061 0.062 0.060 0.046 0.014 0.000 0.000
n = 10000 1.000 0.981 0.183 0.076 0.061 0.067 0.061 0.043 0.011 0.000 0.000

Table 4: Rejection Frequencies using Numerical Second Order Derivative 2, εn =
√
log(n)/

√
n, and Zn = N(0, σ̂)

θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.261 0.089 0.054 0.051 0.050 0.030 0.004 0.000 0.000
n = 4000 1.000 0.987 0.262 0.083 0.053 0.048 0.049 0.035 0.005 0.000 0.000
n = 6000 1.000 0.995 0.257 0.079 0.060 0.049 0.045 0.025 0.003 0.000 0.000
n = 8000 1.000 0.998 0.259 0.080 0.044 0.043 0.037 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.266 0.071 0.051 0.055 0.050 0.029 0.003 0.000 0.000

Table 5: Rejection Frequencies using Andrews and Soares, εn = n−1/6, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.957 0.233 0.087 0.056 0.049 0.051 0.032 0.006 0.000 0.000
n = 4000 1.000 0.981 0.244 0.084 0.052 0.050 0.051 0.035 0.006 0.000 0.000
n = 6000 1.000 0.993 0.236 0.076 0.061 0.051 0.046 0.028 0.004 0.000 0.000
n = 8000 1.000 0.997 0.241 0.079 0.043 0.045 0.040 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.252 0.072 0.051 0.054 0.048 0.031 0.004 0.000 0.000

Table 6: Rejection Frequencies using Derivative of Analytic First Order Derivative, εn = n−1/6, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.262 0.091 0.055 0.052 0.050 0.030 0.004 0.000 0.000
n = 4000 1.000 0.987 0.264 0.085 0.053 0.050 0.050 0.035 0.005 0.000 0.000
n = 6000 1.000 0.995 0.259 0.079 0.061 0.051 0.046 0.026 0.003 0.000 0.000
n = 8000 1.000 0.998 0.261 0.081 0.045 0.043 0.040 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.267 0.072 0.052 0.056 0.050 0.030 0.003 0.000 0.000

Table 7: Rejection Frequencies using Numerical Second Order Derivative 1, εn = n−1/6, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.957 0.234 0.088 0.057 0.050 0.051 0.032 0.006 0.000 0.000
n = 4000 1.000 0.981 0.246 0.085 0.052 0.050 0.052 0.035 0.006 0.000 0.000
n = 6000 1.000 0.993 0.236 0.077 0.062 0.051 0.046 0.028 0.004 0.000 0.000
n = 8000 1.000 0.997 0.242 0.079 0.043 0.045 0.040 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.253 0.072 0.051 0.054 0.048 0.031 0.004 0.000 0.000

Table 8: Rejection Frequencies using Numerical Second Order Derivative 2, εn = n−1/6, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.262 0.091 0.055 0.052 0.050 0.030 0.004 0.000 0.000
n = 4000 1.000 0.987 0.264 0.085 0.053 0.050 0.050 0.035 0.005 0.000 0.000
n = 6000 1.000 0.995 0.259 0.079 0.061 0.051 0.046 0.026 0.003 0.000 0.000
n = 8000 1.000 0.998 0.261 0.081 0.045 0.043 0.040 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.267 0.072 0.052 0.056 0.050 0.030 0.003 0.000 0.000
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Table 9: Rejection Frequencies using Andrews and Soares, εn = n−1/3, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.857 0.162 0.080 0.061 0.048 0.051 0.037 0.013 0.000 0.000
n = 4000 1.000 0.942 0.191 0.076 0.057 0.053 0.050 0.042 0.009 0.000 0.000
n = 6000 1.000 0.970 0.184 0.076 0.061 0.051 0.051 0.035 0.006 0.000 0.000
n = 8000 1.000 0.984 0.184 0.070 0.053 0.047 0.046 0.035 0.009 0.000 0.000
n = 10000 1.000 0.991 0.190 0.067 0.051 0.054 0.049 0.033 0.004 0.000 0.000

Table 10: Rejection Frequencies using Derivative of Analytic First Order Derivative, εn = n−1/3, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.262 0.092 0.054 0.052 0.050 0.030 0.004 0.000 0.000
n = 4000 1.000 0.987 0.264 0.085 0.053 0.049 0.050 0.035 0.005 0.000 0.000
n = 6000 1.000 0.995 0.259 0.079 0.061 0.051 0.046 0.026 0.003 0.000 0.000
n = 8000 1.000 0.998 0.261 0.081 0.045 0.043 0.040 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.267 0.073 0.052 0.056 0.050 0.030 0.003 0.000 0.000

Table 11: Rejection Frequencies using Numerical Second Order Derivative 1, εn = n−1/3, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.888 0.181 0.090 0.065 0.054 0.059 0.043 0.015 0.000 0.000
n = 4000 1.000 0.956 0.207 0.080 0.062 0.058 0.052 0.046 0.011 0.000 0.000
n = 6000 1.000 0.976 0.193 0.080 0.066 0.055 0.053 0.042 0.007 0.000 0.000
n = 8000 1.000 0.986 0.196 0.076 0.056 0.052 0.048 0.036 0.010 0.000 0.000
n = 10000 1.000 0.995 0.203 0.072 0.054 0.058 0.051 0.037 0.004 0.000 0.000

Table 12: Rejection Frequencies using Numerical Second Order Derivative 2, εn = n−1/3, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.261 0.090 0.054 0.051 0.050 0.031 0.004 0.000 0.000
n = 4000 1.000 0.987 0.263 0.084 0.053 0.049 0.049 0.035 0.005 0.000 0.000
n = 6000 1.000 0.995 0.257 0.079 0.060 0.050 0.046 0.026 0.003 0.000 0.000
n = 8000 1.000 0.998 0.260 0.080 0.045 0.043 0.038 0.028 0.004 0.000 0.000
n = 10000 1.000 0.999 0.266 0.071 0.052 0.056 0.050 0.030 0.003 0.000 0.000

Table 13: Rejection Frequencies using Andrews and Soares, εn = n−1/2, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 0.017 0.025 0.056 0.087 0.081 0.084 0.081 0.080 0.072 0.000 0.000
n = 4000 0.010 0.023 0.058 0.071 0.085 0.076 0.069 0.081 0.056 0.000 0.000
n = 6000 0.018 0.030 0.054 0.072 0.081 0.077 0.083 0.073 0.064 0.000 0.000
n = 8000 0.013 0.022 0.059 0.071 0.077 0.065 0.084 0.086 0.055 0.000 0.000
n = 10000 0.016 0.025 0.062 0.085 0.080 0.081 0.081 0.077 0.055 0.000 0.000

Table 14: Rejection Frequencies using Derivative of Analytic First Order Derivative, εn = n−1/2, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.932 0.051 0.004 0.002 0.002 0.001 0.000 0.000 0.000 0.000
n = 4000 1.000 0.978 0.051 0.006 0.002 0.001 0.003 0.001 0.000 0.000 0.000
n = 6000 1.000 0.990 0.055 0.004 0.002 0.002 0.001 0.000 0.000 0.000 0.000
n = 8000 1.000 0.997 0.051 0.004 0.002 0.001 0.000 0.001 0.000 0.000 0.000
n = 10000 1.000 0.997 0.058 0.004 0.003 0.001 0.002 0.001 0.000 0.000 0.000

Table 15: Rejection Frequencies using Numerical Second Order Derivative 1, εn = n−1/2, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.412 0.124 0.136 0.120 0.118 0.117 0.107 0.082 0.000 0.000
n = 4000 1.000 0.525 0.139 0.126 0.119 0.113 0.104 0.114 0.065 0.000 0.000
n = 6000 1.000 0.573 0.128 0.121 0.128 0.116 0.111 0.101 0.072 0.000 0.000
n = 8000 1.000 0.632 0.142 0.123 0.115 0.103 0.117 0.114 0.064 0.000 0.000
n = 10000 1.000 0.644 0.132 0.130 0.117 0.112 0.116 0.103 0.062 0.000 0.000

Table 16: Rejection Frequencies using Numerical Second Order Derivative 2, εn = n−1/2, and Zn = N(0, σ̂)
θn −n−1/6 −n−1/3 −n−1/2 −n−1/1.5 −n−1 0 n−1 n−1/1.5 n−1/2 n−1/3 n−1/6

n = 2000 1.000 0.969 0.260 0.087 0.057 0.056 0.050 0.031 0.013 0.000 0.000
n = 4000 1.000 0.987 0.260 0.079 0.054 0.051 0.050 0.038 0.011 0.000 0.000
n = 6000 1.000 0.995 0.255 0.079 0.059 0.051 0.045 0.028 0.010 0.000 0.000
n = 8000 1.000 0.998 0.256 0.080 0.049 0.043 0.039 0.033 0.011 0.000 0.000
n = 10000 1.000 0.999 0.266 0.072 0.049 0.056 0.051 0.029 0.008 0.000 0.000
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