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This paper proposes a numerical bootstrap method that is consistent in
many cases where the standard bootstrap is known to fail and where the m-
out-of-n bootstrap and subsampling have been the most commonly used infer-
ence approaches. We provide asymptotic analysis under both fixed and drift-
ing parameter sequences, and we compare the approximation error of the nu-
merical bootstrap with that of the m-out-of-n bootstrap and subsampling. Fi-
nally, we discuss applications of the numerical bootstrap, such as constrained
and unconstrained M-estimators converging at both regular and nonstandard
rates, Laplace-type estimators, and test statistics for partially identified mod-
els.

1. Introduction. We propose a new type of bootstrap called the numerical bootstrap
which offers an alternative to the m-out-of-n bootstrap [6, 30] and subsampling [25] in many
cases where the standard bootstrap fails. Motivated by [16]’s work on inference for direction-
ally differentiable functions, the numerical bootstrap is based on perturbing the sample by
εn

√
n times the difference between the bootstrapped sample and the data. We show that when

εn

√
n → ∞ and εn ↓ 0, the numerical bootstrap can be used to conduct pointwise asymptoti-

cally valid inference for a large class of M-estimators converging at possibly slower than
√

n

rates and subject to a set of known constraints which can be approximated in the limit by a
cone centered at the true parameter value.

Section 2 provides an overview of the numerical bootstrap method. Section 2.1 contains
some heuristic arguments comparing the error of the numerical bootstrap to that of the m-
out-of-n bootstrap and subsampling. Section 3 studies the asymptotic coverage properties
of confidence intervals constructed using the numerical bootstrap for drifting sequences of
parameters. Section 4 validates the consistency of the numerical bootstrap for a class of M-
estimators that includes the maximum score estimator developed by [23] and whose asymp-
totics are derived in [20] and [11]. In Section 4.1, we allow the true parameter to lie on the
boundary of a constrained set, as in the setup of [17]. For the sample extremum counter exam-
ple in Section 4.2, subsampling works, but the numerical bootstrap does not. Section 5 reports
Monte Carlo simulation results comparing the numerical bootstrap to the standard bootstrap,
the perturbation bootstrap [14, 24], and the m-out-of-n bootstrap [6, 30]. The Supplementary
Material [18] contains more theoretical and simulation results on the differences between
the numerical bootstrap, the m-out-of-n bootstrap, and subsampling. Local asymptotics and
simulations results are presented for the LASSO estimator [33] in the one-dimensional mean
model. We also demonstrate how to consistently estimate the asymptotic distribution of sam-
ple size dependent statistics such as the Laplace-type estimators of [13] and [19]. Addition-
ally, we illustrate how the numerical bootstrap can be used to perform hypothesis testing in
partially identified moment inequality models (see, e.g., [2, 3, 8, 9]). We also discuss the role
of recentering in hypothesis testing and how to use the numerical bootstrap to estimate an
unknown polynomial convergence rate. A list of commonly used symbols and proofs of the
theorems are also included in the Supplementary Material.
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398 H. HONG AND J. LI

2. A generalized numerical bootstrap method. To motivate, we note that many esti-
mators and test statistics can be written as a functional of the empirical distribution θ(Pn)

with a population analog θ(P ). Typically, for an increasing function a(n) of the sample size
n, for a limiting distribution J (which can depend on P ), and using weak convergence nota-
tion,1 Ĵn ≡ a(n)(θ(Pn) − θ(P )) � J . This can be rewritten as

Ĵn ≡ a(n)

(
θ

(
P + 1√

n

√
n(Pn − P)

)
− θ(P )

)
� J .

Since it is often times the case that Ĝn = √
n(Pn − P) � G0 where G0 is a properly defined

Brownian bridge, we also expect that

a(n)

(
θ

(
P + 1√

n
G0

)
− θ(P )

)
� J .

If we take εn = 1√
n

, so that a(n) = a
(√

n
2
)

is replaced by a

(
1
ε2
n

)
, then we also anticipate

that for other εn ↓ 0,

a

(
1

ε2
n

)(
θ(P + εnG0) − θ(P )

)
� J .

The goal is to provide a consistent estimate of J , which approximates the left-hand side
above. To obtain such a consistent estimate, we need to estimate the unknown P and G0. In-
tuitively, P can be estimated by Pn, and G0 can be consistently estimated by the bootstrapped
empirical process Ĝ∗

n = √
n(P ∗

n −Pn). A popular choice for Ĝ∗
n is the multinomial bootstrap in

which Ĝ∗
n = √

n(P ∗
n −Pn) and P ∗

n = 1
n

∑n
i=1 Mniδi , where δi is the point mass on observation

i, and Mni, i = 1, . . . , n is a multinomial distribution with parameters (n−1, n−1, . . . , n−1).
Other common choices for Ĝ∗

n include the Wild bootstrap, where Ĝ∗
n = 1√

n

∑n
i=1(ξi − ξ̄ )δi for

ξ̄ = 1
n

∑n
i=1 ξi and ξi are i.i.d. variables with variance 1 and finite 3rd moment, and exchange-

able bootstrap schemes in [34] (Chapter 3.6). Other forms of Ĝ∗
n that consistently estimate G0

can also be used, such as Ĝ∗
n = √

mn(P
∗
mn

− Pn) where mn → ∞ as n → ∞ and P ∗
mn

is
a multinomial i.i.d. sample from Pn of size mn. A choice of mn/n → 0 and εn = 1/

√
mn

corresponds to the m-out-of-n bootstrap. Convolved subsampling (e.g., [32]) can be used to
handle time series data, but we focus on the i.i.d. case.

Under regularity conditions, Ĝ∗
n converges in distribution to G1 both conditionally on the

sample in probability, and unconditionally, where G1 is an independent and identical copy of
G0. To offset the noise of estimating P with Pn, the step size parameter εn is chosen such that√

nεn → ∞. Therefore, we propose a numerical bootstrap method that estimates J with

Ĵ ∗
n = a

(
1

ε2
n

)(
θ
(
Pn + εnĜ∗

n

) − θ(Pn)
)
.

To see why the numerical bootstrap might work, note that

Ĵ ∗
n = a

(
1

ε2
n

)(
θ

(
P + εn

(
Ĝ∗

n + Pn − P

εn

))
− θ(P )

)
− a

(
1

ε2
n

)(
θ(Pn) − θ(P )

)
.

In the above, we rewrite the second term as

a

(
1

ε2
n

)(
θ(Pn) − θ(P )

) = 1

a(n)
a

(
1

ε2
n

)
a(n)

(
θ(Pn) − θ(P )

)
.

1Xn �X in the metric space (D, d) if and only if supf ∈BL1
|E∗f (Xn)−Ef (X)| → 0 where BL1 is the space

of functions f : D 	→ R with Lipschitz norm bounded by 1.
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Since a(n)(θ(Pn) − θ(P )) � J and typically 1
a(n)

a( 1
ε2
n
) → 0 (e.g., when a(n) = nγ ) as

nε2
n → ∞, the second term vanishes asymptotically:

a

(
1

ε2
n

)(
θ(Pn) − θ(P )

) = oP (1).

Using conditional weak convergence notation,2 Ĝ∗
n

P�
W

G1 in the first term of Ĵ ∗
n . Addition-

ally, since
√

nεn → ∞, heuristically we expect that

Pn − P

εn

=
√

n(Pn − P)√
nεn

≈ G0√
nεn

p−→ 0.

Therefore, since G1 has the same distribution as G0, we also expect that

Ĵ ∗
n ≈ a

(
1

ε2
n

)(
θ(P + εnG1) − θ(P )

) P�
W

J .

Note that [15]’s rescaled bootstrap is a special case of the numerical bootstrap for estima-
tors that satisfy a(n) = √

n.

2.1. Comparison of numerical bootstrap with m-out-of-n bootstrap and subsampling. In
situations where m-out-of-n bootstrap, subsampling, and the numerical bootstrap method can
be used, the numerical bootstrap can potentially offer a more accurate approximation to the
limiting distribution. Because the analysis is similar between subsampling and m-out-of-n
bootstrap, for brevity we focus on subsampling. Recall that subsampling [25] approximates
the limiting distribution J using the finite sample distribution of a(b)(θ(Pb)− θ(Pn)) which
in large samples is close to a(b)(θ(Pb) − θ(P )) whenever a(b)(θ(Pn) − θ(P )) = oP (1).
In turn, as b → ∞, a(b)(θ(Pb) − θ(P )) � J . To compare subsampling to the numerical
bootstrap, write the subsampling distribution as

a(b)
(
θ(Pb) − θ(Pn)

) = a(b)

(
θ

(
Pn + 1√

b

√
b(Pb − Pn)

)
− θ(Pn)

)
.

In the numerical bootstrap setup, subsampling is essentially using εn = 1√
b

as the step size

and using
√

b(Pb − Pn) to estimate G0 based on subsamples of size b. The numerical boot-
strap method is different and instead uses Ĝ∗

n ≡ √
n(P ∗

n − Pn) to estimate G0 based on the
entire sample of size n. In addition, G0 can also be approximated by a multivariate normal
distribution in finite dimensional situations.

For Xi
i.i.d.∼ (μ(P ), σ 2) and X̄n ≡ 1

n

∑n
i=1 Xi , consider the finite dimensional setup where

θ(P ) = φ(μ(P )) for some finite dimensional Hadamard directionally differentiable mapping
φ : Rd → R. Recall the following definition of first order Hadamard directional differentia-
bility:

DEFINITION 2.1. φ is first order Hadamard directionally differentiable at μ0 ≡ μ(P ) ∈
R

d tangentially to a set D0 ⊆ R
d if there is a continuous map φ′

μ0
: D0 → R such that for all

h ∈ D0,

lim
n→∞

∣∣∣∣φ(μ0 + tnhn) − φ(μ0)

tn
− φ′

μ0
(h)

∣∣∣∣ = 0

for all {hn} ⊂D and {tn} ∈R+ such that tn ↓ 0, hn → h as n → ∞ and μ0 + tnhn ∈ R
d .

2Xn
P�
W

X in the metric space (D, d) if and only if supf ∈BL1
|EWf (Xn) − Ef (X)| → 0 and EWf (Xn)∗ −

EWf (Xn)∗
p−→ for all f ∈ BL1, where BL1 is the space of functions f : D 	→ R with Lipschitz norm bounded

by 1 and EW denotes expectation with respect to the bootstrap weights W conditional on the data Xn.
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400 H. HONG AND J. LI

When the first order Hadamard directional derivative is degenerate, that is, φ′
μ0

(h) = 0 for
all h, it will be necessary to assume second order Hadamard directional differentiability.

DEFINITION 2.2. φ is second order Hadamard directionally differentiable at μ0 ∈ R
d

tangentially to D0 if it is first order Hadamard directionally differentiable and there is a con-
tinuous map φ′′

μ0
:D0 →R such that for all h ∈ D0,

lim
n→∞

∣∣∣∣φ(μ0 + tnhn) − φ(μ0) − tnφ
′
μ0

(hn)

1
2 t2

n

− φ′′
μ0

(h)

∣∣∣∣ = 0

for all {hn} ⊂D and {tn} ∈R+ such that tn ↓ 0, hn → h ∈ D0 as n → ∞ and μ0 + tnhn ∈ R
d .

Consider approximating the limiting distribution of
√

n(φ(X̄n) − φ(μ)) for any twice
Hadamard directionally differentiable function φ(·). It is known that φ′

μ(h) is positively ho-
mogeneous of degree 1. We demonstrate in the Supplementary Material that one dimensional
positively homogeneous functions of degree 1 have a piecewise linear representation: there
exists constants λ1, λ2 ∈ R such that φ′

μ(h) = λ1h
+ + λ2h

−. Using Taylor expansion argu-
ments detailed in the Supplementary Material, for λ1 ≥ 0 and λ2 ≥ 0,

P
(
Ĵ ∗

n ≤ x|Xn

) = 


(
x

λ1

)
+ 


(
x

λ2

)
− 1 + Op

(
1

εn

√
n

)
+ Op

(
1√
n

)
+ Op(εn).

In particular, when the second order directional derivative is nonzero and φ′
μ(·) is not a linear

function, then the error for the numerical bootstrap is Op

(
1

εn
√

n

)
+ Op

(
1√
n

)
+ Op(εn) =

Op

(
1

εn
√

n

)
+ Op(εn). The optimal choice of εn that balances the two terms satisfies εn =

O(n−1/4), leading to an error on the order of n−1/4. The error for subsampling is Op

(√
b
n

)
+

Op

(
1√
n

)
+ Op

(
1√
b

)
, so the optimal choice of b satisfies b = O

(
n1/2

)
, which also leads to

an error on the order of n−1/4.
If however, φ′

μ(·) is a linear function that is not degenerate at μ, then the error for the

numerical bootstrap is Op

(
1√
n

)
+ Op(εn), and is minimized by εn = O

(
1√
n

)
. In contrast,

subsampling’s error would still be Op(n−1/4) because of the additional error of Op

(√
b
n

)
introduced by estimating the distribution of

√
b(μ(Pb) − μ(Pn)) using the empirical distri-

bution of
√

b(μ(Pb,i) − μ(Pn)) over i = 1, . . . ,
(n
b

)
sub-blocks. The presence of the error of

Op

(√
b
n

)
is implied by Lemma A.2 in [27] and also demonstrated in Theorem 1 of [5] and

Theorem 3 of [4]. Finally, if the second order derivative is zero, then the error for the numer-
ical bootstrap is Op

(
1

εn
√

n

)
+ Op

(
1√
n

)
, and is smaller than Op

(
n−1/4

)
for all values of εn

satisfying
√

nεn → ∞ while subsampling’s error would still be Op

(
n−1/4

)
due to the error

of Op

(√
b
n

)
when estimating the distribution of

√
b (μ(Pb) − μ(P )). Therefore, the numer-

ical bootstrap should not have an error that is of larger order than subsampling and it may
outperform subsampling in some situations when the first derivative is linear and the second
order derivative is nonzero, or when the second order derivative is zero.

3. Local analysis. Consider the finite dimensional setup where θ(P ) = φ(μ(P )) for
some finite dimensional mapping φ : Rd → R that is Hadamard directionally differentiable
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at μ(P ) tangentially to D0 ⊆ R
d . Suppose we consider perturbing the data generating process

P so that we perform asymptotic analysis on drifting sequences of parameters given by

μ
(
P n) − μ(P ) = anc,

where an ↓ 0 is the rate of drift and c is the slackness parameter. Let μ̂n be a
√

n-consistent
estimator for μn = μ(P n) and μ̂∗

n its bootstrapped version.

ASSUMPTION 3.1. For rn ↑ ∞ and some tight limiting distribution G0 supported on D0,
√

n(μ̂n − μn)�G0,
√

n
(
μ̂∗

n − μ̂n

) P�
W

G0.

We first consider statistics Ĵn ≡ √
n(φ(μ̂n) − φ(μn)) that have the same rate of conver-

gence as μ̂n. Define ĉ∗
α to be the α-th quantile of Ĵ ∗

n ≡ 1
εn

(φ(μ̂n+εn

√
n(μ̂∗

n−μ̂n))−φ(μ̂n)).
In the following theorem, we describe the coverage properties under drifting sequences for

the following three kinds of confidence intervals: equal-tailed
[
φ(μ̂n) − ĉ∗

1−α√
n

,φ(μ̂n) − ĉ∗
α√
n

]
,

lower
[
φ(μ̂n) − ĉ∗

1−α√
n

,∞
)

, and upper
(
−∞, φ(μ̂n) − ĉ∗

α√
n

]
.

THEOREM 3.1. Let φ : Dφ 	→ R be a Hadamard directionally differentiable function
at μ0. Let μ̂n and μ̂∗

n satisfy assumption 3.1. If φ′
μ0

is linear, then equal-tailed and one-
sided confidence intervals are asymptotically exact for all an ↓ 0. If φ′

μ0
is nonlinear and

subadditive (superadditive), the lower (upper) confidence interval will be conservatively valid
for the following types of sequences: (i) an

√
n = 1, (ii) an

√
n → ∞ and an/εn → 0. Equal-

tailed and one-sided intervals are asymptotically exact for (i) an

√
n → 0 (ii) an

√
n → ∞

and an/εn → ∞.

The appendix in the Supplementary Material includes the proof of theorem 3.1 and a dis-
cussion of local asymptotics for the negative part of the mean example and for LASSO in the
one-dimensional mean model.

It is not surprising that the numerical bootstrap consistently estimates the limiting distribu-
tion of

√
n(φ(μ̂n)−φ(μn)) when φ′

μ0
is linear because linearity of φ′

μ0
amounts to Hadamard

differentiability (as opposed to directional differentiability) of φ. It is known that the standard
bootstrap is consistent when φ is Hadamard differentiable (see Theorem 3.9.11 in [34]), so it
should be the case that the numerical bootstrap is consistent as well. This property of shar-
ing the same asymptotic distribution as the standard bootstrap when the standard bootstrap is
consistent also applies to other bootstrap methods in the literature such as bootstrap bounding
methods [12, 22] and adaptive projection intervals [26].

4. Consistency of numerical bootstrap for M-estimators. In this section, we demon-
strate the asymptotic consistency of the numerical bootstrap for a class of M-estimators θ̂n

that converge at rate nγ for some γ ∈ (1
4 ,1). Our proofs in this section assume that the re-

searcher knows γ , but in practice, we can estimate an unknown γ using methods described
in the appendix in the Supplementary Material. Consider

θ̂n ≡ arg max
θ∈�

Pnπ(·, θ) = 1

n

n∑
i=1

π(zi, θ).

We approximate the limiting distribution of nγ
(
θ̂n − θ0

)
using the finite sample distribu-

tion of ε
−2γ
n

(
θ̂∗
n − θ̂n

)
, where θ̂∗

n ≡ arg maxθ∈�Z∗
nπ(·, θ), and Z∗

n = Pn + εnĜ∗
n is a linear
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combination between the empirical distribution and the bootstrapped empirical process. For
example, when Ĝ∗

n is the multinomial bootstrap, for each bootstrap sample z∗
i , i = 1, . . . , n,

θ̂∗
n = arg max

θ∈�

1

n

n∑
i=1

π(zi, θ) + εn

√
n

1

n

n∑
i=1

(
π

(
z∗
i , θ

) − π(zi, θ)
)
.

On the other hand, when Ĝ∗
n is the Wild bootstrap,

θ̂∗
n = arg max

θ∈�

1

n

n∑
i=1

π(zi, θ) + εn

√
n

1

n

n∑
i=1

(
ξi − ξ̄

)
π(zi, θ).

In the following theorem, we show that for a suitable choice of the step size εn,
nγ

(
θ̂n − θ0

)
and ε

−2γ
n

(
θ̂∗
n − θ̂n

)
converge to the same limiting distribution for a large class

of estimators that includes the typical
√

n consistent estimators like OLS and IV as well
as n1/3 consistent estimators like the maximum score estimator studied in [20, 23] and [1].
Other valid bootstrap methods for the maximum score estimator, such as [29], are available
in the literature. Recently, [10] propose to bootstrap the Gaussian process and estimate the
Hessian term in the quadratic limit separately in the context of M-estimation. Let X∗

n = o∗
P (1)

if the law of X∗
n is governed by Pn and if Pn(|X∗

n| > ε) = oP (1) for all ε > 0. Also define
M∗

n = O∗
p(1) (hence also Op(1)) if limm→∞ lim supn→∞ P(Pn(M

∗
n > m) > ε) → 0, ∀ε > 0.

THEOREM 4.1 (Consistency of Numerical Bootstrap for M-estimators). Define g(·, θ) ≡
π(·, θ) − π(·, θ0). Suppose the following conditions are satisfied for some ρ ∈ (0,3/2) and
for γ ≡ 1

2(2−ρ)
:

(i) Png
(
·, θ̂n

)
≥ supθ∈� Png (·, θ)−oP

(
n−2γ

)
andZ∗

ng
(
·, θ̂∗

n

)
≥ supθ∈�Z∗

ng (·, θ)−
o∗
P

(
ε

4γ
n

)
.

(ii) θ̂n
p→ θ0 and θ̂∗

n − θ̂n = o∗
P (1).

(iii) θ0 is an interior point of � ∈ R
d .

(iv) The class of functions GR = {g (·, θ) : |θ − θ0| ≤ R} is uniformly manageable with
envelope function GR(·) ≡ supg∈GR

|g(·)|.
(v) Pg (·, θ) is twice differentiable at θ0 with negative definite Hessian matrix −H .

(vi) �ρ(s, t) = limα→∞ α2ρ Pg
(
·, θ0 + s

α

)
g

(
·, θ0 + t

α

)
exists for each s, t in R

d .

(vii) limα→∞ α2ρ Pg
(
·, θ0 + t

α

)2
1

(∣∣∣g (
·, θ0 + t

α

)∣∣∣ > εα2(1−ρ)
)

= 0 for each ε > 0 and

t ∈ R
d .

(viii) There exists a R0 > 0 such that PG2
R = O

(
R2ρ

)
for all R ≤ R0.

(ix)
√

nεn → ∞ and εn ↓ 0.
(x) For some η > 0, there exists a K such that PG2

R1 (GR > K) < ηR2ρ for R → 0.

(xi) P |g(·, θ1) − g(·, θ2)| = O
(
|θ1 − θ2|2ρ

)
for |θ1 − θ2| → 0.

Then θ̂n − θ0 = Op

(
n−γ

)
and θ̂∗

n − θ0 = O∗
p

(
ε

2γ
n

)
. Furthermore, for Z0(h) a mean zero

Gaussian process with covariance kernel �ρ and nondegenerate increments,

Ĵn ≡ nγ
(
θ̂n − θ0

)
� J ≡ arg max

h

Z0(h) − 1

2
h′Hh,

Ĵ ∗
n ≡ ε−2γ

n

(
θ̂∗
n − θ̂n

)
P�
W

J and Ĵ ∗
n � J .
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The assumptions above are modeled after [20] but generalized so that results for both the√
n and n1/3 cases can be stated concisely.
To explain the intuition for the above theorem, note that for ĥn = nγ

(
θ̂n − θ0

)
,

ĥn = arg max
h∈nγ (�−θ0)

n2γ Png

(
·; θ0 + h

nγ

)

= n2γ− 1
2
√

n(Pn − P)g

(
·; θ0 + h

nγ

)
+ n2γ Pg

(
·; θ0 + h

nγ

)
.

(4.1)

Under the stated conditions, n2γ Pg
(
·; θ0 + h

nγ

)
→ −1

2h′Hh, and

n2γ− 1
2
√

n(Pn − P)g

(
·; θ0 + h

nγ

)
= nργGng

(
·; θ0 + h

nγ

)
�Z0(h).

The numerical bootstrap seeks to approximate the limiting distribution J with the distribution
of

ε−2γ
n

(
θ̂∗
n − θ̂n

)
= ε−2γ

n

(
θ̂∗
n − θ0

)
− ε−2γ

n

(
θ̂n − θ0

)
,

which will be valid if (1) ε
−2γ
n

(
θ̂n − θ0

)
= op(1) and (2) ε

−2γ
n

(
θ̂∗
n − θ0

)
P�
W

J . Part (1)

follows from
√

nεn → ∞ since ε
−2γ
n

(
θ̂n − θ0

)
= 1

(
√

nεn)
2γ nγ

(
θ̂n − θ0

)
= oP (1). For part

(2), write Z∗
ng (·, θ) = (Z∗

n − P)g (·, θ) + Pg (·, θ), so that

θ̂∗
n = arg max

θ∈�

Z∗
ng(·, θ) = (

Z∗
n − P

)
g(·, θ) − 1

2
(θ − θ0)

′(H + op(1)
)
(θ − θ0).

For the first term, note that (Z∗
n − P) = 1√

n

√
n(Pn − P) + εnĜ∗

n
P�
W

1√
n
G0 + εnG1 where G0

and G1 are independent copies of the same Gaussian process. Since εn >> 1√
n

, the second

term should dominate, so that (Z∗
n − P) ≈ εnG1. Consequently, we expect

θ̂∗
n ≈ arg max

θ∈�

εnG1g (·, θ) − 1

2
(θ − θ0)

′ H (θ − θ0)

= εnOp

(|θ − θ0|ρ) − 1

2
(θ − θ0)

′ H (θ − θ0) .

By the definition of θ̂∗
n , εnOp

(
|θ̂∗

n − θ0|ρ
)
+

(
θ̂∗
n − θ0

)′
H

(
θ̂∗
n − θ0

)
≥ 0, implying that |θ̂∗

n −
θ0|2−ρ ≤ Op(εn) and therefore |θ̂∗

n − θ0| ≤ Op

(
ε

1
2−ρ
n

)
= Op

(
ε

2γ
n

)
. To be more formal, let

ĥ∗
n = ε

−2γ
n

(
θ̂∗
n − θ0

)
. Then

ĥ∗
n = arg max

h∈ε
−2γ
n (�−θ0)

ε−4γ
n

((
Z∗

n − P
)
g
(·; θ0 + ε2γ

n h
) + Pg

(·; θ0 + ε2γ
n h

))
.

The second term ε
−4γ
n Pg

(
·; θ0 + ε

2γ
n h

)
→ −1

2h′Hh. It is shown in the Appendix that the
first term satisfies

ε−4γ
n

(
Z∗

n − P
)
g

(
·; θ0 + ε2γ

n h
)

≈ ε−4γ
n

(
1√
n
G0 + εnG1

)
g

(
·, θ0 + ε2γ

n h
)

and that for a suitable Gaussian process Z0 (as in [20]),

ε−4γ
n

(
1√
n
G0 + εnG1

)
g

(
·, θ0 + ε2γ

n h
)

≈ ε1−4γ
n

(
G1g

(
·, θ0 + ε2γ

n h
))

P�
W

Z0(h).
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Combining the first and second terms implies that ĥ∗
n

P�
W

J = arg maxhZ0(h)− 1
2h′Hh. Alto-

gether, parts (1) and (2) imply that Ĵ ∗
n ≡ 1

ε2γ (θ̂∗
n − θ̂n)

P�
W

J , which validates the consistency

of the numerical bootstrap method.
In a more conventional approach such as [19], J is approximated by J̄ ∗ =

arg maxh Ẑ0(h) − 1
2h′Ĥh where Ĥ

p−→ H and Ẑ0(h) is a Gaussian process with estimated

covariance kernel �̂ρ(s, t) for �̂ρ(s, t)
p−→ �ρ(s, t). Instead, the numerical bootstrap essen-

tially replaces

Ẑ0(h) − 1

2
h′Ĥh with ε−4γ

n Z∗
ng

(
·, θ̂n + εnh

)

since Ĵ ∗
n = ε

−2γ
n

(
θ̂∗
n − θ̂n

)
= arg max

h∈ε
−2γ
n (�−θ0)

ε
−4γ
n Z∗

ng
(
·, θ̂n + εnh

)
.

There are two leading cases for Theorem 4.1: the smooth case and the cubic root case. In
the smooth case, ρ = 1 and γ = 1

2 , and the Gaussian process G0g(·; θ) is linearly separable
in θ . Typically there exists a multivariate normal random vector W0 ∼ N(0,�) such that
G0g(·; θ) = W ′

0(θ − θ0), and for an independent copy W1 of W0, G1g(·; θ) = W ′
1(θ − θ0).

The regular bootstrap is valid in this case due to linear separability, and corresponds to εn =
1/

√
n. In particular,

θ̂∗
n = arg max

θ∈�
Z∗

ng(·; θ) ≡ (
Z∗

n − Pn

)
g(·; θ) + (Pn − P)g(·; θ) + Pg(·; θ)

≈ W0 +W1√
n

(θ − θ0) − 1

2
(θ − θ0)

′H(θ − θ0),

since (Z∗
n − Pn)g(·; θ) ≈ W1/

√
n and (Pn − P)g(·; θ) ≈ W0/

√
n. Likewise the sample esti-

mate satisfies

θ̂n = arg max
θ∈�

Png(·; θ) = (Pn − P)g(·; θ) + Pg(·; θ)

≈ Ĝn√
n
g(·; θ) − 1

2
(θ − θ0)

′H(θ − θ0)

≈ W0√
n
(θ − θ0) − 1

2
(θ − θ0)

′H(θ − θ0).

Hence, if we let ĥ∗
n = √

n(θ̂∗
n − θ0) and ĥn = √

n(θ̂n − θ0), then ĥ∗
n

p→ H−1(W0 +W1) and

ĥn
p→ H−1W0, so that

√
n(θ̂∗

n − θ̂n) = ĥ∗
n − ĥn

p→ H−1W1 = N(0,H−1�H−1).

4.1. Constrained M estimation. A related application is to constrained M-estimators
when the parameter (in a correctly specified model) can possibly lie on the boundary of the
constrained set. In the following, we verify the consistency of the numerical bootstrap, under
conditions given in [17, 21], and in Theorem 4.1. Alternative approaches to similar problems
are provided in [28] and [7]. While the latter approach provides a closer tie between the nu-
merical bootstrap and the numerical delta method, the former approach seems more in line
with the convention in the statistics literature. To simplify notation when we make use of
results from [17], we consider arg min instead of arg max.

Following the previous notation, replace the parameter space � by a constrained subset C

such that for θ̂n ∈ C and θ̂∗
n ∈ C,

Pnπ(·, θ̂n) ≤ inf
θ∈C

Pnπ(·, θ) + oP

(
n−2γ )

,(4.2)

Z∗
nπ

(·, θ̂∗
n

) ≤ inf
θ∈C

Z∗
nπ(·, θ) + o∗

P

(
ε4γ
n

)
.(4.3)
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Let C be approximated by a cone TC(θ0) at θ0 in the sense of Theorem 2.1 in [17], which
implies (p. 2002 [17]) that for n → ∞,

(4.4) +∞1
(
δ /∈ nγ (C − θ0)

) e→ +∞1
(
δ /∈ TC(θ0)

)
.

Here,
e→ denotes epigraphical convergence as defined in [17], p. 1997. The difficulty of

practical inference lies in the challenge of estimating the approximating cone TC(θ0) [31],
which is easily handled by the numerical bootstrap method.

The following theorem combines the results in [17, 21] and Theorem 4.1. A restricted
version of Theorem 4.2 corresponding to ρ = 1 and γ = 1/2 can also be stated using only
Assumptions A–D, Lemma 4.1, and Theorem 4.4 in [17]. It also includes Theorem 4.1 as a
special case when TC(θ0) = Rd .

THEOREM 4.2. Assume θ0 uniquely minimizes Pπ(·, θ) over θ ∈ C. Let (4.4) and the
conditions except (i) and (iii) in Theorem 4.1 hold (and also replace (v) with a positive definite
H ). Also assume that

(4.5) J ≡ arg min
h∈TC(θ0)

Z0(h) + 1

2
h′Hh

is almost surely unique. Then Ĵn ≡ nγ (θ̂n − θ0)� J , Ĵ ∗
n ≡ ε

−2γ
n (θ̂∗

n − θ̂n)
P�
W

J , and Ĵ ∗
n ≡

ε
−2γ
n (θ̂∗

n − θ̂n)� J .

If θ0 is in the interior of C, then TC(θ0) = Rd and the proof of Theorem 4.1 can be applied.
In other special cases, the proof of Theorem 4.1 can also be applied without change to The-
orem 4.2, without having to appeal to the notion of epi-convergence. For example, it applies
when θ0 is on the boundary of C and C − θ0 already contains a cone at the origin, meaning
for any compact set K , ∃α > 0 such that TC(θ0) ∩ K ⊂ α(C − θ0) where C − θ0 is the tensor
product between a cone at the origin and an open set.

Theorem 4.2 is based on the M-estimation framework, but generalization to (correctly
specified) GMM models is immediate. In GMM models, θ̂n = arg minθ∈C nQ̂n(θ), where for
a positive definite W and Ŵ = W + oP (1)

Q̂n(θ) = π̂(θ)′Ŵ π̂(θ) and π̂(θ) = 1

n

n∑
i=1

π(zi, θ).

ASSUMPTION 4.1. 1. � is compact and π(θ) = Eπ(zi, θ). 2. π(θ) is four times contin-
uously differentiable. 3. {π(·, θ) : θ ∈ �} is a VC class of functions. 4. π(θ) = 0 if and only
θ = θ0 and θ0 ∈ C.

Define G0 = ∂
∂θ

π(θ0), and let 1√
n

∑n
i=1 π(zi, θ0) � Z = N(0,�). Also define �n =

G0W
1√
n

∑n
i=1 π(zi, θ0), �0 = G0WZ, and H = G0WG′

0. It is known (e.g., [13]) that As-
sumption 4.1 implies the following identification condition and quadratic expansion of the
objective function Q̂n(θ):

(4.6) ∀δ > 0,∃ε > 0 s.t. lim supP
(

inf|θ−θ0|≥δ
Q̂n(θ) − Q̂n(θ0) ≥ ε

)
= 1

and for Rn(θ) = nQ̂n(θ) − nQ̂n(θ0) − �′
n

√
n(θ − θ0) − n(θ − θ0)

′ H
2 (θ − θ0),

(4.7) ∀δn ↓ 0, sup
|θ−θ0|≤δn

|Rn(θ)|
1 + √

n|θ − θ0| + n|θ − θ0|2 = oP (1).
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Under (4.7), which also holds for most M-estimators, nQ̂n(θ) is locally approximated by a
quadratic function:

nQ̃n(θ) = 1

2

(√
n(θ − θ0) + H−1�n

)′
H

(√
n(θ − θ0) + H−1�n

) − 1

2
�′

nH
−1�n.

This leads to the asymptotic distribution

Ĵn = √
n(θ̂n − θ0)

� J = arg min
h∈TC(θ0)

(
h + H−1�0

)′
H

(
h + H−1�0

)
.

(4.8)

Each of the three unknown components can be consistently estimated. (1) Let Ĝ be ei-
ther ∂

∂θ
1
n

∑n
i=1 π(zi; θ̂n) or a numerical derivative analog, and let Ĥ = ĜŴ Ĝ′. (2) Let

�̂ = 1
n

∑n
i=1 π(zi; θ̂n)π(zi; θ̂n)

′. Then let Ẑ∗
n = N(0, �̂) be such that Ẑ∗

n
P�
W

Z, �̂∗
n = ĜWẐ∗

n

so that �̂∗
n

P�
W

�0. (3) Since TC(θ0) is the limit of
√

n(C − θ0), we can also estimate TC(θ0)

by ε−1
n (C − θ̂n). Therefore we define, with Ĝ

∗
n = −Ĥ−1�̂∗

n,

Ĵ ∗
n = arg min

h∈ε−1
n (C−θ̂n)

(
h − Ĝ

∗
n

)′
Ĥ

(
h − Ĝ

∗
n

)
.(4.9)

If C = {θ : θ ≥ 0}, then {h ∈ ε−1
n (C − θ̂n)} = {h ≥ −ε−1

n θ̂n}.
In the regular M-estimator problem where Q̂n(θ) = 1

n

∑n
i=1 π(zi, θ), we typically have

Ĥ = 1
n

∑n
i=1

∂2

∂θ∂θ ′ π(zi; θ̂n) or a numerical derivative analog, and �̂∗
n ∼ N(0, �̂), where �̂ =

1
n

∑n
i=1

∂
∂θ

π(zi; θ̂n)
∂
∂θ

π(zi; θ̂n)
′, or a numerical derivative analog.

THEOREM 4.3. Given (4.4), under (4.6) (implied by Assumption 4.1) and (4.7), (4.8)

holds, and Ĵ ∗
n

P�
W

J .

Theorem 4.2 allows for more general nonstandard asymptotics with γ = 1/3. Theorem 4.3
is only confined to the regular case of γ = 1/2, but can be easier to implement since the
objective function (h − Ĝ

∗
n)

′Ĥ (h − Ĝ
∗
n) is convex whenever Ĥ is positive semi-definite. In

particular, if C is a polyhedron, then the problem can be solved by quadratic programming.
If an unconstrained estimate θ̄n = arg minθ∈� Q̂n(θ) with θ0 ∈ int(�) is available, it is well

known that
√

n(θ̄n − θ0) = −H−1�n + oP (1) � −H−1�0, and that the bootstrap estimate

θ̄∗
n = arg minθ∈� Q̂∗

n(θ) also satisfies
√

n(θ̄∗
n − θ̄n)

P�
W

−H−1�0. Therefore, we can replace

Ĝ
∗
n = −Ĥ−1�̂∗

n with Ĝ
∗
n = √

n(θ̄∗
n − θ̄n). The proof of Theorem 4.3 goes through verbatim

with this replacement. Furthermore, a direct application of the numerical bootstrap in the
GMM setup approximates the distribution of

√
n(θ̂n − θ0) by that of ε−1

n (θ̂∗
n − θ̂n), where

θ̂∗
n = arg min

θ∈C
ε−2
n Q̂∗

n(θ), Q̂∗
n(θ) = π̂∗(θ)′Wπ̂∗(θ),(4.10)

π̂∗(θ) = Z∗
nπ(zi, θ) = (

Pn + εnĜ∗
n

)
π(zi, θ),(4.11)

and where Ĝ∗
n can be the multinomial bootstrap or the wild bootstrap or other schemes that

consistently estimate the limiting Gaussian process G0.

THEOREM 4.4. Under Assumption 4.1, Ĵ ∗
n = (θ̂∗

n−θ̂n)

εn

P�
W

J , for J defined in (4.8).
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4.2. Sample extremum: A counter example. We now provide a counter example in which
both the bootstrap and the numerical bootstrap fail, but subsampling and the m-out-of-n boot-
strap are valid. Let P ∼ U(0,1),

θ(P ) = inf
(
t : F(t) ≥ 1

) = 1,

θ(Pn) = inf
(
t : Fn(t) ≥ 1

) = max(X1, . . . ,Xn).

It is well known that for a(n) = n and E a standard exponential,

a(n)
(
θ(Pn) − θ(P )

)
� J = −E,(4.12)

which is also the limit of the subsampling distribution. In this one-dimensional example, G0
is the standard Brownian bridge B(t) on t ∈ (0,1) with covariance function min(s, t)− st for
0 ≤ s, t ≤ 1. Consider now

a

(
1

ε2
n

)(
θ(P + εnG0) − θ(P )

) = 1

ε2
n

(
θ(P + εnG0) − θ(P )

)
,(4.13)

where, since F(t) = t , G0 = B,

Tn ≡ θ(F + εnG0) ≡ inf
(
t : t + εnB(t) ≥ 1

) = inf
(
t : B(t) = 1 − t

εn

)
.

In other words, Tn is the first passage time of the standard Brownian bridge over the linear
barrier 1−t

εn
. It is known that B(t) has the same (joint) distribution as (1 − t)W( t

1−t
) where

W(·) is a standard Brownian motion. Therefore, Tn is equivalent in distribution to

Tn = inf
(
t : (1 − t)W

(
t

1 − t

)
= 1 − t

εn

)
= inf

(
t : W

(
t

1 − t

)
= 1

εn

)
.

This can be rewritten as Tn = τn

1+τn
, where τn = inf

(
t : W(t) = 1

εn

)
. It is a standard result that

P(τn ≤ t) = 2P

(
W(t) ≥ 1

εn

)
= 2 − 2


(
1

εn

√
t

)
.

Transforming τn monotonically to Tn,

P(Tn ≤ t) = 2 − 2


⎛
⎝ε−1

n

√
1 − t

t

⎞
⎠ .

Finally, consider Yn = 1
ε2
n
(Tn − 1) ∈ (−∞,0). For y > 0, as εn ↓ 0, we obtain a limit distri-

bution different from the exponential limit distribution.

P(Yn ≤ −y) = 2 − 2


⎛
⎜⎜⎝ 1

εn

√
−ε2

ny+1
ε2
ny

⎞
⎟⎟⎠ = 2 − 2


⎛
⎜⎜⎝ 1√

−ε2
ny+1
y

⎞
⎟⎟⎠ −→ 2 − 2
(

√
y).

Intuitively, what makes the limit distributions in (4.12) and (4.13) differ seems to be too much
dependence on the tail of G0(t) in (4.13). In particular, for Ĝn = √

n(Pn − P), let

θ(Pn) = θ

(
P + Ĝn√

n

)
= θ

(
P + Ĝn − G0√

n
+ G0√

n

)
.

We would expect that Ĝn − G0 = Op

(
1√
n

)
. In general, this should be smaller than G0 in

order of magnitude. However, in the sample extremum example, θ(P + εnG0) depends on a
point t∗ of G0(t) such that G0(t

∗) = Op

(
1√
n

)
. This makes Ĝn − G0 and G0 similar in order

of magnitude. The difference in the limit distributions of (4.12) and (4.13) results from the
non-negligible error in Ĝn − G0. In other words, we expect the numerical bootstrap method
to be valid whenever the error in Ĝn − G0 is small in comparison with G0.
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TABLE 1
Standard and perturbation bootstrap equal-tailed coverage frequencies

Standard bootstrap Perturbation bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.488 0.494 0.500 0.514 0.504 0.490 0.497 0.500 0.509 0.504
(1.487) (1.495) (1.511) (1.533) (1.502) (1.548) (1.546) (1.548) (1.582) (1.552)

n = 500 0.552 0.585 0.572 0.543 0.589 0.606 0.621 0.620 0.604 0.635
(1.129) (1.096) (1.125) (1.114) (1.127) (1.339) (1.293) (1.317) (1.331) (1.331)

n = 1000 0.597 0.560 0.589 0.595 0.595 0.683 0.643 0.673 0.679 0.677
(0.922) (0.940) (0.925) (0.921) (0.957) (1.135) (1.143) (1.134) (1.123) (1.171)

n = 5000 0.638 0.627 0.625 0.636 0.674 0.751 0.738 0.752 0.755 0.780
(0.562) (0.566) (0.565) (0.576) (0.570) (0.721) (0.728) (0.727) (0.734) (0.729)

n = 10,000 0.644 0.664 0.645 0.638 0.665 0.763 0.763 0.770 0.763 0.782
(0.453) (0.459) (0.450) (0.459) (0.453) (0.578) (0.581) (0.584) (0.588) (0.579)

5. Monte Carlo simulations. We investigate the performance of the numerical boot-
strap for a modal estimator that is similar to example 3.2.13 in [34]. Let X1, . . . ,Xn be i.i.d.
random variables drawn from N(θ0,2). Define θ̂n = arg maxθ

1
n

∑n
i=1 1(θ − 5 ≤ Xi ≤ θ + 5),

the center of an interval of length 10 that contains the largest possible fraction of the ob-
servations. [34] shows that n1/3(θ̂n − θ0) converges in distribution to the maximizer of a
Gaussian process plus an additional quadratic term. We investigate the empirical coverage
frequencies of nominal 95% confidence intervals constructed using the standard bootstrap,
the perturbation bootstrap [14, 24], the numerical bootstrap with εn ∈ {n−1/3, n−1/4, n−1/6},
the m-out-of-n bootstrap [6, 30] with m ∈ {n2/3, n1/2, n1/3}, and subsampling [25] with
b ∈ {n2/3, n1/2, n1/3}. We consider several values of θ0 ∈ {−n−1/4,0, n−1, n−1/2,2} and sev-
eral values of n ∈ {100,500,1000,5000,10,000}. We use 1000 Monte Carlo simulations and
5000 bootstrap iterations. Tables 1 through 4 show the two-sided equal-tailed coverage fre-
quencies along with the average widths of the confidence intervals (in parentheses).

We can see that the standard bootstrap confidence intervals severely undercover for all
values of θ0. The perturbation bootstrap improves upon the standard bootstrap but still under-
covers for all θ0. The m-out-of-n bootstrap performs better than the perturbation bootstrap

TABLE 2
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n2/3 and εn = n−1/3

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.669 0.667 0.679 0.685 0.675 0.766 0.773 0.760 0.780 0.769
(1.806) (1.809) (1.798) (1.821) (1.807) (2.998) (3.004) (3.010) (3.012) (3.006)

n = 500 0.762 0.785 0.776 0.772 0.795 0.855 0.890 0.880 0.849 0.880
(1.322) (1.305) (1.295) (1.311) (1.303) (1.645) (1.633) (1.635) (1.640) (1.634)

n = 1000 0.791 0.814 0.806 0.817 0.803 0.895 0.866 0.872 0.886 0.872
(1.064) (1.063) (1.059) (1.067) (1.069) (1.254) (1.255) (1.254) (1.254) (1.253)

n = 5000 0.843 0.826 0.839 0.840 0.850 0.900 0.876 0.880 0.878 0.900
(0.625) (0.625) (0.623) (0.623) (0.625) (0.678) (0.677) (0.676) (0.677) (0.679)

n = 10,000 0.864 0.864 0.859 0.853 0.865 0.880 0.877 0.879 0.878 0.884
(0.495) (0.494) (0.494) (0.496) (0.496) (0.524) (0.525) (0.525) (0.526) (0.526)
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TABLE 3
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n1/2 and εn = n−1/4

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.710 0.729 0.724 0.722 0.724 0.822 0.817 0.820 0.824 0.823
(1.861) (1.872) (1.861) (1.878) (1.864) (3.068) (3.072) (3.077) (3.083) (3.077)

n = 500 0.783 0.796 0.777 0.781 0.798 0.922 0.946 0.927 0.914 0.930
(1.299) (1.285) (1.284) (1.287) (1.289) (1.793) (1.784) (1.789) (1.786) (1.786)

n = 1000 0.783 0.815 0.792 0.812 0.808 0.950 0.935 0.938 0.947 0.941
(1.048) (1.049) (1.046) (1.053) (1.048) (1.397) (1.396) (1.397) (1.396) (1.396)

n = 5000 0.849 0.827 0.837 0.856 0.864 0.955 0.945 0.949 0.958 0.956
(0.636) (0.634) (0.634) (0.633) (0.633) (0.772) (0.771) (0.770) (0.771) (0.771)

n = 10,000 0.879 0.887 0.865 0.873 0.879 0.962 0.954 0.945 0.957 0.953
(0.506) (0.506) (0.506) (0.506) (0.507) (0.595) (0.595) (0.595) (0.595) (0.595)

but still gives coverage less than the nominal frequency for all values of m. For each εn, the
numerical bootstrap outperforms the m-out-of-n bootstrap with m = ε−2

n .
We next use a version of the double bootstrap algorithm described in [12] and ref-

erences therein to find the optimal choice of εn for n = 1000. Many other possibilities
for choosing εn exist, and an extensive discussion of the theoretical properties of each
method is beyond the scope of the paper. Starting from the smallest value in a grid of
εn ∈ {n−1/2, n−1/3, . . . , n−1/15}, the algorithm draws B1 = 5000 bootstrap samples and com-
putes bootstrap estimates θ̂

(b1)
n . Conditional on each of these bootstrap samples, the algorithm

draws B2 = 5000 bootstrap samples and computes bootstrap estimates θ̂
(b1,b2)
n . The algorithm

then computes the empirical frequency with which equal tailed intervals centered at θ̂
(b1)
n

cover θ̂n. If the current value of εn achieves coverage at or above the nominal frequency, then
it picks that value as the optimal εn. Otherwise, it increments εn to the next highest value in
the grid and repeats the steps above.

Table 5 shows the double bootstrap coverage frequencies for εn ∈ {n−1/2, n−1/3, . . . ,

n−1/11} and θ0 ∈ {−n−1/4,0, n−1, n−1/2,2}. The coverage frequencies for the other values
of εn are all less than the nominal frequency. We see that the smallest value of εn for which

TABLE 4
m-out-of-n and numerical bootstrap equal-tailed coverage for m = n1/3 and εn = n−1/6

m-out-of-n bootstrap Numerical bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.719 0.729 0.736 0.726 0.730 0.835 0.830 0.832 0.833 0.842
(1.823) (1.828) (1.817) (1.839) (1.827) (2.944) (2.947) (2.948) (2.947) (2.950)

n = 500 0.715 0.722 0.734 0.727 0.728 0.945 0.961 0.942 0.940 0.947
(1.186) (1.179) (1.176) (1.180) (1.182) (1.793) (1.789) (1.790) (1.792) (1.789)

n = 1000 0.694 0.721 0.705 0.715 0.733 0.969 0.963 0.964 0.967 0.963
(0.954) (0.958) (0.955) (0.957) (0.959) (1.433) (1.433) (1.432) (1.433) (1.434)

n = 5000 0.750 0.724 0.735 0.771 0.761 0.982 0.982 0.974 0.981 0.978
(0.592) (0.593) (0.591) (0.590) (0.591) (0.839) (0.839) (0.839) (0.839) (0.838)

n = 10,000 0.791 0.793 0.774 0.775 0.811 0.983 0.986 0.988 0.982 0.978
(0.481) (0.481) (0.481) (0.481) (0.481) (0.662) (0.662) (0.662) (0.662) (0.663)
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TABLE 5
Double bootstrap equal-tailed coverage frequencies

θ0/εn n−1/2 n−1/3 n−1/4 n−1/5 n−1/6 n−1/7 n−1/8 n−1/9 n−1/10 n−1/11

0 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8692 0.8650 0.8732
1/n 0.8754 0.9838 0.9816 0.9572 0.9502 0.9510 0.9454 0.8668 0.8732 0.8528
1/

√
n 0.8796 0.9820 0.9830 0.9582 0.9510 0.9464 0.9470 0.8744 0.8528 0.8598

n−1/4 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8668 0.8732 0.8528
2 0.8754 0.9838 0.9816 0.9556 0.9482 0.9502 0.9502 0.8692 0.8650 0.8732

the coverage exceeds the nominal frequency is n−1/3. However, at this value, the coverage
is around 0.98 for all θ0, which is much higher than the nominal frequency of 0.95. It might
make more sense to choose a value of εn for which the coverage is closer to the nominal
frequency, for example n−1/5.

Due to space constraints, results for subsampling and one-sided confidence intervals are
in the Supplementary Material. Simulation results for the LASSO estimator in the one-
dimensional mean model are also in the Supplementary Material.
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SUPPLEMENTARY MATERIAL

Supplement to “The numerical bootstrap” (DOI: 10.1214/19-AOS1812SUPP; .pdf).
The supplement contains a list of commonly used symbols, proofs of the theorems, further
discussion of local asymptotics, and additional simulation results. Also included is a discus-
sion of sample size dependent statistics, the role of recentering in hypothesis testing, estimat-
ing an unknown polynomial convergence rate, and inference for partially identified models.
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1 List of Commonly Used Symbols

Pn empirical measure

P ∗n bootstrap empirical measure

Z∗n Pn + εn
√
n (P ∗n − Pn)

 weak convergence
P
 
W

weak convergence conditional on the data

θ− −min(θ, 0)

θ+ max(θ, 0)

ρBL1 (F1, F2) supf∈BL1
|Ef (F1)− Ef (F2) |

BL1 the space of Lipschitz functions f : D 7→ R with Lipschitz norm bounded by 1

2 Comparison of Numerical Bootstrap with m-out-of-n bootstrap

and Subsampling

In the first subsection, we discuss a simple example illustrating the differences between

the numerical bootstrap, m-out-of-n bootstrap and subsampling and then in the

second subsection we provide more detailed arguments for the more general case

stated in the main text.

2.1 Negative Part of the Mean Example

Let φ (µ) = µ− and Xi
i.i.d.∼ (µ, σ2), where µ is a fixed parameter. Consider ap-

proximating the distribution of
√
n (θ (Pn)− θ (P )) =

√
n
(
X̄−n − µ−

)
using Ĵ ∗n =(

X̄n+ε
√
n(X̄∗n−X̄n)
εn

)−
−
(
X̄n
εn

)−
. First let µ = 0 and x > 0. Then by standard Berry-

Esseen arguments,

P
(√

nX̄−n ≤ x
)

= P
(√

nX̄n ≥ −x
)

= Φ
(x
σ

)
+O

(
n−1/2

)
.

1



Then, since X̄n/εn = Op

(
1√
nεn

)
, conditional on the data Xn = (X1, . . . , Xn):

P
(
Ĵ ∗n ≤ x|Xn

)
=P

((
X̄n

εn
+
√
n
(
X̄∗n − X̄n

))−
−
(
X̄n

εn

)−
≤ x

∣∣∣∣Xn
)

=P

(
√
n
(
X̄∗n − X̄n

)
≥ −

(
x+

(
X̄n

εn

)−)
− X̄n

εn

∣∣∣∣Xn
)

=Φ

(
1

σ̂

((
x+

(
X̄n

εn

)−)
+
X̄n

εn

))
+Op

(
1√
n

)
= Φ

(x
σ̂

)
+Op

(
1√
nεn

)
+Op

(
1√
n

)
.

Subsampling corresponds to εn = 1/
√
b and replacing

√
n
(
X̄∗n − X̄n

)
with

√
b
(
X̄b − X̄n

)
:

P

((√
bX̄b

)−
−
(√

bX̄n

)−
≤ x

)
= Φ

(x
σ̂

)
+O

(√
b

n

)
+O

(
b−1/2

)
.

As shown in Lemma A.2 in Romano and Shaikh (2012), Theorem 1 in Bertail (1997),

and Theorem 3 in Babu and Singh (1985), subsampling has an additional error of

Op

(√
b
n

)
from approximating the distribution of

√
b
(
X̄b − X̄n

)
using the empirical

distribution of
(
n
b

)
sub-block estimates

√
b
(
X̄bi − X̄n

)
. For the m-out-of-n bootstrap,

Bickel and Sakov (2008) suggest that

P

((√
mX̄∗m

)− − (√mX̄n

)− ≤ x

∣∣∣∣Xn) = Φ
(x
σ̂

)
+Op

(√
m

n

)
+Op

(
m−1/2

)
.

An optimal choice of b (or m) will then be b = O
(
n1/2

)
, resulting in an error of order

n−1/4. On the other hand, the error in numerical bootstrap can be made close to

Op

(
n−1/2

)
when εn → 0 slowly.

Next let µ < 0. Then with probability converging to 1, the numerical bootstrap

is identical to bootstrap, which has an error of Op

(
n−1/2

)
regardless of how εn → 0,

while the subsampling error can still be Op

(
n−1/4

)
.

If instead φ (µ) = (µ−)
2
, then we would approximate the distribution of n (θ (Pn)− θ (P )) =

n
((
X̄−n
)2 − (µ−)

2
)

using Ĵ ∗n =

((
X̄n+ε

√
n(X̄∗n−X̄)
εn

)−)2

−
((

X̄n
εn

)−)2

where now

a (n) = n instead of
√
n as before. Under a null hypothesis of µ ≥ 0, the approxima-

2



tion error of the numerical bootstrap is the same as before, so the optimal choice of

εn remains the same.

2.2 More general case

Suppose φ : R 7→ R is twice Hadamard directionally differentiable at µ = µ (P ) with

directional derivatives φ
′
µ (·) and φ

′′
µ (·) that can be continuously extended to R. It is

known that φ′µ(h) is positively homogeneous of degree 1. First we demonstrate that

one dimensional positively homogeneous functions of degree 1 have a piecewise linear

representation:

Claim: There exists constants λ1, λ2 ∈ R such that

φ′µ(h) = λ1h
+ + λ2h

−

For example, in the case of φ(µ) = aµ+ + bµ−, if µ = 0, φ′µ(h) = ah+ + bh−.

Proof : Suppose f (h) = φ′µ(h) is a homogeneous of degree one function of a scalar

argument h. Then for all λ ≥ 0:

f (λh) = λf (h) or
f (λh)− f (0)

λh
=

1

h
f (h)

If h > 0, then f ′+ (0) = limλ→0+
f(λh)−f(0)

λh
= 1

h
f (h) so that f (h) = f ′+ (0)h. On the

other hand, if h < 0, then

f ′− (0) = lim
λ→0+

f (λh)− f (0)

λh
=

1

h
f (h)

so that f (h) = f ′− (0)h. Therefore f (h) must be of the form of

f (h) = f ′+ (0)h+ − f ′− (0)h−.

�

We are interested in approximating the limiting distribution of
√
n
(
φ
(
X̄n

)
− φ (µ)

)
using the numerical bootstrap. Taylor expanding φ

(
X̄n + εn

√
n
(
X̄∗n − X̄n

))
around

3



φ (µ) gives us

φ
(
X̄n + εn

√
n
(
X̄∗n − X̄n

))
= φ (µ) + εnφ

′

µ

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

εn

)

+
1

2
ε2nφ

′′
µ

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

εn

)
+ o∗p

(
ε2n
)

Taylor expanding φ
(
X̄n

)
around φ (µ) gives

φ
(
X̄n

)
= φ (µ) +

1√
n
φ
′

µ

(√
n
(
X̄n − µ

))
+

1

2n
φ′′µ
(√

n
(
X̄n − µ

))
+ op

(
1

n

)
.

If λ1 ≥ 0 and λ2 ≥ 0, we expect that the numerical bootstrap distribution satisfies

P
(
Ĵ ∗n ≤ x

∣∣∣Xn)
= P

(
1

εn

(
φ
(
X̄n + εn

√
n
(
X̄∗n − X̄n

))
− φ

(
X̄n

))
≤ x

∣∣∣∣Xn)
= P

(
1

εn

(
φ
′

µ

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

)
− φ′µ

(
X̄n − µ

))
+O∗p

(
1

εn
ε2n

)
+Op

(
1

εnn

)
≤ x

∣∣∣∣Xn)
= P

(
1

εn

(
λ1

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

)+
+ λ2

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

)−)
− 1

εn

(
λ1

(
X̄n − µ

)+
+ λ2

(
X̄n − µ

)−)
+O∗p

(
1

εn
ε2n +

1

εnn

)
≤ x

∣∣∣∣Xn)
= P

(
λ1

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

)+
+ λ2

(
X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

)−
≤ εnx+ λ1

(
X̄n − µ

)+
+ λ2

(
X̄n − µ

)−
+O∗p

(
ε2n
)

+Op

(
1

n

)∣∣∣∣Xn)
Using the fact that µ (Pn) = X̄n is a linear function of Pn, and the fact that for

a, b ∈ R+,

P
(
aX+ + bX− ≤ x

)
= P (aX ≤ x ∩X > 0) + P (−bX ≤ x ∩X < 0)

= P (0 < X ≤ x/a) + P (−x/b ≤ X < 0) ,

4



we can write this as

P
(
0 < X̄n + εn

√
n
(
X̄∗n − X̄n

)
− µ

≤ εn
x

λ1
+
(
X̄n − µ

)+
+
λ2

λ1

(
X̄n − µ

)− −O∗p (ε2n)+Op

(
1

n

)∣∣∣∣Xn)
+ P

(
−εn

x

λ2
− λ1

λ2

(
X̄n − µ

)+ − (X̄n − µ
)−

+O∗p
(
ε2n
)

< X̄n + εn
√
n
(
X̄∗n − X̄n

)
− µ+Op

(
1

n

)
≤ 0

∣∣∣∣Xn)
= P

(
−X̄n + µ

εn
<
√
n
(
X̄∗n − X̄n

)
≤ x

λ1
+

1

εn

((
X̄n − µ

)+
+
λ2

λ1

(
X̄n − µ

)− − X̄n + µ

)
−O∗p (εn) +Op

(
1

nεn

)∣∣∣∣Xn)
+ P

(
− x

λ2
− 1

εn

(
λ1

λ2

(
X̄n − µ

)+
+
(
X̄n − µ

)−
+ X̄n − µ

)
+O∗p (εn) +Op

(
1

nεn

)
<
√
n
(
X̄∗n − X̄n

)
≤ −X̄n + µ

εn

∣∣∣∣Xn)
= Φ

(
x

λ1
+

1

εn

((
X̄n − µ

)+
+
λ2

λ1

(
X̄n − µ

)− − (X̄n − µ
))
−Op

(
εn +

1

nεn

))
− Φ

(
− x

λ2
− 1

εn

(
λ1

λ2

(
X̄n − µ

)+
+
(
X̄n − µ

)−
+ X̄n − µ

)
+Op

(
εn +

1

nεn

))
+Op

(
1√
n

)
= Φ

(
x

λ1

)
+ Φ

(
x

λ2

)
− 1 +Op

(
1

εn
√
n

)
+Op

(
1√
n

)
+Op (εn)

The other sign combinations of λ1 and λ2 can be considered analogously. We can

see that when the second order derivative is nonzero and φ
′
µ (·) is not a linear func-

tion, then the error for the numerical bootstrap is Op

(
1

εn
√
n

)
+Op

(
1√
n

)
+Op (εn) =

Op

(
1

εn
√
n

)
+ Op (εn). The optimal choice of εn that balances the two terms satisfies

εn = O
(
n−1/4

)
, leading to an error on the order of n−1/4. If however, φ

′
µ (·) is a linear

function, then λ1 = 1 and λ2 = −1, which implies that
(
X̄n − µ

)+
+ λ2

λ1

(
X̄n − µ

)− −(
X̄n − µ

)
= 0 and λ1

λ2

(
X̄n − µ

)+
+
(
X̄n − µ

)−
+
(
X̄n − µ

)
= 0. Therefore, the error for

the numerical bootstrap is Op

(
1√
n

)
+Op (εn), and is minimized by εn = O

(
1√
n

)
. Fi-

nally, if the second order derivative is zero, then the error for the numerical bootstrap

is Op

(
1

εn
√
n

)
+Op

(
1√
n

)
, and is smaller for larger values of εn.

Subsampling targets the distribution of Ĵb ≡
√
b (φ (µ (Pb))− φ (µ (Pn))), and
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takes the form:

P
(
Ĵb ≤ x

)
= Φ

(
x

λ1

)
+ Φ

(
x

λ2

)
− 1 +O

(√
b

n

)
+O

(
1√
b

)

The optimal choice of b satisfies b = O
(
n1/2

)
, which leads to an error on the

order of n−1/4. If φ
′
µ(·) were a linear function that is not degenerate at µ or φ(·) had

zero second order or higher derivatives, the error would still be on the order of n−1/4

because of the additional error of Op

(√
b
n

)
introduced by estimating the distribution

of
√
b (µ (Pb)− µ (Pn)) using the empirical distribution of

√
b (µ (Pb,i)− µ (Pn)) over

i = 1, . . . ,
(
n
b

)
sub-blocks. Lemma A.2 in Romano and Shaikh (2012) provides a de-

tailed proof for the presence of an error of Op

(√
b
n

)
when estimating the distribution

of
√
b (µ (Pb)− µ (P )) using the empirical distribution of

√
b (µ (Pb,i)− µ (P )) over

i = 1, . . . ,
(
n
b

)
sub-blocks. Since

√
b (µ (Pn)− µ (P )) =

√
b
n

√
n (µ (Pn)− µ (P )) =

Op

(√
b
n

)
, it follows that the error from estimating the distribution of

√
b (µ (Pb)− µ (Pn))

using the empirical distribution of
√
b (µ (Pb,i)− µ (Pn)) is also Op

(√
b
n

)
. The pres-

ence of the error of Op

(√
b
n

)
is also demonstrated in Theorem 1 of Bertail (1997)

and Theorem 3 of Babu and Singh (1985). Therefore, the numerical bootstrap should

not have an error that is of larger order than subsampling and it may outperform

subsampling in some situations when the first derivative is linear and the second order

derivative is nonzero, or when the second order derivative is zero.

3 Local Asymptotics

3.1 Proof Theorem 3.1

The asymptotic distribution of Ĵn can be derived as follows:

Ĵn =
√
n

(
φ

(
µ (P ) +

1√
n

(√
n (µ̂n − µ (P n)) +

√
n (µ (P n)− µ (P ))

))
− φ (µ (P ))

)
−
√
nan

(
φ (µ (P ) + anc)− φ (µ (P ))

an

)
= φ′µ0

(
G0 + lim

n→∞

√
nanc

)
− lim

n→∞

√
nanφ

′
µ0

(c) + op (1)

= lim
n→∞

φ′µ0

(
G0 +

√
nanc

)
− φ′µ0

(√
nanc

)
+ op (1)

6



where the last line follows from φ′µ0
being continuous and positively homogeneous of

degree 1 (Römisch (2005)). For Ĵn
∗
≡ 1

εn
(φ (µ̂n + εn

√
n (µ̂∗n − µ̂n))− φ (µ̂n)),

Ĵn
∗

=
1

εn

(
φ

(
µ (P ) + εn

(√
n (µ̂∗n − µ̂n) +

µ̂n − µ (P )

εn

))
− φ (µ (P ))

)
− 1

εn
(φ (µ̂n)− φ (µ (P n)))− 1

εn
(φ (µ (P n))− φ (µ (P )))

=
1

εn

(
φ

(
µ (P ) + εn

(√
n (µ̂∗n − µ̂n) +

√
n (µ̂n − µ (P n)) +

√
n (µ (P n)− µ (P ))

εn
√
n

))
− φ (µ (P ))

)
− o∗p (1)− 1

εn
an

(
φ (µ (P ) + anc)− φ (µ (P ))

an

)
= φ′µ0

(
G0 + lim

n→∞

an
εn
c

)
− lim

n→∞

an
εn
φ′µ0

(c) + o∗p (1)

= lim
n→∞

φ′µ0

(
G0 +

an
εn
c

)
− φ′µ0

(
an
εn
c

)
+ o∗p (1)

First note that if φ′µ0
is linear, then both Ĵn and Ĵn

∗
converge to φ′µ0

(G0), which

implies that two-sided equal-tailed and one-sided confidence intervals are asymptoti-

cally exact for all values of an.

If φ′µ0
is nonlinear, we consider the following cases: (i) an

√
n→ 0, (ii) an

√
n = 1,

(iii) an
√
n → ∞ and an/εn → 0, (iv) an

√
n → ∞ and an/εn → 1, (v) an

√
n → ∞

and an/εn →∞.

If an
√
n → 0, then Ĵn  φ′µ0

(G0) and Ĵn
∗ P
 
W
φ′µ0

(G0) since
√
nεn → ∞. Two-

sided equal-tailed and one-sided confidence intervals are asymptotically exact up to

first order asymptotics.

If an = 1√
n
, then Ĵn  φ′µ0

(G0 + c) − φ′µ0
(c) while Ĵn

∗ P
 
W
φ′µ0

(G0). If φ′µ0
is

subadditive (meaning φ′µ0
(h1 + h2) ≤ φ′µ0

(h1) +φ′µ0
(h2) for all h1, h2 ∈ D0), then the

limiting distribution of Ĵn
∗

first order stochastically dominates the limiting distribu-

tion of Ĵn. Let ĉ∗1−α be the 1− α quantile of Ĵn
∗

and let c∗1−α be the 1− α quantile

of φ′µ0
(G0). Since conditional weak convergence implies convergence in quantiles,

ĉ∗1−α = c∗1−α + op (1). It follows that

limsup
n→∞

P n
(
Ĵn ≥ ĉ∗1−α

)
≤ limsup

n→∞
P n
(
φ′µ0

(G0 + c)− φ′µ0
(c) ≥ c∗1−α

)
≤ limsup

n→∞
P n
(
φ′µ0

(G0) ≥ c∗1−α
)

= α

7



Therefore, the lower one-sided confidence interval
[
φ (µ̂n)− ĉ∗1−α√

n
,∞
)

will be asymp-

totically conservatively valid. Similarly, if φ′µ0
is superadditive (meaning φ′µ0

(h1 + h2) ≥
φ′µ0

(h1) + φ′µ0
(h2) for all h1, h2 ∈ D0), then the limiting distribution of Ĵn first order

stochastically dominates the limiting distribution of Ĵn
∗
. Similar arguments show

that limsup
n→∞

P n
(
Ĵn ≤ ĉ∗α

)
≤ α, which implies that the upper one-sided confidence

interval
(
−∞, φ (µ̂n)− ĉ∗α√

n

]
is asymptotically conservatively valid.

If
√
nan →∞ and an

εn
→ 0, then Ĵn  lim

κn→∞
φ′µ0

(G0 + sign(c)κn)−φ′µ0
(sign(c)κn)

while Ĵn
∗ P
 
W

φ′µ0
(G0). The limiting distribution of Ĵn

∗
first order stochastically

dominates the limiting distribution of Ĵn if φ′µ0
is subadditive, in which case the

lower one-sided confidence intervals are conservatively valid. If φ′µ0
is superadditive,

the upper one-sided confidence intervals are conservatively valid.

If
√
nan →∞ and an

εn
→ 1, then Ĵn  lim

κn→∞
φ′µ0

(G0 + sign(c)κn)−φ′µ0
(sign(c)κn)

while Ĵn
∗ P
 
W
φ′µ0

(G0 + c) − φ′µ0
(c). Without additional assumptions, we cannot say

which intervals will be asymptotically valid. In the negative of the mean example,

it turns out that two-sided equal-tailed and one-sided intervals are asymptotically

exact.

If
√
nan →∞ and an

εn
→∞, then the limiting distributions of Ĵn and Ĵn

∗
coincide,

and two-sided equal-tailed and one-sided intervals are asymptotically exact. �

3.2 Negative Part of the Mean Example

We now discuss local asymptotics for the example φ (µ) = µ−, which has directional

derivative φ′µ (h) = −h1 (µ < 0) + h−1 (µ = 0). Note that if µ0 < 0, then φ′µ0
(h) is

a linear function of h, and both two-sided equal-tailed and one-sided intervals are

asymptotically exact for all an and εn. When µ0 = 0, note that φ′µ0
is subadditive

because (h1 + h2)− ≤ h−1 + h−2 . It follows that for
√
nan = 1 or

√
nan → ∞ and

an/εn → 0, the lower one-sided confidence interval
[
φ (µ̂n)− ĉ∗1−α√

n
,∞
)

will be asymp-

totically conservative. An example of such a sequence is an = 1√
nεn

where 1√
nε2n
→ 0.

If
√
nan → ∞ and an

εn
→ ∞, then two-sided equal-tailed and one-sided intervals are

asymptotically exact. An example of such a sequence is an = 1√
nεn

where 1√
nε2n
→∞.

If
√
nan → ∞ and an

εn
→ 1, for example when an = 1√

nεn
and 1√

nε2n
→ 1, then

Ĵn  

0 if c > 0

G0 if c < 0
and Ĵn

∗ P
 
W

(G0 + c)− if c > 0

(G0 + c)− + c if c < 0
. In the case of c > 0, the

8



asymptotic distribution of Ĵn
∗

lies strictly to the right of the asymptotic distribution

of Ĵn, which implies that all types of intervals are conservative. In the case of c < 0,

we have for x ≥ c, P
(
(G0 + c)− + c ≤ x

)
= P (G0 + c ≥ − (x− c)) = P (G0 ≤ x).

If x < c, P
(
(G0 + c)− + c ≤ x

)
= P (G0 ≤ x) = 0. It follows that two-sided equal-

tailed and one-sided intervals will be asymptotically valid.

3.3 LASSO in the one-dimensional mean model

Consider the LASSO estimator in the one-dimensional mean model:

β̂ = argmin
β

1

2n
‖Y − ιβ‖2

2 +
λn√
n
‖β‖1

where ι is the n× 1 vector of 1’s and λn satisfies λn → λ0 ∈ [0,∞) and λn/
√
n→ 0.

Define β̂∗ as the numerical bootstrap LASSO estimator:

β̂∗ = argmin
β

1

2n
‖Y − ιβ‖2

2 + εn
√
n

(
1

2n
‖Y ∗ − ιβ‖2

2 −
1

2n
‖Y − ιβ‖2

2

)
+ λnεn ‖β‖1

where we impose the additional requirement that λnεn → 0. It is easy to show

that both β̂ and β̂∗ have closed form solutions in terms of the sample means of the

data
(
Ȳ
)

and bootstrap samples
(
Ȳ ∗
)
:

β̂ =
(
Ȳ − λn/

√
n
)+ −

(
Ȳ + λn/

√
n
)−

β̂∗ =
(
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
− λnεn

)+ −
(
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
+ λnεn

)−
Define Ĵn ≡

√
n
(
β̂ − βn

)
for a drifting sequence βn = β0 + anc (where an ↓ 0

and c is a constant) and let ĉ∗α be the α-th quantile of Ĵn
∗
≡ β̂∗−β̂

εn
. In the following

theorem, we describe the coverage properties of the following three kinds of confidence

intervals: two-sided equal-tailed
[
β̂ − ĉ∗1−α√

n
, β̂ − ĉ∗α√

n

]
, lower one-sided

[
β̂ − ĉ∗1−α√

n
,∞
)

,

and upper one-sided
(
−∞, β̂ − ĉ∗α√

n

]
.

Theorem 3.1 If c > 0(< 0), the lower (upper) one-sided confidence interval will be

conservatively valid for the following types of sequences: (i) an
√
n = 1, (ii) an

√
n→

∞ and an/εn → 0, (iii) an
√
n → ∞ and an/εn → 1. Two sided equal-tailed and

one-sided intervals are asymptotically exact for (i) an
√
n → 0 (ii) an

√
n → ∞ and

an/εn →∞.
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Proof : For
√
n
(
Ȳ − βn

)
 G0 and λn → λ0,

√
n
(
β̂ − βn

)
=
√
n
((
Ȳ − λn/

√
n
)+ −

(
Ȳ + λn/

√
n
)− − βn)

=
(√

nβ0 +
√
n
(
Ȳ − βn

)
+
√
n (βn − β0)− λn

)+ −
√
nβ+

0

−
(√

nβ0 +
√
n
(
Ȳ − βn

)
+
√
n (βn − β0) + λn

)−
+
√
nβ−0 −

√
n (βn − β0)

 1 (β0 = 0)

((
G0 + lim

n→∞

√
nanc− λ0

)+

−
(
G0 + lim

n→∞

√
nanc+ λ0

)−
− lim

n→∞

√
nanc

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

For
√
n
(
Ȳ ∗ − Ȳ

) P
 
W
G0,

β̂∗ − β̂
εn

=
1

εn

((
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
− λnεn

)+ −
(
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
+ λnεn

)− − β̂)
=

1

εn

((
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
− λnεn

)+ −
(
Ȳ + εn

√
n
(
Ȳ ∗ − Ȳ

)
+ λnεn

)− − βn)+
β̂ − βn
εn

=

(
β0

εn
+
√
n
(
Ȳ ∗ − Ȳ

)
+
Ȳ − βn
εn

+
βn − β0

εn
− λn

)+

−
(
β0

εn
+
√
n
(
Ȳ ∗ − Ȳ

)
+
Ȳ − βn
εn

+
βn − β0

εn
+ λn

)−
− βn − β0

εn
−
(
β0

εn

)+

+

(
β0

εn

)−
+ op(1)

P
 
W

1 (β0 = 0)

((
G0 + lim

n→∞

an
εn
c− λ0

)+

−
(
G0 + lim

n→∞

an
εn
c+ λ0

)−
− lim

n→∞

an
εn
c

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

where the op(1) term refers to β̂−βn
εn

. If an
√
n→ 0, then the limiting distributions of

Ĵn and Ĵn
∗

both equal

1 (β0 = 0)
(
(G0 − λ0)+ − (G0 + λ0)−

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

Two-sided equal-tailed and one-sided intervals are asymptotically exact up to first

order asymptotics.
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If an = 1√
n
, then

Ĵn  1 (β0 = 0)
(
(G0 + c− λ0)+ − (G0 + c+ λ0)− − c

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

while

Ĵn
∗ P
 
W

1 (β0 = 0)
(
(G0 − λ0)+ − (G0 + λ0)−

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

If c > 0, then (G0 + c− λ0)+− (G0 + c+ λ0)−− c ≤ (G0 − λ0)+− (G0 + λ0)− for

all values of G0, so the limiting distribution of Ĵn
∗

first order stochastically dom-

inates the limiting distribution of Ĵn. Therefore, the lower one-sided confidence

interval
[
β̂n −

ĉ∗1−α√
n
,∞
)

will be asymptotically conservatively valid. If c < 0, then

(G0 + c− λ0)+ − (G0 + c+ λ0)− − c ≥ (G0 − λ0)+ − (G0 + λ0)− for all values of G0,

so the limiting distribution of Ĵn first order stochastically dominates the limiting

distribution of Ĵn
∗
. Then the upper one-sided confidence interval

(
−∞, β̂n − ĉ∗α√

n

]
is

asymptotically conservatively valid.

If
√
nan →∞ and an

εn
→ 0, then

Ĵn  1 (β0 = 0) (G0 − sign(c)λ0) + 1 (β0 6= 0) (G0 − sign (β0)λ0)

while

Ĵn
∗ P
 
W

1 (β0 = 0)
(
(G0 − λ0)+ − (G0 + λ0)−

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

If c > 0, then G0 − sign(c)λ0 ≤ (G0 − λ0)+ − (G0 + λ0)− for all values of G0, so the

limiting distribution of Ĵn
∗

first order stochastically dominates the limiting distribu-

tion of Ĵn and the lower one-sided confidence intervals are conservatively valid. If

c < 0, then G0 − sign(c)λ0 ≥ (G0 − λ0)+ − (G0 + λ0)− for all values of G0 and the

upper one-sided confidence intervals are conservatively valid.

If
√
nan →∞ and an

εn
→ 1, then

Ĵn  1 (β0 = 0) (G0 − sign(c)λ0) + 1 (β0 6= 0) (G0 − sign (β0)λ0)
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while

Ĵn
∗ P
 
W

1 (β0 = 0)
(
(G0 + c− λ0)+ − (G0 + c+ λ0)− − c

)
+ 1 (β0 6= 0) (G0 − sign (β0)λ0)

If c > 0, then G0 − sign(c)λ0 ≤ (G0 + c− λ0)+ − (G0 + c+ λ0)− − c for all values of

G0, so the limiting distribution of Ĵn
∗

first order stochastically dominates the limiting

distribution of Ĵn and the lower one-sided confidence intervals are conservatively valid.

If c < 0, then G0 − sign(c)λ0 ≥ (G0 + c− λ0)+ − (G0 + c+ λ0)− − c for all values of

G0 and the upper one-sided confidence intervals are conservatively valid.

If
√
nan →∞ and an

εn
→∞, then Ĵn and Ĵn

∗
have the same limiting distribution

of 1 (β0 = 0) (G0 − sign(c)λ0) + 1 (β0 6= 0) (G0 − sign (β0)λ0), and two-sided equal-

tailed and one-sided intervals are asymptotically exact.

4 Monte Carlo Simulation Results for LASSO Mean Example

In this section, we investigate the empirical coverage frequencies of confidence inter-

vals formed using the following bootstrap estimators:

Standard: β̂∗standard =
(
Ȳ ∗n − λn/

√
n
)+ −

(
Ȳ ∗n + λn/

√
n
)−

Perturbation: β̂∗perturb =

( 1
n

∑n
i=1 YiG

∗
i

1
n

∑n
i=1 G

∗
i

− λn√
n

)+

−
( 1

n

∑n
i=1 YiG

∗
i

1
n

∑n
i=1 G

∗
i

+
λn√
n

)−
, G∗i ∼ exp(1)

m-out-of-n: β̂∗moutofn =
(
Ȳ ∗m − λm/

√
m
)+ −

(
Ȳ ∗m + λm/

√
m
)−

Numerical: β̂∗numerical =
(
Ȳn + εn

√
n
(
Ȳ ∗n − Ȳn

)
− λnεn

)+ −
(
Ȳn + εn

√
n
(
Ȳ ∗n − Ȳn

)
+ λnεn

)−
Recall that β̂ =

(
Ȳn − λn/

√
n
)+ −

(
Ȳn + λn/

√
n
)−

and let ĉ∗α denote the α-th per-

centile of the empirical distributions of the above bootstrap estimators (properly

centered and scaled). Tables 1 to 4 below show the empirical coverage frequen-

cies of two-sided equal-tailed
[
β̂ − ĉ∗1−α√

n
, β̂ − ĉ∗α√

n

]
intervals (with the average widths

of the intervals in parentheses) for α = 0.05. Tables 5 to 12 show the empirical

coverage frequencies of lower one-sided
[
β̂ − ĉ∗1−α√

n
,∞
)

intervals and upper one-sided(
−∞, β̂ − ĉ∗α√

n

]
intervals.

The standard bootstrap generally behaves similarly to the perturbation bootstrap,

while the numerical bootstrap generally outperforms the m-out-of-n bootstrap. Nu-

merical bootstrap’s improvement over the m-out-of-n bootstrap is more pronounced

12



for larger values of εn and for larger values of λn. The better performance of the numer-

ical bootstrap holds for both equal-tailed and one-sided intervals. When λn = n−1/2,

the numerical bootstrap behaves similarly to the perturbation bootstrap and stan-

dard bootstrap, achieving coverage close to the nominal level. For λn = n−1/4 or

λn = n−1/6, the perturbation bootstrap and standard bootstrap intervals overcover

for β0 ∈
{

0, n−1, n−1/2
}

while the numerical bootstrap intervals still achieve coverage

close to the nominal level for n = 1000 or n = 10000. For n = 100, the numerical

bootstrap intervals have coverage that differ from the nominal level, although not as

much as the perturbation bootstrap intervals.

Table 1: Standard and Perturbation Bootstrap Equal-Tailed Coverage Frequencies

Standard Bootstrap λn = n−1/2 Perturbation Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.913 0.952 0.952 0.952 0.939 0.914 0.955 0.955 0.955 0.94

(0.384) (0.368) (0.368) (0.371) (0.387) (0.383) (0.367) (0.367) (0.37) (0.386)

n = 1000 0.944 0.948 0.948 0.948 0.944 0.943 0.948 0.948 0.948 0.945

(0.124) (0.122) (0.122) (0.122) (0.124) (0.124) (0.122) (0.122) (0.122) (0.124)

n = 10000 0.949 0.95 0.95 0.95 0.949 0.951 0.952 0.952 0.952 0.951

(0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

Standard Bootstrap λn = n−1/4 Perturbation Bootstrap

n = 100 0.876 0.966 0.966 0.964 0.919 0.88 0.972 0.972 0.97 0.918

(0.378) (0.327) (0.327) (0.335) (0.386) (0.378) (0.328) (0.328) (0.335) (0.386)

n = 1000 0.940 0.962 0.962 0.962 0.938 0.910 0.951 0.951 0.951 0.942

(0.124) (0.113) (0.113) (0.114) (0.124) (0.124) (0.113) (0.113) (0.114) (0.124)

n = 10000 0.949 0.96 0.96 0.96 0.949 0.949 0.961 0.961 0.961 0.949

(0.039) (0.037) (0.037) (0.037) (0.039) (0.039) (0.037) (0.037) (0.038) (0.039)

Standard Bootstrap λn = n−1/6 Perturbation Bootstrap

n = 100 0.857 0.979 0.979 0.931 0.914 0.856 0.978 0.978 0.928 0.906

(0.376) (0.300) (0.300) (0.312) (0.387) (0.375) (0.299) (0.299) (0.310) (0.385)

n = 1000 0.931 0.976 0.976 0.976 0.937 0.932 0.975 0.975 0.975 0.936

(0.124) (0.105) (0.105) (0.107) (0.124) (0.110) (0.104) (0.104) (0.104) (0.124)

n = 10000 0.944 0.97 0.97 0.97 0.944 0.944 0.97 0.97 0.97 0.944

(0.039) (0.035) (0.035) (0.036) (0.039) (0.039) (0.035) (0.035) (0.036) (0.039)
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Table 2: m-out-of-n and Numerical Bootstrap Equal-Tailed Coverage for m = n2/3

and εn = n−1/3

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.894 0.932 0.932 0.932 0.944 0.916 0.947 0.947 0.947 0.939

(0.352) (0.344) (0.344) (0.344) (0.387) (0.371) (0.367) (0.367) (0.367) (0.387)

n = 1000 0.931 0.936 0.936 0.936 0.943 0.940 0.945 0.945 0.945 0.945

(0.119) (0.117) (0.117) (0.117) (0.124) (0.122) (0.122) (0.122) (0.122) (0.124)

n = 10000 0.944 0.946 0.946 0.946 0.95 0.949 0.951 0.951 0.951 0.951

(0.039) (0.038) (0.038) (0.038) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.8 0.932 0.932 0.931 0.932 0.842 0.949 0.949 0.949 0.927

(0.314) (0.294) (0.294) (0.295) (0.386) (0.336) (0.323) (0.323) (0.324) (0.387)

n = 1000 0.884 0.932 0.932 0.932 0.943 0.910 0.951 0.951 0.951 0.942

(0.110) (0.104) (0.104) (0.104) (0.124) (0.116) (0.112) (0.112) (0.112) (0.124)

n = 10000 0.922 0.937 0.937 0.937 0.947 0.933 0.951 0.951 0.951 0.949

(0.038) (0.035) (0.035) (0.035) (0.039) (0.039) (0.037) (0.037) (0.037) (0.039)

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.719 0.953 0.953 0.925 0.944 0.762 0.961 0.961 0.961 0.931

(0.295) (0.268) (0.268) (0.269) (0.388) (0.313) (0.294) (0.294) (0.295) (0.387)

n = 1000 0.824 0.939 0.939 0.939 0.945 0.863 0.955 0.955 0.955 0.942

(0.104) (0.094) (0.094) (0.094) (0.124) (0.110) (0.104) (0.104) (0.104) (0.124)

n = 10000 0.906 0.937 0.937 0.937 0.948 0.916 0.956 0.956 0.956 0.95

(0.037) (0.032) (0.032) (0.032) (0.039) (0.038) (0.035) (0.035) (0.035) (0.039)

14



Table 3: m-out-of-n and Numerical Bootstrap Equal-Tailed Coverage for m = n1/2

and εn = n−1/4

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.879 0.909 0.909 0.909 0.935 0.925 0.951 0.951 0.951 0.946

(0.325) (0.324) (0.324) (0.324) (0.387) (0.368) (0.368) (0.368) (0.368) (0.388)

n = 1000 0.915 0.923 0.923 0.923 0.941 0.939 0.943 0.943 0.943 0.943

(0.112) (0.112) (0.112) (0.112) (0.124) (0.122) (0.122) (0.122) (0.122) (0.124)

n = 10000 0.936 0.938 0.938 0.938 0.949 0.949 0.95 0.95 0.95 0.95

(0.037) (0.037) (0.037) (0.037) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.774 0.91 0.91 0.908 0.934 0.848 0.942 0.942 0.942 0.928

(0.278) (0.274) (0.274) (0.275) (0.387) (0.324) (0.324) (0.324) (0.324) (0.387)

n = 1000 0.86 0.912 0.912 0.912 0.939 0.912 0.948 0.948 0.948 0.943

(0.097) (0.097) (0.097) (0.097) (0.124) (0.112) (0.112) (0.112) (0.112) (0.124)

n = 10000 0.895 0.92 0.92 0.92 0.945 0.934 0.951 0.951 0.951 0.951

(0.033) (0.033) (0.033) (0.033) (0.039) (0.037) (0.037) (0.037) (0.037) (0.039)

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.695 0.935 0.935 0.907 0.944 0.787 0.96 0.96 0.959 0.937

(0.255) (0.25) (0.25) (0.251) (0.387) (0.296) (0.294) (0.294) (0.294) (0.387)

n = 1000 0.797 0.915 0.915 0.915 0.94 0.867 0.952 0.952 0.952 0.945

(0.088) (0.088) (0.088) (0.088) (0.124) (0.104) (0.104) (0.104) (0.104) (0.124)

n = 10000 0.855 0.916 0.916 0.916 0.942 0.908 0.952 0.952 0.952 0.949

(0.03) (0.03) (0.03) (0.03) (0.039) (0.035) (0.035) (0.035) (0.035) (0.039)
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Table 4: m-out-of-n and Numerical Bootstrap Equal-Tailed Coverage for m = n1/3

and εn = n−1/6

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.846 0.874 0.874 0.874 0.92 0.916 0.943 0.943 0.943 0.942

(0.297) (0.297) (0.297) (0.297) (0.387) (0.367) (0.367) (0.367) (0.367) (0.387)

n = 1000 0.892 0.899 0.899 0.899 0.932 0.94 0.944 0.944 0.944 0.943

(0.104) (0.104) (0.104) (0.104) (0.124) (0.122) (0.122) (0.122) (0.122) (0.124)

n = 10000 0.919 0.921 0.921 0.921 0.946 0.949 0.95 0.95 0.95 0.95

(0.035) (0.035) (0.035) (0.035) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039)

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.751 0.877 0.877 0.867 0.925 0.848 0.939 0.939 0.939 0.929

(0.254) (0.253) (0.253) (0.253) (0.387) (0.324) (0.324) (0.324) (0.324) (0.387)

n = 1000 0.823 0.881 0.881 0.881 0.927 0.913 0.945 0.945 0.945 0.943

(0.088) (0.088) (0.088) (0.088) (0.124) (0.112) (0.112) (0.112) (0.112) (0.124)

n = 10000 0.861 0.89 0.89 0.89 0.934 0.934 0.95 0.95 0.95 0.949

(0.03) (0.03) (0.03) (0.03) (0.039) (0.037) (0.037) (0.037) (0.037) (0.039)

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.668 0.909 0.909 0.856 0.935 0.796 0.954 0.954 0.954 0.942

(0.235) (0.234) (0.234) (0.234) (0.387) (0.294) (0.294) (0.294) (0.294) (0.387)

n = 1000 0.763 0.89 0.89 0.89 0.932 0.874 0.948 0.948 0.948 0.943

(0.081) (0.081) (0.081) (0.081) (0.124) (0.104) (0.104) (0.104) (0.104) (0.124)

n = 10000 0.811 0.886 0.886 0.886 0.932 0.909 0.952 0.952 0.952 0.952

(0.027) (0.027) (0.027) (0.027) (0.039) (0.035) (0.035) (0.035) (0.035) (0.039)
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Table 5: Standard and Perturbation Bootstrap Upper Coverage Frequencies

Standard Bootstrap λn = n−1/2 Perturbation Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.952 0.952 0.952 0.952 0.931 0.954 0.954 0.954 0.954 0.93

n = 1000 0.952 0.952 0.952 0.952 0.947 0.952 0.952 0.952 0.952 0.948

n = 10000 0.949 0.949 0.949 0.949 0.947 0.95 0.95 0.95 0.95 0.947

Standard Bootstrap λn = n−1/4 Perturbation Bootstrap

n = 100 0.969 0.969 0.969 0.933 0.889 0.965 0.965 0.965 0.932 0.887

n = 1000 0.963 0.963 0.963 0.963 0.932 0.963 0.963 0.963 0.963 0.932

n = 10000 0.959 0.959 0.959 0.959 0.940 0.958 0.958 0.958 0.958 0.940

Standard Bootstrap λn = n−1/6 Perturbation Bootstrap

n = 100 0.978 0.978 0.978 0.777 0.874 0.980 0.980 0.980 0.775 0.875

n = 1000 0.974 0.974 0.974 0.966 0.912 0.975 0.975 0.975 0.966 0.910

n = 10000 0.969 0.969 0.969 0.969 0.926 0.968 0.968 0.968 0.968 0.925

Table 6: Standard and Perturbation Bootstrap Lower Coverage Frequencies

Standard Bootstrap λn = n−1/2 Perturbation Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.922 0.955 0.955 0.955 0.955 0.919 0.952 0.952 0.952 0.952

n = 1000 0.939 0.947 0.947 0.947 0.947 0.940 0.947 0.947 0.947 0.947

n = 10000 0.949 0.952 0.952 0.952 0.952 0.949 0.951 0.951 0.951 0.951

Standard Bootstrap λn = n−1/4 Perturbation Bootstrap

n = 100 0.885 0.964 0.964 0.964 0.964 0.883 0.964 0.964 0.964 0.964

n = 1000 0.923 0.961 0.961 0.961 0.961 0.924 0.961 0.961 0.961 0.961

n = 10000 0.937 0.960 0.960 0.960 0.960 0.936 0.960 0.960 0.960 0.960

Standard Bootstrap λn = n−1/6 Perturbation Bootstrap

n = 100 0.862 0.980 0.980 0.980 0.980 0.861 0.980 0.980 0.980 0.980

n = 1000 0.903 0.969 0.969 0.969 0.969 0.905 0.970 0.970 0.970 0.970

n = 10000 0.922 0.968 0.968 0.968 0.968 0.922 0.969 0.969 0.969 0.969
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Table 7: m-out-of-n and Numerical Bootstrap Upper Coverage for m = n2/3 and

εn = n−1/3

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.928 0.928 0.928 0.928 0.948 0.946 0.946 0.946 0.946 0.933

n = 1000 0.945 0.945 0.945 0.945 0.953 0.950 0.950 0.950 0.950 0.949

n = 10000 0.946 0.946 0.946 0.946 0.952 0.949 0.949 0.949 0.949 0.948

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.937 0.937 0.937 0.895 0.937 0.952 0.952 0.952 0.947 0.916

n = 1000 0.942 0.942 0.942 0.942 0.955 0.954 0.954 0.954 0.954 0.945

n = 10000 0.940 0.940 0.940 0.940 0.958 0.951 0.951 0.951 0.951 0.946

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.949 0.949 0.949 0.764 0.927 0.963 0.963 0.963 0.883 0.912

n = 1000 0.945 0.945 0.945 0.943 0.953 0.956 0.956 0.956 0.956 0.940

n = 10000 0.940 0.940 0.940 0.940 0.958 0.953 0.953 0.953 0.953 0.945

Table 8: m-out-of-n and Numerical Bootstrap Lower Coverage for m = n2/3 and

εn = n−1/3

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.891 0.93 0.93 0.93 0.93 0.915 0.947 0.947 0.947 0.947

n = 1000 0.928 0.937 0.937 0.937 0.937 0.936 0.945 0.945 0.945 0.945

n = 10000 0.953 0.947 0.947 0.947 0.947 0.948 0.948 0.948 0.948 0.948

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.762 0.94 0.94 0.94 0.94 0.794 0.954 0.954 0.954 0.954

n = 1000 0.871 0.935 0.935 0.935 0.935 0.884 0.948 0.948 0.948 0.948

n = 10000 0.953 0.938 0.938 0.938 0.938 0.946 0.950 0.950 0.950 0.950

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.702 0.961 0.961 0.961 0.961 0.71 0.97 0.97 0.97 0.97

n = 1000 0.842 0.939 0.939 0.939 0.939 0.842 0.954 0.954 0.954 0.954

n = 10000 0.939 0.939 0.939 0.939 0.939 0.939 0.955 0.955 0.955 0.955
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Table 9: m-out-of-n and Numerical Bootstrap Upper Coverage for m = n1/2 and

εn = n−1/4

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.916 0.916 0.916 0.914 0.961 0.946 0.946 0.946 0.946 0.938

n = 1000 0.935 0.935 0.935 0.935 0.96 0.95 0.95 0.95 0.95 0.949

n = 10000 0.941 0.941 0.941 0.941 0.958 0.949 0.949 0.949 0.949 0.949

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.918 0.918 0.918 0.844 0.952 0.951 0.951 0.951 0.945 0.923

n = 1000 0.928 0.928 0.928 0.928 0.966 0.952 0.952 0.952 0.952 0.947

n = 10000 0.928 0.928 0.928 0.928 0.968 0.949 0.949 0.949 0.949 0.947

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.933 0.933 0.933 0.715 0.95 0.955 0.955 0.955 0.899 0.921

n = 1000 0.931 0.931 0.931 0.913 0.964 0.954 0.954 0.954 0.954 0.944

n = 10000 0.926 0.926 0.926 0.926 0.97 0.95 0.95 0.95 0.95 0.946

Table 10: m-out-of-n and Numerical Bootstrap Lower Coverage for m = n1/2 and

εn = n−1/4

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.878 0.918 0.918 0.918 0.918 0.913 0.945 0.945 0.945 0.945

n = 1000 0.918 0.927 0.927 0.927 0.927 0.935 0.944 0.944 0.944 0.944

n = 10000 0.936 0.939 0.939 0.939 0.939 0.947 0.949 0.949 0.949 0.949

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.739 0.921 0.921 0.921 0.921 0.808 0.947 0.947 0.947 0.947

n = 1000 0.836 0.919 0.919 0.919 0.919 0.889 0.947 0.947 0.947 0.947

n = 10000 0.888 0.923 0.923 0.923 0.923 0.923 0.95 0.95 0.95 0.95

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.646 0.936 0.936 0.936 0.936 0.699 0.965 0.965 0.965 0.965

n = 1000 0.76 0.921 0.921 0.921 0.921 0.822 0.949 0.949 0.949 0.949

n = 10000 0.827 0.921 0.921 0.921 0.921 0.882 0.952 0.952 0.952 0.952
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Table 11: m-out-of-n and Numerical Bootstrap Upper Coverage for m = n1/3 and

εn = n−1/6

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.889 0.889 0.889 0.88 0.967 0.943 0.943 0.943 0.943 0.94

n = 1000 0.918 0.918 0.918 0.918 0.973 0.951 0.951 0.951 0.951 0.951

n = 10000 0.929 0.929 0.929 0.929 0.968 0.948 0.948 0.948 0.948 0.948

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.894 0.894 0.894 0.762 0.964 0.942 0.942 0.942 0.938 0.929

n = 1000 0.902 0.902 0.902 0.896 0.978 0.951 0.951 0.951 0.951 0.948

n = 10000 0.901 0.901 0.901 0.901 0.977 0.949 0.949 0.949 0.949 0.948

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.918 0.918 0.918 0.67 0.962 0.955 0.955 0.955 0.916 0.925

n = 1000 0.906 0.906 0.906 0.76 0.976 0.953 0.953 0.953 0.953 0.946

n = 10000 0.898 0.898 0.898 0.889 0.978 0.949 0.949 0.949 0.949 0.947

Table 12: m-out-of-n and Numerical Bootstrap Lower Coverage for m = n1/3 and

εn = n−1/6

m-out-of-n Bootstrap λn = n−1/2 Numerical Bootstrap

β0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.842 0.896 0.896 0.896 0.896 0.914 0.943 0.943 0.943 0.943

n = 1000 0.898 0.909 0.909 0.909 0.909 0.936 0.944 0.944 0.944 0.944

n = 10000 0.922 0.923 0.923 0.923 0.923 0.946 0.949 0.949 0.949 0.949

m-out-of-n Bootstrap λn = n−1/4 Numerical Bootstrap

n = 100 0.715 0.897 0.897 0.897 0.897 0.822 0.947 0.947 0.947 0.947

n = 1000 0.807 0.894 0.894 0.894 0.894 0.893 0.945 0.945 0.945 0.945

n = 10000 0.857 0.9 0.9 0.9 0.9 0.923 0.949 0.949 0.949 0.949

m-out-of-n Bootstrap λn = n−1/6 Numerical Bootstrap

n = 100 0.622 0.92 0.92 0.92 0.92 0.723 0.959 0.959 0.959 0.959

n = 1000 0.727 0.9 0.9 0.9 0.9 0.828 0.946 0.946 0.946 0.946

n = 10000 0.791 0.899 0.899 0.899 0.899 0.885 0.951 0.951 0.951 0.951
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5 Additional Monte Carlo Simulation Results for Modal Estimator

In this section, we report additional Monte Carlo simulation results for the modal

estimator discussed in section 5 of the main text. The estimators we consider are the

following:

θ̂∗standard = argmax
θ

1

n

n∑
i=1

1 (θ − 5 ≤ X∗i ≤ θ + 5)

θ̂∗moutofn = argmax
θ

1

m

m∑
i=1

1 (θ − 5 ≤ X∗i ≤ θ + 5)

θ̂∗subsampling = argmax
θ

1

b

b∑
i=1

1 (θ − 5 ≤ X∗i ≤ θ + 5)

θ̂∗perturb = argmax
θ

1

n

n∑
i=1

1 (θ − 5 ≤ X∗i ≤ θ + 5)G∗i , G∗i ∼ exp(1)

θ̂∗numerical = argmax
θ

{(
1− εn

√
n
) 1

n

n∑
i=1

1 (θ − 5 ≤ Xi ≤ θ + 5) + εn
√
n

1

n

n∑
i=1

1 (θ − 5 ≤ X∗i ≤ θ + 5)

}

The tables below show that for equal-tailed intervals, subsampling performs similarly

to the m-out-of-n bootstrap and hence performs worse than the numerical bootstrap.

Subsampling and m-out-of-n bootstrap perform better than the numerical bootstrap

for upper
(
−∞, θ̂n − n−1/3ĉ∗α

]
intervals, but the numerical bootstrap performs better

than subsampling and m-out-of-n bootstrap for lower
[
θ̂n − n−1/3ĉ∗1−α,∞

)
intervals.

21



Table 13: Subsampling Two-Sided Equal-Tailed Coverage Frequencies

b = n2/3 b = n1/2

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.644 0.647 0.651 0.636 0.649 0.700 0.711 0.721 0.688 0.706

(1.708) (1.694) (1.714) (1.712) (1.738) (1.815) (1.813) (1.824) (1.823) (1.854)

n = 500 0.758 0.759 0.750 0.783 0.768 0.795 0.787 0.779 0.790 0.780

(1.277) (1.276) (1.264) (1.266) (1.272) (1.287) (1.285) (1.273) (1.273) (1.283)

n = 1000 0.803 0.828 0.771 0.782 0.778 0.794 0.825 0.778 0.783 0.779

(1.047) (1.040) (1.037) (1.035) (1.029) (1.047) (1.038) (1.039) (1.035) (1.036)

n = 5000 0.819 0.850 0.843 0.842 0.799 0.794 0.825 0.778 0.783 0.779

(0.614) (0.614) (0.616) (0.616) (0.617) (0.632) (0.633) (0.634) (0.634) (0.632)

n = 10000 0.861 0.836 0.828 0.852 0.845 0.884 0.868 0.849 0.861 0.881

(0.490) (0.487) (0.489) (0.490) (0.488) (0.505) (0.504) (0.505) (0.505) (0.505)

Table 14: Subsampling Two-Sided Equal-Tailed Coverage Frequencies for b = n1/3

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.720 0.726 0.726 0.700 0.725

(1.809) (1.810) (1.816) (1.813) (1.839)

n = 500 0.736 0.719 0.717 0.722 0.718

(1.178) (1.184) (1.175) (1.176) (1.180)

n = 1000 0.716 0.730 0.706 0.695 0.713

(0.959) (0.954) (0.955) (0.952) (0.954)

n = 5000 0.734 0.780 0.753 0.765 0.743

(0.592) (0.593) (0.592) (0.593) (0.591)

n = 10000 0.786 0.777 0.772 0.791 0.786

(0.480) (0.480) (0.481) (0.480) (0.481)
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Table 15: Standard Bootstrap and Perturbation Bootstrap Upper Coverage Frequen-

cies
Standard Bootstrap Perturbation Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.613 0.617 0.594 0.635 0.622 0.618 0.619 0.595 0.633 0.626

n = 500 0.690 0.711 0.685 0.674 0.695 0.701 0.721 0.705 0.692 0.709

n = 1000 0.748 0.681 0.704 0.728 0.693 0.765 0.702 0.727 0.741 0.718

n = 5000 0.758 0.757 0.759 0.728 0.775 0.810 0.796 0.801 0.784 0.810

n = 10000 0.751 0.753 0.760 0.750 0.765 0.798 0.806 0.820 0.801 0.813

Table 16: m-out-of-n Bootstrap and Numerical Bootstrap Upper Coverage Frequen-

cies for m = n2/3 and εn = n−1/3

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.824 0.824 0.809 0.833 0.817 0.730 0.723 0.704 0.733 0.716

n = 500 0.895 0.926 0.918 0.892 0.914 0.816 0.854 0.834 0.810 0.837

n = 1000 0.937 0.910 0.916 0.920 0.910 0.874 0.830 0.839 0.850 0.837

n = 5000 0.946 0.921 0.923 0.919 0.938 0.889 0.870 0.870 0.869 0.885

n = 10000 0.921 0.920 0.932 0.920 0.919 0.873 0.874 0.884 0.881 0.880

Table 17: Subsampling Upper Coverage Frequencies for b = n2/3

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.798 0.794 0.784 0.808 0.815

n = 500 0.868 0.893 0.894 0.902 0.886

n = 1000 0.884 0.919 0.908 0.904 0.898

n = 5000 0.917 0.889 0.925 0.913 0.910

n = 10000 0.911 0.925 0.917 0.910 0.910
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Table 18: m-out-of-n Bootstrap and Numerical Bootstrap Upper Coverage Frequen-

cies for m = n1/2 and εn = n−1/4

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.882 0.882 0.876 0.884 0.879 0.776 0.777 0.753 0.791 0.770

n = 500 0.952 0.961 0.953 0.947 0.954 0.880 0.913 0.908 0.879 0.903

n = 1000 0.968 0.961 0.965 0.964 0.965 0.936 0.910 0.912 0.918 0.915

n = 5000 0.978 0.969 0.971 0.980 0.977 0.951 0.930 0.931 0.931 0.943

n = 10000 0.974 0.974 0.975 0.978 0.973 0.934 0.934 0.942 0.931 0.943

Table 19: Subsampling Upper Coverage Frequencies for b = n1/2

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.876 0.874 0.855 0.874 0.881

n = 500 0.937 0.961 0.953 0.954 0.949

n = 1000 0.955 0.968 0.959 0.962 0.962

n = 5000 0.967 0.959 0.973 0.972 0.964

n = 10000 0.974 0.963 0.968 0.969 0.979

Table 20: m-out-of-n Bootstrap and Numerical Bootstrap Upper Coverage Frequen-

cies for m = n1/3 and εn = n−1/6

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.909 0.913 0.898 0.914 0.914 0.791 0.794 0.787 0.805 0.788

n = 500 0.971 0.984 0.974 0.977 0.976 0.918 0.935 0.935 0.905 0.925

n = 1000 0.984 0.982 0.985 0.985 0.980 0.956 0.936 0.944 0.948 0.942

n = 5000 0.993 0.993 0.990 0.992 0.992 0.974 0.959 0.970 0.974 0.975

n = 10000 0.991 0.996 0.996 0.995 0.990 0.974 0.971 0.971 0.977 0.972
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Table 21: Subsampling Upper Coverage Frequencies for b = n1/3

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.904 0.907 0.899 0.900 0.918

n = 500 0.966 0.978 0.977 0.976 0.969

n = 1000 0.981 0.986 0.982 0.986 0.985

n = 5000 0.992 0.983 0.997 0.994 0.993

n = 10000 0.993 0.994 0.988 0.990 0.996

Table 22: Standard Bootstrap and Perturbation Bootstrap Lower Coverage Frequen-

cies
Standard Bootstrap Perturbation Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.805 0.803 0.820 0.785 0.794 0.811 0.802 0.829 0.810 0.816

n = 500 0.817 0.795 0.798 0.795 0.812 0.840 0.825 0.839 0.836 0.851

n = 1000 0.814 0.823 0.790 0.797 0.802 0.843 0.863 0.859 0.868 0.877

n = 5000 0.817 0.848 0.817 0.833 0.798 0.877 0.873 0.867 0.890 0.895

n = 10000 0.811 0.816 0.802 0.827 0.829 0.878 0.889 0.871 0.881 0.894

Table 23: m-out-of-n Bootstrap and Numerical Bootstrap Lower Coverage Frequen-

cies for m = n2/3 and εn = n−1/3

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.800 0.799 0.824 0.807 0.812 0.976 0.972 0.985 0.981 0.985

n = 500 0.803 0.807 0.814 0.802 0.828 0.969 0.969 0.958 0.962 0.973

n = 1000 0.789 0.834 0.817 0.810 0.821 0.941 0.950 0.954 0.960 0.956

n = 5000 0.836 0.818 0.832 0.855 0.850 0.930 0.925 0.931 0.930 0.936

n = 10000 0.866 0.864 0.856 0.868 0.872 0.935 0.928 0.925 0.926 0.934
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Table 24: Subsampling Lower Coverage Frequencies for b = n2/3

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.801 0.804 0.818 0.790 0.792

n = 500 0.820 0.803 0.798 0.809 0.811

n = 1000 0.822 0.832 0.793 0.797 0.806

n = 5000 0.833 0.865 0.852 0.849 0.828

n = 10000 0.861 0.851 0.843 0.854 0.861

Table 25: m-out-of-n Bootstrap and Numerical Bootstrap Lower Coverage Frequen-

cies for m = n1/2 and εn = n−1/4

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.798 0.799 0.820 0.802 0.809 0.982 0.979 0.987 0.985 0.989

n = 500 0.747 0.744 0.757 0.749 0.757 0.985 0.982 0.981 0.981 0.989

n = 1000 0.732 0.772 0.750 0.754 0.769 0.976 0.974 0.983 0.983 0.979

n = 5000 0.793 0.776 0.787 0.813 0.808 0.970 0.968 0.967 0.970 0.971

n = 10000 0.835 0.836 0.820 0.824 0.854 0.973 0.963 0.961 0.968 0.967

Table 26: Subsampling Lower Coverage Frequencies for b = n1/2

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.798 0.800 0.817 0.788 0.790

n = 500 0.762 0.745 0.741 0.749 0.739

n = 1000 0.759 0.770 0.751 0.740 0.749

n = 5000 0.788 0.826 0.808 0.812 0.786

n = 10000 0.834 0.818 0.818 0.822 0.826
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Table 27: m-out-of-n Bootstrap and Numerical Bootstrap Lower Coverage Frequen-

cies for m = n1/3 and εn = n−1/6

m-out-of-n Bootstrap Numerical Bootstrap

θ0 −n−1/4 0 n−1 n−1/2 2 −n−1/4 0 n−1 n−1/2 2

n = 100 0.740 0.735 0.764 0.731 0.749 0.987 0.982 0.989 0.986 0.991

n = 500 0.654 0.650 0.658 0.661 0.662 0.988 0.991 0.986 0.990 0.992

n = 1000 0.615 0.658 0.623 0.627 0.660 0.987 0.988 0.990 0.990 0.990

n = 5000 0.638 0.646 0.635 0.683 0.662 0.986 0.989 0.985 0.989 0.984

n = 10000 0.696 0.695 0.665 0.671 0.715 0.993 0.989 0.983 0.985 0.986

Table 28: Subsampling Lower Coverage Frequencies for b = n1/3

θ0 −n−1/4 0 n−1 n−1/2 2

n = 100 0.745 0.751 0.765 0.741 0.739

n = 500 0.677 0.646 0.656 0.647 0.664

n = 1000 0.653 0.658 0.613 0.640 0.641

n = 5000 0.649 0.673 0.653 0.672 0.655

n = 10000 0.688 0.681 0.689 0.687 0.685

6 Sample size dependent statistics

Estimators and test statistics may depend on both Pn and the sample size, e.g.

θ (Pn, n, n). We break the dependence on n into two arguments, the first accounting

for the variation of the Gaussian process and the second accounting for a bias consid-

eration. How to handle the sample size dependence requires some knowledge of the

model. In this case we write for Ĝn =
√
n (Pn − P )

θ̂n = θ (Pn, n, n) = θ

(
P +

1√
n
Ĝn,
√
n

2
, n

)
. (1)

To approximate the distribution of Ĵn = a (n) (θ (Pn, n, n)− θ0), the numerical boot-

strap principle again replaces Ĝn with a suitable bootstrap version Ĝ∗n and the first
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√
n with 1/εn

Ĵ ∗n = a

(
1

ε2n

)(
θ̂∗n − θ̂n

)
where θ̂∗n = θ

(
Z∗n,

1

ε2n
, n

)
= θ

(
Pn + εnĜ∗n,

1

ε2n
, n

)
.

Examples in which only the first n is present in θ (Pn, n, n) are Chernozhukov and

Hong (2003) and Jun et al. (2015). When θ0 is in the interior of Θ, as in Chernozhukov

and Hong (2003), the posterior distribution, in combination with the Sandwich for-

mula, can be used to provide valid inference, or the bootstrap can also be used. In

both cases,

θ̂n ≡ θ (Pn, n) =

∫
θω (θ) exp (n2γPnπ (·; θ)) dθ∫
ω (θ) exp (n2γPnπ (·; θ)) dθ

. (2)

where ω (·) is a prior distribution and π (·; θ) and γ are defined as in Theorem 4.1.

Recall that γ = 1
2

in Chernozhukov and Hong (2003) but γ = 1
3

in Jun et al. (2015).

Both show that for Z0 given in Theorem 4.1,

Ĵn = nγ
(
θ̂n − θ0

)
 J =

∫
h exp (`∞ (h)) dh∫
exp (`∞ (h)) dh

where `∞ (h) = Z0 (h)− 1
2
h′Hh.

Jun et al. (2015) propose in their Theorem 4 to estimate J with

J̄ ∗n =

∫
h exp

(
Ẑ0 (h)− 1

2
h′Ĥh

)
dh∫

exp
(
Ẑ0 (h)− 1

2
h′Ĥh

)
dh

where Ĥ = H+oP (1) and Ẑ0 (h) is a Gaussian process with covariance kernel Σ̂ρ (s, t)

such that Σ̂ρ (s, t) = Σρ (s, t) + oP (1). Alternatively, Ẑ0 (h) can be estimated by

n2γ− 1
2 Ĝ∗n

(
g
(
·, θ̂ + h/nγ

)
− g

(
·, θ̂
))

. In contrast, we propose a numerical bootstrap

estimate:

θ̂∗n ≡ θ

(
Pn + εnĜ∗n,

1

ε2n

)
=

∫
θ exp (π∗n (θ)) dθ∫
exp (π∗n (θ)) dθ

,

where π∗n (θ) = 1

ε4γn

(
Pn + εnĜ∗n

)
π (·; θ). In the following we first summarize the key

heuristic steps for consistency of the numerical bootstrap estimator θ̂∗n ≡ θ
(
Pn + εnĜ∗n, 1

ε2n

)
=
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∫
θ exp(π∗n(θ))dθ∫
exp(π∗n(θ))dθ

before presenting the formal theorem.

We want to show that ε−2γ
n

(
θ̂∗n − θ̂n

)
= ε−2γ

n

(
θ̂∗n − θ0

)
− ε−2γ

n

(
θ̂n − θ0

)
P
 
W
J .

This will follow from (1) ε−2γ
n

(
θ̂n − θ0

)
= op (1) and (2) ε−2γ

n

(
θ̂∗n − θ0

)
P
 
W
J . Part (1)

follows from
√
nεn → ∞. Since nγ

(
θ̂ − θ0

)
= Op (1), 1

ε2γn

(
θ̂n − θ0

)
= 1

ε2γn
Op (n−γ) =

op (1). To check (2) write

π∗n (θ) =
Ĝ∗nπ (·, θ)
ε4γ−1
n

+
Ĝnπ (·, θ)
ε4γn
√
n

+
Pπ (·, θ)
ε4γn

≈ 1

ε4γ−1
n

Ĝ∗nπ (·, θ) +
1

ε4γn
Pπ (·, θ) .

The second term is dominated by the other two terms since 1

ε4γ−1
n

>> 1

ε4γn
√
n
. Since

π∗n (θ) can be recentered at π (·, θ0) without changing θ̂∗n, we redefine

π∗n (θ) =
1

ε4γ−1
n

Ĝ∗ng (·, θ) +
1

ε4γn
Pg (·, θ) .

Next consider ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
. Then (ignoring the negligible prior)

ĥ∗n ≡
∫
h exp (π∗n (θ0 + ε2γn h)) dh∫
exp

(
π∗n
(
θ0 + ε2γn h

))
dh

, where

π∗n
(
θ0 + ε2γn h

)
=

1

ε4γ−1
n

Ĝ∗ng
(
·, θ0 + ε2γn h

)
+

1

ε4γn
Pg
(
·, θ0 + ε2γn h

)
= ε−4γ

n Z∗n
(
θ0 + ε2γn h

)
By the arguments in Kim and Pollard (1990) and Theorem 4.1, Ĝ∗n (·, θ0 + η) =

O∗P (ηρ), so that

Ĝ∗ng
(
·, θ0 + ε2γn h

)
= O∗P

((
ε2γn
)ρ)

= O∗P
(
ε4γ−1
n

)
,

1

ε4γ−1
n

Ĝ∗ng
(
·, θ0 + ε2γn h

) P
 
W
Z0 (h) .

Together these imply that π∗n (θ0 + ε2γn h)
P
 
W
`∞ (h) = Z0 (h)− 1

2
h′Hh.

The numerical bootstrap estimates Z0 (h)− 1
2
h′Hh using

ε−4γ
n Z∗n (h) = ε−2ργ

n Ĝ∗n
(
·, θ̂n + ε2γn h

)
+ ε−4γ

n Png
(
·, θ̂ + ε2γn h

)
.

Essentially, ε−2ργ
n Ĝ∗n

(
·, θ̂n + ε2γn h

)
P
 
W
Z0 (h) and ε−4γ

n Png
(
·, θ̂n + ε2γn h

)
= −1

2
h′Hh +

oP (1).
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Theorem 6.1 Let the conditions in Theorem 4.1 hold, with (iv) replaced by condition

G(v) in Jun et al. (2015) where gn0 (·, t) = ε
−1/3
n g

(
·, θ0 + tε

2/3
n

)
/ (1 + |t|). Then for

any εn ↓ 0, Ĵn  J and Ĵ ∗n = ε−2γ
n

(
θ̂∗n − θ̂n

)
=

∫
h exp(ε−4γ

n Z∗n(h))dh∫
exp(ε−4γ

n Z∗n(h))dh
P
 
W
J .

Similar to Theorem 4.2, it is also straightforward to extend Jun et al. (2015) and

Theorem 6.1 to allow for the case when the parameter can be at the boundary of a

constrained set that is approximated by a cone, in the sense that for any αn → ∞,

and for any compact set M with radius M <∞,

1 (δ ∈ αn (C − θ0) ∩M)→ 1 (δ ∈ TC (θ0) ∩M) (3)

almost surely in δ under the Lebesgue measure. We redefine, ignoring the negligible

prior ω (·),

θ̂n ≡ θ (Pn, n) =

∫
C

θp̂n (θ) dθ where p̂n (θ) =
exp (n2γPnπ (·; θ))∫

C
exp (n2γPnπ (·; θ)) dθ (4)

and

θ̂∗n =

∫
C

θp̂∗n (θ) dθ where p̂∗n (θ) =
exp (π∗n (θ))∫

C
exp (π∗n (θ)) dθ

. (5)

Also let Ĵn = nγ
(
θ̂n − θ0

)
=
∫
√
n(C−θ0)

hp̂n (h) dh where

p̂n (h) =
exp (n2γPnπ (·; θ0 + n−γh))∫

√
n(C−θ0)

exp (n2γPnπ (·; θ0 + n−γh)) dh
(6)

and ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
=
∫
ε−2γ
n (C−θ0)

hp̂∗n (h) dh where

p̂∗n (h) =
exp (π∗n (θ0 + ε2γn h))∫

ε−2γ
n (C−θ0)

exp
(
π∗n
(
θ0 + ε2γn h

))
dh
, (7)

and

J =

∫
TC(θ0)

hp∞ (h) dh where p∞ (h) =
h exp (`∞ (h))∫

TC(θ0)
exp (`∞ (h)) dh

. (8)

Given these redefinitions, a constrained version of Theorem 6.1 is available.
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Theorem 6.2 Let the conditions in Theorem 6.1 and (3) hold. Then for Ĵn, ĥ∗n and

J defined in (6), (7), and (8), Ĵn  J , ĥ∗n
P
 
W
J , and ĥ∗n  J , which implies that

for Ĵ ∗n ≡ ε−2γ
n

(
θ̂∗n − θ̂n

)
, Ĵ ∗n

P
 
W
J and Ĵ ∗n  J .

We remark that even in the “regular” case where γ = 1/2 and when the informa-

tion matrix equality holds, the posterior quantiles in Chernozhukov and Hong (2003)

only provide asymptotically valid confidence intervals when θ0 is in the interior of Θ,

so that TC (θ0) = Rd. If θ0 is on the boundary of Θ, neither posterior quantiles nor

the bootstrap are asymptotically valid, but the numerical bootstrap will be.

Analogous to Theorem 4.3, in “regular”
√
n convergent models (with γ = 1/2),

`∞ (h) can be replaced by its local quadratic approximation. Under assumption 4.1,

and more generally (4.6) and (4.7), `∞ (h) is determined by a finite dimensional

sufficient statistic: `∞ (h) = ∆′0h− 1
2
h′Hh where consistent estimates ∆̂∗n

P
 
W

∆0 and

Ĥ = H + oP (1) are available. Then we can also define

Ĵ ∗n =

∫
C−θ̂
εn

hp̂∗n (h) dh where p̂∗n (h) =

exp

(
−1

2

(
h− Ĝ∗n

)′
Ĥ
(
h− Ĝ∗n

))
dh

∫
C−θ̂
εn

exp

(
−1

2

(
h− Ĝ∗n

)′
Ĥ
(
h− Ĝ∗n

))
dh

(9)

and where Ĝ∗n = Ĥ−1∆̂∗n. This can in fact be rewritten as Ĵ ∗n = ε−1
n

(
θ̂∗n − θ̂n

)
, where

θ̂∗n =

∫
C

θp̂∗n (θ) dθ and p̂∗n (θ) =

exp

((
θ−θ̂n
εn
− Ĝ∗n

)′
Ĥ
(
θ−θ̂n
εn
− Ĝ∗n

))
∫
C

exp

((
θ−θ̂n
εn
− Ĝ∗n

)′
Ĥ
(
θ−θ̂n
εn
− Ĝ∗n

))
dθ

(10)

Theorem 6.3 Under the conditions of Theorem 4.3 and (3), Ĵ ∗n
P
 
W
J and Ĵ ∗n  J

for Ĵ ∗n and J defined in (9) and (8).

It is also immediate from the remark after Theorem 4.3 that Ĝ∗n can be replaced

by other consistent estimates of H−1∆0, for example by taking Ĝ∗n =
√
n
(
θ̄∗n − θ̄n

)
where θ̄n is an unconstrained estimate and θ̄∗n is its bootstrapped version.

An analog for Theorem 4.4 for a direct application of the numerical bootstrap to

GMM is also available. Recall from Theorem 4.4 that to approximate the distribution
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of

θ̂n =

∫
C

θp̂n (θ) where p̂n (θ) =
exp

(
nQ̂n (θ)

)
∫
C

exp
(
nQ̂n (θ)

)
dθ
, Q̂n (θ) = −1

2
π̂ (θ)′Wπ̂ (θ) ,

(11)

π∗n (θ) in (4) and (7) can be replaced by ε−2
n Q̂∗n (θ) = −ε−2

n π̂∗ (θ)′Wπ̂∗ (θ) for π̂∗ (θ) =

Z∗nπ (·, θ). Therefore θ̂∗n =
∫
C
θp̂∗n (θ) dθ, and Ĵ ∗n = ε−1

n

(
θ̂∗n − θ0

)
=
∫
ε−1
n (C−θ0)

hp̂∗n (h) dh,

where

p̂∗n (θ) =
exp

(
ε−2
n Q̂∗n (θ)

)
∫
C

exp
(
ε−2
n Q̂∗n (θ)

)
dθ

and p̂∗n (h) =
exp

(
ε−2
n Q̂∗n (θ0 + εnh)

)
∫
C−θ0
εn

exp
(
ε−2
n Q̂∗n (θ0 + εnh)

)
dh
. (12)

The following theorem follows directly from combining arguments in the proofs of

Theorems 4.4, 6.2, and 6.3 and is thus stated without proof.

Theorem 6.4 Under the conditions of Theorem 4.3, Ĵ ∗n
P
 
W
J .

In addition to using plugin, estimation of (but not inference for except in “regular”

cases) functions φ0 = φ (θ0) can also be based on functionals of the (quasi) posterior

distribution, such as the posterior mean φ̂ =
∫
C
φ (θ) p̂n (θ) dθ or a posterior quantile,

φ̂τ = inf

{
x :
∫
C,φ(θ)≤x p̂n (θ) dθ ≥ τ

}
where p̂n (θ) are defined in (4) and (11). The

distributions of ĥn = nγ
(
φ̂− φ0

)
and ĥτ = nγ

(
φ̂τ − φ0

)
will be approximated by

ĥ∗n = ε−2γ
n

(
φ̂∗ − φ̂

)
where φ̂∗ =

∫
C

φ (θ) p̂∗n (θ) dθ

and

ĥ∗τ = ε−2γ
n

(
φ̂∗τ − φ̂τ

)
where φ̂∗τ = inf

{
x :

∫
C,φ(θ)≤x

p̂∗n (θ) dθ ≥ τ

}
p̂∗n (θ) is defined in (5), or (10), or (12).

Theorem 6.5 Let φ (·) be continuous, majorized by a polynomial, and directionally

differentiable at θ0 in the sense that there exists a continuous map φ′θ0 : D0 → R such

32



that for all M <∞,

lim
tn↓0

sup
|h|≤M

∣∣∣∣φ (θ0 + tnh)− φ (θ0)

tn
− φ′θ0 (h)

∣∣∣∣ = o (1)

Then (1) ĥn  J , (2) ĥ∗n
P
 
W
J , (3) ĥτ  Jτ , (4) ĥ∗τ

P
 
W
Jτ , where

J =

∫
TC(θ0)

φ′θ0 (h) p∞ (h) dh and Jτ = inf

{
x :

∫
h∈TC(θ0),φ′θ0

(h)≤x
p∞ (h) dh ≥ τ

}
.

It is clear that the above results extend to the case when φ (·) is a vector, φ =

(φ1, . . . , φd). Consequently, Theorem 6.5 also includes other theorems in this section

as special cases when φ (θ) = θ.

6.1 Likelihood Ratio Statistics

The distribution of the optimized objective function for M-estimators is of interest

for obtaining the distribution the likelihood ratio test statistic or for confidence in-

terval construction for either the parameters or functions of the parameters based on

inverting a likelihood ratio test.

In these situations the distributions of the rescaled objective function and of the

parameter estimates both play first order roles. Let Zj
n (·)  Zj

∞ (·) , j = 1, . . . , J

for Zj
n (·) , Zj

∞ (·) ∈ `∞
(
Rd
)
,∀j, and let ρj (Zj (·)) be a functional of Zj (·) that

is continuous almost surely on the support of Zj
∞ (·). Examples are ρj (Zj (·)) =

arg maxh∈Hj Z
j (h) when Zj

∞ (h) is continuous with a unique maximizer on compact

sets almost surely. Other functionals such as those defined through Bayesian posterior

locations can replace the argmax functional. By the continuous mapping theorem

(CMT), on the product topology of `∞
(
Rd
)j

and || · ||J , for J = {1, . . . , J},

(
Zj
n (·) , ρj

(
Zj
n (·)

)
, j ∈ J

)
 
(
Zj
∞ (·) , ρj

(
Zj
∞ (·)

)
, j ∈ J

)
. (13)

Then for fixed constants aj, j = 1, . . . , J , by CMT again,

J∑
j=1

ajZ
j
n

(
ρ
(
Zj
n (·)

))
 

J∑
j=1

ajZ
j
∞
(
ρ
(
Zj
∞ (·)

))
. (14)
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For example, a1 = 1, a2 = −1, aj = 0,∀j ≥ 3. To apply (13) and (14) to sections 4

and 6 using the notations in Theorem 4.1 for the nested case, we first define

Zj
n (h) = n2γPng

(
·; θ0 + n−2γh

)
1

{
h ∈ nγ (Θj − θ0)

}
where Θj is the parameter space implied by the jth set of model constraints, and let

Zj
∞ (h) =

(
Z∞ (h)− 1

2
h′Hh

)
1

{
h ∈ Cj

}
,

where Cj = limn→∞ n
γ (Θj − θ0). φj (Zj

n (·)) can be defined through (4.1), (4.2), and

(6). The numerical bootstrap replaces Zj
n (h) with

Z∗n,j (h) = ε−4γ
n (Pn + εnG∗n)

(
π
(
·, θ̂n + ε2γn h

)
− π

(
·, θ̂n

))
,

so that Z∗nj (·) P
 
W
Zj
∞ (·) , j = 1, . . . , J . By the bootstrap continuous mapping theorem

(theorem 10.8 of Kosorok (2007)),

(
Z∗nj (·) , ρj

(
Z∗nj (·)

)
, j = 1, . . . , J

) P
 
W

(
Zj
∞ (·) , ρj

(
Zj
∞ (·)

)
, j = 1, . . . , J

)
,

and

J∑
j=1

ajZ
j
n

(
ρ
(
Zj
n (·)

))
 

J∑
j=1

ajZ
j
∞
(
ρ
(
Zj
∞ (·)

))
.

Between two strictly nonnested constrained parameter spaces, as long as γ > 1
4
, the

Likelihood Ratio test statistic converges at a
√
n rate to a normal limit:

√
n
(
Pnπ

(
·; θ̂n1

)
− Pnπ

(
·; θ̂n2

))
=
√
n (Pnπ (·; θ10)− Pnπ (·; θ20)) + n

1
2
−2γ
(
Z1
n

(
φ1

(
Z1
n (·)

))
− Z2

n

(
φ1

(
Z2
n (·)

)))
=
√
n (Pnπ (·; θ10)− Pnπ (·; θ20)) + oP (1)

 N (0, V ar (π (Zi; θ10)− π (Zi; θ20))) .
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7 Recentering

In hypothesis testing or in confidence set construction based on test statistic inversion,

subsampling does not require recentering (unlike the bootstrap) to achieve consistency

and local power (Politis et al. (1999)). However, recentering does improve finite

sample power (Chernozhukov and Fernández-Val (2005)). The same insight applies

to the numerical bootstrap method, which this section illustrates.

Consider, for example, testing H0 : θ (P ) = θ∗ vs H1 : θ (P ) > θ∗. The dif-

ference between the centered and noncentered versions of the numerical bootstrap

method is analogous to those in subsampling tests. For θ̂∗n ≡ θ (Pn + εn
√
n (P ∗n − Pn)),

a numerical bootstrap test benchmarks the sample distribution of a (n)
(
θ̂n − θ∗

)
to

either (1) the noncentered numerical bootstrap distribution a
(

1
ε2n

)(
θ̂∗n − θ∗

)
, or (2)

the centered numerical bootstrap distribution a
(

1
ε2n

)(
θ̂∗n − θ̂n

)
. Consistency and

power analysis come from studying these three distributions. To illustrate, in the

following we assume that (1) a (n)
(
θ̂n − θ0

)
 J ; (2) a

(
1
ε2n

)(
θ̂∗n − θ0

)
P
 
W
J ; and

(3) a
(

1
ε2n

)
/a (n) → 0. Under the null of θ0 = θ∗, they all have the same limiting

distribution. Suppose first that the alternative is fixed, e.g. θ0 = θ∗ + µ for µ > 0.

Then the sample distribution diverges to ∞ at the rate of a (n):

a (n)
(
θ̂n − θ∗

)
= a (n)

(
θ̂n − θ0

)
+ a (n)µ J + a (n)µ

where Xn  Yn is defined as ρBL1 (Xn, Yn) = o (1) as in Kosorok (2007). The

noncentered numerical boostrap distribution diverges to ∞ at the rate a
(

1
ε2n

)
, which

is slower than a (n), since a
(

1
ε2n

)
/a (n)→ 0, and

a

(
1

ε2n

)(
θ̂∗n − θ∗

)
= a

(
1

ε2n

)(
θ̂∗n − θ0

)
+ a

(
1

ε2n

)
µ

P
 
W
J + a

(
1

ε2n

)
µ,

where Xn
P
 
W

Yn ⇐⇒ ρBL1 (Xn, Yn) = oP (1). Therefore the noncentered test is

consistent. More formally, let ĉ1−α = inf

{
x : Pn

(
a
(

1
ε2n

)(
θ̂∗n − θ∗

)
≤ x

)
≥ 1 − α

}
and let J1−α = inf{x : P (J ≤ x) ≥ 1 − α}. By arguments in Lemma 10.11 in

Kosorok (2007) and the fact that the CDF of J is strictly increasing on its support,
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ĉ1−α − J1−α − a
(

1
ε2n

)
µ = oP (1). Then by Slutsky,

P
(
a (n)

(
θ̂n − θ∗

)
> ĉ1−α

)
= P

(
a (n)

(
θ̂n − θ∗

)
+ oP (1) > J1−α + a

(
1

ε2n

)
µ

)
= P

(
J > J1−α +

(
a

(
1

ε2n

)
− a (n)

)
µ

)
+ o (1) −→ 1.

The noncentered test is consistent but can be less powerful in finite sample than the

following recentered version:

a

(
1

ε2n

)(
θ̂∗n − θ̂n

)
= a

(
1

ε2n

)(
θ̂∗n − θ0

)
− a (1/ε2n)

a (n)
a (n)

(
θ̂n − θ0

)
P
 
W
J .

If we let c̄1−α = inf

{
x : Pn

(
a
(

1
ε2n

)(
θ̂∗n − θ̂n

)
≤ x

)
≥ 1− α

}
, then we also have

P
(
a (n)

(
θ̂n − θ∗

)
> c̄1−α

)
=P

(
a (n)

(
θ̂n − θ∗

)
+ oP (1) > J1−α

)
=P (J > J1−α − a (n)µ) + o (1) −→ 1.

Observing that ĉ1−α − c̄1−α = a
(

1
ε2n

)
µ+

a(1/ε2n)
a(n)

a (n)
(
θ̂n − θ0

)
, the power difference

derives from

P

(
ĉ1−α − c̄1−α > a

(
1

ε2n

)
µ− c

)
→ 1 for all c > 0.

Under the local alternative that θ0 = θ∗ + c
a(n)

for c > 0, the sample distribution

satisfies

a (n)
(
θ̂n − θ∗

)
= a (n)

(
θ̂n − θ0

)
+ c J + c.

As
a

(
1

ε2n

)
a(n)

→ 0, the noncentered numerical bootstrap distribution converges to the

null limit:

a

(
1

ε2n

)(
θ̂∗n − θ∗

)
= a

(
1

ε2n

)(
θ̂∗n − θ0

)
+
a
(

1
ε2n

)
a (n)

c
P
 
W
J ,

and has the correct asymptotic local power. The centered numerical bootstrap has a
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limit that also does not depend on the local drift c:

a

(
1

ε2n

)(
θ̂∗n − θ̂n

)
= a

(
1

ε2n

)(
θ̂∗n − θ0

)
−
a
(

1
ε2n

)
a (n)

a (n)
(
θ̂n − θ0

)
P
 
W
J .

The relation between the centered and non-centered numerical bootstrap distributions

depends on Jn = a (n)
(
θ̂n − θ0

)
 J . When J is a univariate centered normal

distribution, the noncentered critical value ĉ1−α is more likely than not larger than

the centered critical value c̄1−α, leading to less rejection. For b (n) =
a

(
1

ε2n

)
a(n)

and

ĉ1−α − c̄1−α = b (n) (c+ Jn),

P (ĉ1−α > c̄1−α) = P (Jn + c > 0) >
1

2
+ δ for some δ > 0 and all large n.

8 Unknown polynomial convergence rate

Similar to subsampling, the numerical bootstrap can be used to estimate the unknown

rate of convergence when the convergence rate is a polynomial function a (n) = nβ of

the sample size and when the numerical bootstrap consistently estimates the limiting

distribution. This is done by comparing the empirical distributions estimated by

two (or more) sequences of step sizes εn. Let Ln,εn (x) denote the distribution of

θ
(
Pn + εnĜ∗n

)
− θ (Pn), which is estimated by bootstrap simulations. Then

ε−2β
n L−1

n,εn (t) = Ĵ −1
εn (t) = J −1 (t, P ) + oP (1) .

For t1 ∈ (0, 0.5), t2 ∈ (0.5, 1), ε−2β
n

(
L−1
n,εn (t2)− L−1

n,εn (t1)
)

= J −1 (t2, P )−J −1 (t1, P )+

oP (1), or

−2β log εn + log
(
L−1
n,εn (t2)− L−1

n,εn (t1)
)

= J −1 (t2, P )− J −1 (t1, P ) + oP (1) .

Using two step size sequences, εn,1 and εn,2, it is then natural to estimate β by

β̂n =
log
(
L−1
n,εn,2

(t2)− L−1
n,εn,2

(t1)
)
− log

(
L−1
n,εn,1

(t2)− L−1
n,εn,1

(t1)
)

2 (log εn,2 − log εn,1)

= β + oP
(
(log εn,2 − log εn,1)−1) .
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For example, take εn,1 = n−γ1/2 and εn,2 = n−γ2/2 where 0 < γ2 < γ1 < 1. Then

β̂n = β + oP
(
(log n)−1) .

9 Application to Partially Identified Models

In this section, we relate the numerical bootstrap principle to applications in partially

identified models studied by Andrews and Soares (2010),Bugni et al. (2015), and

Bugni et al. (2017)). In particular, the numerical bootstrap method generates a

special case of the generalized moment selection (GMS) function in Andrews and

Soares (2010), which in one case can be adjusted by recentering, and also provides an

alternative estimate of the asymptotic distribution developed in Bugni et al. (2015)

and the recentering term in the second test statistic in Bugni et al. (2017). Moment

selection is also an essential part of Hansen (2005) and of multiple inequality testing

(Wolak (1989)).

First we review their setup. For a finite dimensional parameter θ ∈ Θ and a set

of moment conditions g (z, θ) = {gk (z, θ) , k = 1, . . . , K}, denote gk (θ) = Pgk (·, θ)
and g (θ) = Pg (·, θ). Andrews and Soares (2010), Bugni et al. (2017) and Bugni et

al. (2015) test

H0 : sup
θ∈Θ̄

min
k=1,...,K

gk (θ) ≥ 0 vs H1 : sup
θ∈Θ̄

min
k=1,...,K

gk (θ) < 0.

On the one hand, in Andrews and Soares (2010), Θ̄ = {θ0} corresponds to a singleton

parameter value for a pointwise testing procedure. On the other hand, in Bugni et

al. (2015), Θ̄ = Θ corresponds to the entire parameter space. Furthermore, in Bugni

et al. (2017), Θ̄ = Θ (γ) = {θ ∈ Θ : f (θ) = γ} is the preimage of the functional

parameter γ of interest.

All three papers employ a nonincreasing and continuous test function S (·) that

satisfies, among other conditions: (1) S (g (θ)) ≥ 0 for all g (θ); S (g (θ)) = 0 for all

g (θ) ≥ 0; (2) S (·) is scale equivalent of degree ρ (e.g. 1 or 2), so that for c > 0,

S (cx) = cρS (x). Examples are S (x) =
∑K

k=1 x
−
k , corresponding to ρ = 1, and

S (x) =
∑K

k=1

(
x−k
)2

corresponding to ρ = 2.

The null and alternative hypotheses are then converted using the test function
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S (·) to

H0 : T (P ) = inf
θ∈Θ̄

S (Pg (·, θ)) = 0, against H1 : T (P ) = inf
θ∈Θ̄

S (Pg (·, θ)) > 0,

and are tested by benchmarking the sample test statistic

√
n
ρ
T (Pn) = inf

θ∈Θ̄
S
(√

nPng (·, θ)
)

against a consistent estimate of its limiting distribution JΘ̄ under H0:

Ĵn ≡
√
n
ρ

(T (Pn)− T (P ))
H0=
√
n
ρ
T (Pn) JΘ̄

Bugni et al. (2015) and Bugni et al. (2017) show that JΘ̄ = infθ∈Θ̄ S (` (θ) + G0g (·, θ))
where G0 is a Gaussian process with covariance function Eg (·, θ) g (·, θ′) and ` (θ) =

limt↓0 Pg(·, θ)/t. The numerical bootstrap method approximates JΘ̄ using

Ĵ ∗n ≡
T (Pn + εn

√
n (P ∗n − Pn))− T (Pn)

ερn
= T

(
ε−1
n Pn + Ĝ∗n

)
− T

(
ε−1
n Pn

)
. (15)

In fact, the first term T
(
ε−1
n Pn + Ĝ∗n

)
in (15) corresponds to Type 4 GMS in An-

drews and Soares (2010) (their φ4 (·) GMS function) when Θ̄ = {θ0} and to the

second test statistic (R2) in equation (2.12) of Bugni et al. (2017) when Θ̄ = Θ (γ)

for each γ. (15) differs by adding the recentering second term, which as discussed

in section 7 usually does not alter asymptotic size and power properties, but might

have finite sample implications. In light of this relation, asymptotic validity of the

numerical bootstrap follows readily from Andrews and Soares (2010), Bugni et al.

(2015), and Bugni et al. (2017). Intuitively, Ĵ ∗n = inf
θ∈Θ̄

S
(

1
εn

(
Pn + εnĜ∗n

)
g(·, θ)

)
−

inf
θ∈Θ̄

S
(

1
εn
Png(·, θ)

)
is close to JΘ̄ = infθ∈Θ̄ S (` (θ) + G0g (·, θ)) because the boot-

strapped empirical process Ĝ∗ng (·, θ) =
√
n (P ∗n − Pn) g (·, θ) converges weakly con-

ditional on the data to G0g (·, θ), `n(θ)
p→ `(θ), where `n(θ) = 1

εn
Png (·, θ), and under

the null, inf
θ∈Θ̄

S (Pg(·, θ)) = 0.

Confidence Set construction and Recentering the test statistic Andrews

and Soares (2010) and Bugni et al. (2017) construct confidence sets by pointwise inver-

sion of their test statistics, while Bugni et al. (2015) tests for model misspecification.
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We remark that these are two different yet related issues. For example, Bugni et al.

(2017) suggests a confidence set for γ as C = {γ : infθ∈Θ(γ) S (
√
nPng (·; θ)) ≤ ĉ1−α}

for ĉ1−α being the αth quantile of the first term T
(
ε−1
n Pn + Ĝ∗n

)
in (15). The numer-

ical bootstrap with recentering redefines ĉα to be the αth quantile of Ĵ ∗n in equation

(15). Note that the resulting confidence set in both cases can be empty with positive

probability when the identified set Θ0 has zero or small Lebesgue measure or when

the model is misspecified.

This suggests another modification in the confidence set construction, where the

left hand side statistic is also recentered as infθ∈Θ(γ) S (Png (·; θ))−infθ∈Θ S (Png (·; θ)).
If the identified set Θ0 has positive Lebesgue measure, P (infθ∈Θ S (Png (·; θ)) = 0)→
1. On the other hand, when Θ0 has zero Lebesgue measure, for example in the case of

point identification, it is possible that P (infθ∈Θ S (Png (·; θ)) > 0) = 1. Recentering

the left hand side can result in a confidence set that is non-empty with probability

one, even when the model is misspecified, which is probably not desirable if one would

like to use the size of the confidence set as a test for model misspecification. However,

recentering the left hand side appears to be a widely acceptable practice in empirical

research which dates back to point identified models, where model specification testing

and confidence set construction are usually done separately (often without accounting

for the sequential testing implications).

With the test statistic recentered, Ĵ ∗n also can be further recentered in order to

avoid a confidence set that is too large. In particular, redefine (for Θ̄ = θ0 as in

Andrews and Soares (2010) or Θ̄ = Θ (γ0) as in Bugni et al. (2017)),

T̄ (P ) = inf
θ∈Θ̄

S (Pg (·, θ))− inf
θ∈Θ

S (Pg (·, θ))

T̄ (Pn) = inf
θ∈Θ̄

S (Png (·, θ))− inf
θ∈Θ

S (Png (·, θ))

so that J̄n = Ĵn − Ĵn,Θ with Ĵn,Θ = infθ∈Θ S (
√
nPng (·, θ))− infθ∈Θ S (

√
nPg (·, θ)).

The estimated distribution in (15) is defined analogously by replacing T (·) with T̄ (·):

J̄ ∗n ≡ Ĵ ∗n − Ĵ ∗n,Θ where Ĵ ∗n,Θ = inf
θ∈Θ

S

(
1

εn
Z∗ng(·, θ)

)
− inf

θ∈Θ
S

(
1

εn
Png(·, θ)

)
. (16)

Theorem 9.1 below shows that under the null, both J̄n ≡
√
n
ρ (
T̄ (Pn)− T̄ (P )

)
 J̄
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and J̄ ∗n
P
 
W
J̄ , where

J̄ = inf
θ∈Θ̄

S (` (θ) + G0g (·, θ))− inf
θ∈Θ

S (` (θ) + G0g (·, θ)) (17)

To illustrate the difference between Ĵn
∗

and J̄ ∗n , consider a conventional point iden-

tified, correctly specified, and possibly overidentified GMM model. On the one hand,

nĝ (θ0)′Wĝ (θ0) χ2
dim(g) with the optimal weighting matrix W . On the other hand,

it is standard to show that nĝ (θ0)′Wĝ (θ0) − nĝ
(
θ̂n

)′
Wĝ

(
θ̂n

)
 χ2

dim(θ), where

θ̂n = arg infθ∈Θ ĝ (θ)′Wĝ (θ). The first confidence set without left recentering is given

by C1 = {θ : nĝ (θ)′Wĝ (θ) ≤ χ2
dim(g),1−α}, while the second confidence set with left

recentering is given by

C2 =

{
θ : nĝ (θ)′Wĝ (θ) ≤ χ2

dim(θ),1−α + nĝ
(
θ̂n

)′
Wĝ

(
θ̂n

)}
.

Since nĝ
(
θ̂n

)′
Wĝ

(
θ̂n

)
 χ2

dim(g)−dim(θ), the right hand sides in both C1 and C2

have unconditionally a χ2
dim(g) limiting distribution. However, they can behave very

differently in every sample realization. In particular, C2 is always nonempty even

under misspecification.

When confidence sets are constructed by inverting a likelihood ratio or distance

function test statistic and θ̂ is the maximum likelihood estimator, it is necessary to

recenter the sample log likelihood at its optimum since the population objective func-

tion (the population entropy) is unknown even when the model is correctly specified.

For GMM, the population objective function is zero under correct model specification,

which makes recentering the sample objective function optional.

The following theorem demonstrates consistency of the numerical bootstrap for

the statistic Ĵ ∗n in (15) and the recentered statistic J̄ ∗n in (16). The first part of the

theorem is a simplified version of Theorem 3.1 in Bugni et al. (2015).

Theorem 9.1 Suppose the following assumptions are satisfied:

(1) {g(·, θ) : θ ∈ Θ} is a measurable class of functions over a compact set Θ ⊆
Rdim(θ).

(2) The empirical process Ĝng(·, θ) =
√
n(Pn−P )g(·, θ) is stochastically equicontin-
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uous over Θ: for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

‖θ−θ′‖<δ
‖Ĝng(·, θ)− Ĝng(·, θ′)‖ > ε

)
= 0

(3) The bootstrapped empirical process Ĝ∗ng(·, θ) =
√
n(P ∗n − Pn)g(·, θ) is stochasti-

cally equicontinuous conditional on the data: for any ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

‖θ−θ′‖<δ
‖Ĝ∗ng(·, θ)− Ĝ∗ng(·, θ′)‖ > ε|Xn

)
= 0

(4)
√
nεn →∞ and εn ↓ 0.

Then under the null hypothesis of T (P ) = inf
θ∈Θ̄

S(Pg(·, θ)) = 0, for JΘ̄ = infθ∈Θ̄ S (` (θ) + G0g (·, θ)),

Ĵn  JΘ̄ and Ĵn
∗ P
 
W
JΘ̄

where ` (θ) = limt↘0 Pg(·, θ)/t, and G0 is a tight mean zero Gaussian process with

covariance kernel Σ(θ, θ′) = Pg(·, θ)g(·, θ′). Likewise, J̄n  JΘ̄ − JΘ and J̄ ∗n
P
 
W

JΘ̄ − JΘ, where JΘ = infθ∈Θ S (` (θ) + G0g (·, θ)).

Testing after estimation Another common empirical situation is when researchers

already have enough moment conditions to point identify and estimate the parameter

θ, but they want to test whether a second set of moment inequalities (denoted g (·) and

different from the first set) are valid at the parameter point identified by the previous

moment conditions. The insight of Andrews and Soares (2010) can be generalized to

cover this case. Let θ̂n be the point estimate obtained from the first set of moment

conditions, and θ̂∗n be its bootstrapped version. Also let ĝ (θ) = Png (·; θ) be the

sample moment condition and let ĝ∗ (θ) = P ∗ng (·; θ) be its bootstrap analog. To test

H0 : T (P ) = S (g (θ)) = 0 against H1 : T (P ) = S (g (θ)) > 0, use the statistic
√
n
ρ
T (Pn) ≡ S

(√
nĝ
(
θ̂n

))
. The limiting distribution J of

√
n
ρ

(T (Pn)− T (P )) ≡

S
(√

nĝ
(
θ̂n

))
− S (

√
ng (θ)) can then be estimated consistently using the numerical
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bootstrap as

Ĵ ∗n = S

 ĝ
(
θ̂n

)
εn

+
√
n
(
ĝ∗n

(
θ̂∗n

)
− ĝ

(
θ̂n

))− S
 ĝ

(
θ̂n

)
εn

 .

√
n
(
ĝ∗n

(
θ̂∗n

)
− ĝ

(
θ̂n

))
can be replaced by another consistent estimate Ẑ of the lim-

iting distribution of
√
n
(
ĝ
(
θ̂n

)
− g (θ0)

)
. For example, if θ̂n and θ̂∗n are difficult to

compute, but are asymptotically linear (meaning
√
n
(
θ̂n − θ0

)
= 1√

n

∑n
i=1 φ (zi) +

op (1) where the influence function can be uniformly consistently estimated by φ̂ (zi)),

then we can use Z∗n ∼ N
(

0, Ω̂
)

, where

Ω̂ =
1

n

n∑
i=1

g (Zi, θ̂n)+
∂ĝ
(
θ̂n

)
∂θ

φ̂ (Zi)

g (Zi, θ̂n)+
∂ĝ
(
θ̂n

)
∂θ

φ̂ (Zi)

′ .
and replace Ĵ ∗n with Ĵ ∗n = S

(
ĝ(θ̂n)
εn

+ Z∗n
)
− S

(
ĝ(θ̂n)
εn

)
.

10 Proofs for the Theorems

Proof for Theorem 4.1 Our first step is to show that θ̂n and θ̂∗n are respectively

nγ-consistent and ε−2γ
n -consistent for θ0 . Assumptions (iv) and (viii) imply that the

conditions of Lemma 4.1 of Kim and Pollard (1990) are satisfied. Therefore, for each

η > 0, there exist random variables {Mn} = Op(1) such that |Png(·, θ) − Pg(·, θ)| ≤
η|θ − θ0|2 + n−2γM2

n.1 Here, R0 > 0 is the constant such that PG2
R = O(R2ρ) for all

R ≤ R0. Assumptions (i) and (ii) imply that the conditions of Corollary 4.2 of Kim

and Pollard (1990) are satisfied, which, in combination with Lemma 4.1, imply that

nγ
(
θ̂n − θ0

)
= Op(1).

Next by Lemma 10.1, which generalizes Lemma 4.1 in Kim and Pollard (1990)

to a bootstrap version with step size εn, ∃M∗
n = O∗P (1) such that εn|Ĝ∗ng

(
·, θ̂∗n

)
| ≤

1The main revisions to Lemma 4.1 of Kim and Pollard (1990) are redefining
A (n, j) = (j − 1)n−γ ≤ |θ| ≤ jn−γ , bounding the jth summand in P (Mn > m) by

n4γP sup|θ|<jn−γ |Png (·, θ) − Pg (·, θ) |2�
[
η (j − 1)

2
+m2

]2
, where the numerator is further

bounded by n4γ
(
n−1C ′jn−γ(2ρ)

)
= C ′j.
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η|θ̂∗n − θ0|2 + ε4γn M
∗2
n . Combine this with Kim and Pollard (1990) Lemma 4.1, and

note that since O∗P (ε4γn ) + OP (n−2γ) = O∗P (ε4γn ), we obtain |Z∗ng(·, θ̂∗n)− Pg(·, θ̂∗n)| ≤
η|θ̂∗n− θ0|2 +O∗P (ε4γn ). Then choose η so that Pg (·, θ)−Pg (·, θ0) ≤ −2η|θ− θ0|2, and

since g (·, θ0) = 0,

−O∗P
(
ε4γn
)

= Z∗ng (·, θ0)−O∗P
(
ε4γn
)
≤ Z∗ng

(
·, θ̂∗n

)
≤ −η|θ̂∗n − θ0|2 +O∗P

(
ε4γn
)
,

from which we conclude that |θ̂∗n − θ0| = O∗P (ε2γn ) (and hence also OP (ε2γn )).

Since θ̂n converges at rate nγ, we can write nγ(θ̂n−θ0) = arg max
h

nγρ
√
nPng(·, θ0 +

n−γh), and will derive its limiting distribution by verifying the Lindeberg Central

Limit Theorem, stochastic equicontinuity and applying the Argmax Continuous Map-

ping Theorem. We first show that Wn(h) ≡ nγρ
√
n (Pn − P ) g(·; θ0 +n−γh) converges

in finite dimensional distribution to a Gaussian processZ0(h) and that nγρ
√
nPg(·; θ0+

n−γh) → −1
2
h′Hh for each h as n → ∞. We then show that Wn is stochastically

equicontinuous. Finally, we argue using the Argmax Continuous Mapping Theorem

(Theorem 2.7 Kim and Pollard (1990)) that nγ(θ̂n − θ0)  arg max
h
Z0(h) − 1

2
h′Hh.

Consider the first part. Assumption (vii) implies the Lindeberg condition is satisfied

and that nγρ
√
n (Pn − P ) g(·; θ0 + n−γh) converges in finite dimensional distribution

to a mean zero Gaussian process with covariance kernel:

Σρ(s, t) = lim
n→∞

Cov
(
nγρ
√
n (Pn − P ) g(·; θ0 + n−γs), nγρ

√
n (Pn − P ) g(·; θ0 + n−γt)

)
= lim
n→∞

n2γρPg(·; θ0 + n−γs)g(·; θ0 + n−γt)− n2γρPg(·; θ0 + n−γs)Pg(·; θ0 + n−γt).

Taking a second order Taylor expansion of nγρ
√
nPg(·; θ0 + n−γh) around θ0 and

using g(·; θ0) = 0 and ∂
∂θ
Pg(·; θ0) = 0, nγρ

√
nPg(·; θ0 +n−γh) = −nγρ+ 1

2
1
2
n−2γh′Hh+

o(||h||2)→ −1
2
h′Hh. To show that Wn is stochastically equicontinuous, it suffices to

show that for every sequence of positive numbers {δn} converging to zero,

nγρ
√
nEsup

D(n)

|Pnd− Pd| = o(1) (18)

where D(n) = {d(·, θ0, h1, h2) = g(·; θ0 + n−γh1)− g(·; θ0 + n−γh2) such that

max(|h1|, |h2|) ≤ M and |h1 − h2| ≤ δn}. Note that D(n) has envelope function

Dn = 2GR(n) where R(n) = Mn−γ.

Using the Maximal Inequality in section 3.1 of Kim and Pollard (1990), for suffi-
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ciently large n, splitting up the expectation according to whether n2γρPnD
2
n ≤ η for

each η > 0, and applying the Cauchy-Schwarz inequality,

nγρ
√
nEsup

D(n)

|Pnd− Pd| ≤ E
√
n2γρPnD2

nJ

n
2γρsup

D(n)

Pnd
2

n2γρPnD2
n


≤√ηJ(1) +

√
En2γρPnD2

n

√√√√EJ2

(
min

(
1,

1

η
n2γρsup

D(n)

Pnd2

))
.

To show that this is o (1) for each fixed η > 0, first, note that by assumption (viii),

En2γρPnD
2
n = 4n2γρEG2

R(n) = O(n2γρR(n)2ρ) = O(1) since R(n) = Mn−γ. The

proof will then be complete if n2γρsup
D(n)

Pnd
2 = o (1). Next, for each K > 0 write

Esup
D(n)

Pnd
2 ≤ EPnsup

D(n)

d2{Dn > K}+KEsup
D(n)

Pn|d| ≤ EPnD
2
n{Dn > K}+Ksup

D(n)

P |d|+

KEsup
D(n)

|Pn|d| − P |d||. By assumption (x), EPnD
2
n{Dn > K} < ηn−2γρ for large

enough K. By assumption (xi) and the definition of D(n), Ksup
D(n)

P |d| = O(n−2γρδn) =

o(n−2γρ). By assumption (viii) and the maximal inequality, KEsup
D(n)

|Pn|d| − P |d|| <

Kn−
1
2J(1)

√
PD2

n = O(n−(γρ+ 1
2

)) = O(n−2γ) = o(n−2γρ) whenever ρ < 1. Therefore,

En2γρsup
D(n)

Pnd
2 = o(1) whenever ρ < 1. If ρ = 1, typically, g (· θ) is Lipschitz in θ so

that Dn = OP (n−γδn), in which case one can argue directly that n2γsup
D(n)

Pnd
2 = oP (1).

We have therefore shown that nγρ
√
nPng(·, θ0+n−γh) Z0(h)− 1

2
h′Hh. It follows

from the Argmax Continuous Mapping Theorem and nγ
(
θ̂n − θ0

)
= Op(1) that

nγ(θ̂n− θ0) = arg max
h

nγρ
√
nPng(·, θ0 +n−γh) H = arg max

h
Z0(h)− 1

2
h′Hh (19)

Similarly, since |θ̂∗n − θ0| = O∗P (ε2γn ), we can write

ε−2γ
n

(
θ̂∗n − θ0

)
= arg max

h
ε−4γ
n Z∗ng(·, θ0 + ε2γn h).

The goal is to show that ε−2γ
n

(
θ̂∗n − θ̂n

)
P
 
W
H in (19). Note that

ε−2γ
n

(
θ̂∗n − θ̂n

)
= ε−2γ

n

(
θ̂∗n − θ0

)
− ε−2γ

n

(
θ̂n − θ0

)
.
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By Assumption (ix) and nγ consistency of θ̂n: ε−2γ
n

(
θ̂n − θ0

)
= 1

(
√
nεn)2γn

γ
(
θ̂n − θ0

)
=

oP (1). It therefore suffices to show that Hn = ε−2γ
n

(
θ̂∗n − θ0

)
P
 
W
H, since Hn +

oP (1)
P
 
W
H whenever Hn

P
 
W
H.

To analyze ε−2γ
n

(
θ̂∗n − θ0

)
, we use Lemma 10.2 which extends the Arg Max The-

orem (Theorem 3.2.2 in van der Vaart and Wellner (1996)) to a bootstrap version. It

therefore suffices to show that (i)

W ∗
n(h) ≡ ε−(1+2γρ)

n (Z∗n − P ) g(·; θ0 + ε2γn h)
P
 
W
Z0 (h) in `∞ (K) (20)

for any compact K and that (ii) ε
−(1+2γρ)
n Pg(·; θ0 + ε2γn h)→ −1

2
h′Hh for each h.

We show (ii) by a second order Taylor expansion around θ0 using g(·; θ0) = 0 and
∂
∂θ
Pg(·; θ0) = 0.

ε−(1+2γρ)
n Pg(·; θ0 + ε2γn h) =− ε−(1+2γρ)

n

1

2
ε4γn h

′Hh+ o(||h||2)→ −1

2
h′Hh.

To show (20), we first show its unconditional version W ∗
n (h)  Z0 (h), and then

use an almost sure conditional finite dimensional CLT to convert it to W ∗
n (h)

P
 
W

Z0 (h) using arguments analogous to Theorem 2.9.6 in van der Vaart and Wellner

(1996). Unconditional convergence W ∗
n (h) Z0 (h) is in turn shown by invoking the

Lindeberg finite dimensional CLT and verifying stochastic equicontinuity. Note that

W ∗
n(h) =ε−(1+2γρ)

n (Pn − P ) g(·; θ0 + ε2γn h) + ε−2γρ
n Ĝ∗ng(·; θ0 + ε2γn h)

=
1√
nεn
Ĝnε−2γρ

n g(·; θ0 + ε2γn h) + Ĝ∗nε−2γρ
n g(·; θ0 + ε2γn h).

For the first part, by assumption (vi), the covariance kernel of Ĝng(·; θ0 + ε2γn h) con-

verges to the limit

Σρ(s, t) = lim
n→∞

Cov
(
ε−2γρ
n Ĝng(·; θ0 + ε2γn s), ε

−2γρ
n Ĝng(·; θ0 + ε2γn t)

)
= lim
n→∞

ε−4γρ
n Pg(·; θ0 + ε2γn s)g(·; θ0 + ε2γn t)− ε−4γρ

n Pg(·; θ0 + ε2γn s)Pg(·; θ0 + ε2γn t)
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The Lindeberg condition also holds for Ĝng(·; θ0 +ε2γn h) by assumptions (vii) and (ix):

lim
n→∞

ε−4γρ
n Pg

(
·, θ0 + ε2γn h

)2
1

(
1√
n
ε2γρn g

(
·, θ0 + ε2γn h

)
≥ εΣρ (h, h)

)
= lim

n→∞
ε−4γρ
n Pg

(
·, θ0 + ε2γn h

)2
1
(
ε1−2γρ
n g

(
·, θ0 + ε2γn h

)
≥ εΣρ (h, h)

√
nεn
)
→ 0.

Therefore by (xi), 1√
nεn
Ĝnε−2γρ

n g(·; θ0 + ε2γn h) = oP (1). Alternatively, we can also

impose a strong condition, such as
√
nεn/ log n → ∞, and invoke a version of the

law of iterated logarithm, so that we can replace oP (1) with oa.s. (1). Using similar

arguments as those after (18), it can also be shown that for D(n) = {d(·, θ0, h1, h2) =

g(·; θ0 + ε2γh1) − g(·; θ0 + ε2γn h2) such that max(|h1|, |h2|) ≤ M and |h1 − h2| ≤ δn},
with D(n) = Mε2γn being an envelope of D(n),

ε−2γρ
n Esup

D(n)

∣∣∣Ĝnd∣∣∣ = o(1). (21)

To see (21), as before bound, with Eε−4γρ
n PnD

2
n = O (1), and split according to η,

Eε−2γρ
n Esup

D(n)

∣∣∣Ĝnd∣∣∣ ≤E√ε−4γρ
n PnD2

nJ

ε
−4γρ
n sup

D(n)

Pnd
2

ε−4γρ
n PnD2

n


≤√ηJ (1) +

√
Eε−4γρ

n PnD2
n

√√√√EJ2

(
min

(
1,

1

η
ε−4γρ
n sup

D(n)

Pnd2

))

Finally to show that Eε−4γρ
n sup

D(n)

Pnd
2 = o (1), split using large K,

Esup
D(n)

Pnd
2 ≤ EPnD

2
n1 (Dn > K) +Ksup

D(n)

P |d|+KEsup
D(n)

|Pn|d| − P |d||

By (x), EPnD
2
n1 (Dn > K) < ηε4γρn . By (xi), Ksup

D(n)

P |d| = O (ε4γρn δρn) = o (ε4γρn ). By

(viii) and the maximal inequality in Kim and Pollard (1990) result 3.1, KEsup
D(n)

|Pn|d| − P |d|| ≤

Kn−1/2J (1)
√
ED2

n = O
(
n−1/2ε2γρn

)
= O

(
1√
nεn
ε1+2γρ
n

)
= o (ε4γρn ).

Hence we verified (21) to conclude that Ĝnε−2γρ
n g(·; θ0 + ε2γn h)  Z0 (h), and

1√
nεn
Ĝnε−2γρ

n g(·; θ0 + ε2γn h) = oP (1), both as a process indexed by h in `∞ (K) for

any compact K.
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We remark that while condition (vii) is modeled after (iv) in Lemma 4.5 of Kim

and Pollard (1990), neither seems to be needed for the Lindeberg condition. In fact

they should all be implied by (vi). Under the integrability condition (vi), for any

κn →∞,

lim
α→∞

α2ρPg

(
·, θ0 +

t

α

)2

1

(
αρ
∣∣∣∣g(·, θ0 +

t

α

)∣∣∣∣ ≥ κnε

)
→ 0.

Then (vii) corresponds to κn = α2ρ, and the Lindeberg condition corresponds to

α = ε−2γ
n and κn =

√
n.

Next, the conditional (given the sample) covariance kernel of ε−2γρ
n Ĝ∗ng(·; θ0 +ε2γn h)

satisfies

Σ̂ρ (s, t) =
1

n

n∑
i=1

ε−4γρ
n g

(
·, θ0 + ε2γt

)
g
(
·, θ0 + ε2γs

)
→ Σρ (s, t) , (22)

almost surely by a strong law of large numbers for both the Wild and multinomial

bootstrap. The conditional (in ξ) Lindeberg condition is satisfied if almost surely,

1

n

n∑
i=1

ε−4γρ
n g2

(
zi, θ0 + ε2γn

)
Eξ21

(
|ξ|ε−2γρ

n |g
(
zi, θ0 + ε2γn

)
| ≥
√
nε
)

≤ Eξ21

(
|ξ|maxi |g (zi, θ0 + ε2γn ) |

√
nε2γρn

≥ ε

)
1

n

n∑
i=1

ε−4γρ
n g2

(
zi, θ0 + ε2γn

)
→ 0.

(23)

This holds by the strong LLN and that almost surely,
maxi |g(zi,θ0+ε2γn )|

√
nε2γρn

→ 0 using (vi).

Therefore almost surely in finite dimension, the following conditional (in ξ) weak

convergence holds:

ε−2γρ
n Ĝ∗ng(·; θ0 + ε2γn h)

ξ
 Z0 (h) , h = {h1, . . . , hJ}.

With the multinomial bootstrap, (23) is replaced by

E∗ε−4γρ
n g2

(
z∗i , θ0 + ε2γn h

)
1

(
1√
n
ε−2γρ
n |g

(
z∗i , θ0 + ε2γn h

)
| ≥ ε

)
=

1

n

n∑
i=1

ε−4γρ
n g2

(
zi, θ0 + ε2γn h

)
1

(
1√
n
ε−2γρ
n |g

(
zi, θ0 + ε2γn h

)
| ≥ ε

)
→ 0
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almost surely by Strong LLN and conditions (vi) and (vii).

Finally we show (unconditional stochastic equicontinuity) of the ε−2γρ
n Ĝ∗ng(·; θ0 +

ε2γn h) part of W ∗
n , separately for the wild and multinomial bootstrap. For the wild

bootstrap,

ε−2γρ
n Ĝ∗ng(·; θ0 + ε2γn h) = ε−2γρ

n

1√
n

n∑
i=1

ξi (δi − P ) g
(
·, θ0 + ε2γn h

)
+ ξ̄iĜnε−2γρ

n g(·; θ0 + ε2γn h).

Since ξ̄
a.s.→ 0, the second term is oa.s (1) in `∞ (K). The first term is handled in van der

Vaart and Wellner (1996) Lemmas 2.3.6 and 2.9.1, and is stochastically equicontinuous

whenever Ĝnε−2γρ
n g(·; θ0 + ε2γn h) is. Combined with the unconditional versions of (22)

and (23),

ε−2γρ
n

1√
n

n∑
i=1

ξi (δi − P ) g
(
·, θ0 + ε2γn h

)
 Z0 (h) in `∞ (K) (24)

Next using the approximation scheme in van der Vaart and Wellner (1996) Theorem

2.9.6, (24), (22) and (23),

ε−2γρ
n

1√
n

n∑
i=1

ξi (δi − P ) g
(
·, θ0 + ε2γn h

) P
 
W
Z0 (h) in `∞ (K) (25)

Finally, as the sum between (25) and oP (1) terms, W ∗
n (h)

P
 
W
Z0 (h) in `∞ (K).

In the multinomial boostrap case, for D (n) in (21), we use a bootstrap version

of Kim and Pollard (1990) to show ε−2γρ
n Esup

D(n)

∣∣∣Ĝ∗nd∣∣∣ = o(1). As before bound, with

EPnε
−4γρ
n P ∗nD

2
n = O (1),

ε−2γρ
n EPnsup

D(n)

∣∣∣Ĝ∗nd∣∣∣ ≤EPn√ε−4γρ
n P ∗nD

2
nJ

ε
−4γρ
n sup

D(n)

P ∗nd
2

ε−4γρ
n P ∗nD

2
n


≤√ηJ (1) +

√
Eε−4γρ

n P ∗nD
2
n

√√√√EJ2

(
min

(
1,

1

η
ε−4γρ
n sup

D(n)

P ∗nd
2

))
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Finally to show that Eε−4γρ
n sup

D(n)

P ∗nd
2 = o (1), split using large K,

Esup
D(n)

P ∗nd
2 ≤ EP ∗nD

2
n1 (Dn > K) +Ksup

D(n)

P |d|

+KEsup
D(n)

|Pn|d| − P |d||+KEsup
D(n)

|P ∗n |d| − Pn|d|| .

The first three terms are handled after equation (21). The last term is handled by a

bootstrap version of Kim and Pollard (1990) maximal inequality 3.1, with PnD
2
n =

PD2
n +OP

(
n−1/2

)
,

EPnsup
D(n)

|P ∗n |d| − Pn|d|| ≤ J (1)En−1/2
√
PnD2

n = O
(
n−1/2

(
ε2γρn + n−1/4

))
.

This is o (ε4γρn ) when γ = 1/3, ρ = 1/2. For larger values of ρ > 2/3 and γ we will

impose the additional condition that n3/4ε4γρn →∞ to achieve o (ε4γρn ). Alternatively,

we can impose Holder continuity to argue directly that EPnsup
D(n)

|P ∗n |d| − Pn|d|| =

O (δn) = o (1).

It is also clear from the above arguments that the bootstrapped statistic converges

unconditionally to the limiting distribution of the root: ε−2γ
n

(
θ̂∗n − θ̂n

)
 J . This is

because unconditionally, ε−2γ
n

(
θ̂∗n − θ̂n

)
= OP (1),

ε−(1+2ργ)
n Z∗ng

(
·, θ0 + ε2γn h

)
 Z0 (h)− 1

2
h′Hh in `∞ (K) ,

so that the unconditional arg max theorem van der Vaart and Wellner (1996) 3.2.2

can be applied. �

Lemma 10.1 Under conditions (viii) and (ix) of Theorem 4.1, for each η there exist

random variables M∗
n = O∗P (1) such that for all θ close to θ0,

εn|Ĝ∗ng (·, θ) | ≤ η|θ − θ0|2 + ε4γn M
∗2
n .
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Proof: We first consider the Wild Bootstrap where Ĝ∗n = 1√
n

∑n
i=1

(
ξi − ξ̄

)
δi. Also

WLOG let θ0 = 0. Define A (n, j) = {θ : (j − 1) ε2γn ≤ |θ| ≤ jε2γn }. Then

Pξ (M∗
n > m) ≤Pξ

(
∃θ : εn|Ĝ∗ng (·, θ) | > η|θ|2 + ε4γn m

2
)

≤
∞∑
j=1

Pn{∃θ ∈ A (n, j) : ε−4γ
n εn|Ĝ∗ng (·, θ) | > η (j − 1)2 +m2}.

The jth summand is then bounded by

ε−8γ
n ε2nPξ sup

|θ|<jε2γn
|Ĝ∗ng (·, θ) |2/

[
(j − 1)2 +m2

]2
(26)

Note that Ĝ∗n = 1√
n

∑n
i=1 ξi (δi − P )−ξ̄Ĝn. We bound the expectation in the numerator

in (26) by

Pξ sup
|θ|<jε2γn

|Ĝ∗ng (·, θ) |2 ≤ Pξ sup
|θ|<jε2γn

∣∣∣∣ 1√
n

n∑
i=1

ξi (δi − P ) g (·, θ)
∣∣∣∣2 + ξ̄2 sup

|θ|<jε2γn
|Ĝng (·, θ) |2.

By Maximal Inequality 3.1 in Kim and Pollard (1990) and also ξ̄ = oP (1),

ξ̄ sup|θ|<jε2γn |Ĝng (·, θ) |2 = op

(
(ε2γn )

2ρ
)

. Next by Lemmas 2.3.6 and (a square version

of) 2.9.1 of van der Vaart and Wellner (1996), for large n0 and n,

P sup
|θ|<jε2γn

|
∑n

i=1 ξi (δi − P ) g (·, θ) |2√
n

≤O

(
P sup
|θ|<jε2γn

|g (·, θ) |2 + max
n0≤k≥n

P sup
|θ|<jε2γn

|Ĝkg (·, θ) |2
)
.

Both terms are O
(

(ε2γn )
2ρ
)

by (viii) and again Kim and Pollard (1990) Maximal

Inequality 3.1. Therefore

Pξ sup
|θ|<jε2γn

|Ĝ∗ng (·, θ) |2 = Op

((
ε2γn
)2ρ
)
.

The numerator of (26) is thus further bounded by, for C ′n = Op (1), ε−8γ
n ε2nC

′
n (ε2γn )

2ρ
=

C ′n. ThenM∗
n = O∗P (1) since by choosingm, the following can be made asymptotically
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small. ∀ε > 0,

P (Pn (M∗
n > m) > ε) ≤ P

(
C ′n

∞∑
j=1

1/
[
(j − 1)2 +m2

]2
> ε

)
.

Next consider the multinomial bootstrap Ĝ∗n =
√
n (P ∗n − Pn). Note a bootstrap

version of part (ii) of Maximal Inequality 3.1 in Kim and Pollard (1990) holds with:

nPn sup
F
|P ∗nf − Pnf |2 ≤ J (1)2 PnF

2 = J (1)2 PF 2 +OP

(
1√
n

)
. (27)

This can be used to similarly bound the numerator in (26) by ε−8γ
n ε2nC

′
n (ε2γn )

2ρ
= C ′n for

C ′n = Op (1). Strictly speaking, (27) is OP

(
(ε2γn )

2ρ
)

only when n−1/2 = O
(

(ε2γn )
2ρ
)

,

which holds when ρ = 1/2, γ = 1/3 but not when ρ = 1, γ = 1/2. However, under the

additional assumption that g (·, θ) is Holder with index ρ, it can be directly verified

that PnF
2 = OP

(
(ε2γn )

2ρ
)

. �

Lemma 10.2 Let Mn
P
 
W
M in `∞ (K) for every compact K. If there exists a tight ĥ

such that for every open G containing ĥ, M
(
ĥ
)
> suph/∈G,h∈KM (h), and Mn

(
ĥn

)
≥

suphMn (h)− o∗P (1), where ĥn = O∗P (1), then ĥn
P
 
W
ĥ.

Proof: First a bootstrap version of the Portmanteau theorem can be shown. The

following are equivalent (TFAE): (i) Xn
P
 
W

X; (ii) For every open G and ∀ε >
0, P (Pn (Xn ∈ G) ≥ P (X ∈ G)− ε) → 1; (iii) For every closed F and ∀ε > 0,

P (Pn (Xn ∈ F ) ≤ P (X ∈ F ) + ε) → 1. By the bootstrap CMT (Theorem 10.8

Kosorok (2007)), suph∈F∩KMn (h)−suph∈KMn (h)
P
 
W

suph∈F∩KM (h)−suph∈KM (h).

Then by bootstrap Portmanteau, with probability converging to 1 (w.p.c.1), ∀ε > 0,

Pn

(
ĥn ∈ F ∩K

)
≤ Pn

(
sup

h∈F∩K
Mn (h) ≥ sup

h∈K
Mn (h)− o∗P (1)

)
≤P

(
sup

h∈F∩K
M (h) ≥ sup

h∈K
M (h)

)
+ ε ≤ P

(
ĥ ∈ F

)
+ P

(
ĥ /∈ K

)
+ ε.

Next split up Pn

(
ĥn ∈ F

)
≤ Pn

(
ĥn ∈ F ∩K

)
+ Pn

(
ĥ /∈ K

)
. Choose K large so

that Pn

(
ĥ /∈ K

)
≤ ε has probability larger than 1 − δ for large n. Conclude that
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with probability larger than 1− 2δ for large n, Pn

(
ĥn ∈ F

)
≤ P

(
ĥ ∈ F

)
+ 2ε. �

Proof for Theorem 4.2 Part 1: Define wn (h) = +∞1 (h /∈ nγ (C − θ0)) and

w (h) = +∞1 (h /∈ TC (θ0)). By (4.4), wn (·) e→ w (·) as a sequence of nonrandom

functions. Next define

Hn (h) = nγρ
√
nPng

(
·, θ0 + n−γh

)
+ wn (h) .

Similarly define H (h) = Z0 (h) + 1
2
h′Hh + w (h). Then for ĥn = nγ

(
θ̂n − θ0

)
,

Hn

(
ĥn

)
= infhHn (h) + oP (1). Almost the same arguments as in the proof of

Theorem 4.1 can be applied to show that ĥn = OP (1). As in the proof of Theorem

4.3 of Geyer (1994), we confine our attention to compact sets.

In Theorem 4.1 it has been shown that nγρ
√
nPng (·, θ0 + n−γh) Z0 (h)+ 1

2
h′Hh

in `∞ (K) in the sense of finite dimensional convergence and stochastic equicontinuity.

Furthermore, Z0 (h) + 1
2
h′Hh has a continuous sample path. Then according to page

5 in Knight (1999), nγρ
√
nPng (·, θ0 + n−γh)→u−d Z0 (h)+ 1

2
h′Hh. Next by Theorem

4 in Knight (1999), Hn (·) →e−d H (·). The remaining arguments are the same as in

the second part of the proof of Theorem 4.4 in Geyer (1994). In other words, the

arg min functional is continuous with respect to the metric of epi-convergence on the

space of functions embedding Hn (·) and H (·), which allows for the application of a

continuous mapping theorem as in Theorem 1 of Knight (1999).

Part 2: As before, for ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
, it suffices to show that ĥ∗n

P
 
W
J and

ĥ∗n  J . Define w∗n (h) = +∞1 (h /∈ ε−2γ
n (C − θ0)), so that by (4.4), w∗n (·) e→ w (·)

as a nonrandom sequence. Next let H∗n (h) = ε−4γ
n Z∗ng (·, θ0 + εγnh) + wn (h). Then

for ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
, by assumption, H∗n

(
ĥ∗n

)
= infhH∗n (h) + oP (1). Almost the

same arguments as in the proof of Theorem 4.1 can be applied to show that ĥ∗n is

O∗P (1) and OP (1), so we can confine our attention to compact sets. Theorem 4.1 has

shown that ε−4γ
n Z∗ng (·, θ0 + εγnh)

P
 
W

( )Z0 (h) in `∞ (K). A bootstrap in probability

version of Theorem 4 Knight (1999) can be stated to show that H∗n (·) →e−d H (·)
conditionally in probability, which can be equivalently stated as ρBL1 (H∗n (·) ,H (·)) =

op(1) where BL1 now represents the class of Lipschitz norm 1 functions with respect

to the metric of epi-convergence (see last equation on page 4 of Knight (1999)), and

H∗n (·) is understood to be the conditional law given the data. Finally, by revising the

bootstrap argmax continuous mapping lemma 10.2 to replace weak convergence by
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epi-convergence after incorporating Theorem 1 in Knight (1999), we can show that

ĥ∗n
P
 
W
ĥ.

Proof for Theorem 4.3 The same arguments as in the proof of Theorem 4.2 (see

also Sherman (1993) and Newey and McFadden (1994)) show that in `∞ (K),

n
(
Q̂n

(
θ0 + h/

√
n
)
− Q̂n (θ0)

)
 ∆′0h+

1

2
h′Hh =

(
h+H−1∆0

)′
H
(
h+H−1∆0

)
− 1

2
∆′0H

−1∆0.

Then argue as in the previous proof that ĥn =
√
n
(
θ̂n − θ0

)
= OP (1) and that

n
(
Q̂n

(
θ0 + h/

√
n
)
− Q̂n (θ0)

)
+ wn (h)

→e−d
(
h+H−1∆0

)′
H
(
h+H−1∆0

)
− 1

2
∆′0H

−1∆0 + w (h) .

for wn (h) = ∞1 (h /∈
√
n (C − θ0)) and w (h) = ∞1 (h /∈ TC (θ0)). Therefore Ĵn  

J . Next note that Ĵ ∗n = J̄ ∗n − ε−1
n

(
θ̂n − θ0

)
where

J̄ ∗n = arg min
h̄∈ε−1

n (C−θ0)
Q̄∗n
(
h̄
)

=

(
h̄+ Ĥ−1∆̂∗n −

θ̂n − θ0

εn

)′
Ĥ

(
h̄+ Ĥ−1∆̂∗n −

θ̂n − θ0

εn

)
.

Note that θ̂n−θ0
εn

= oP (1), Ĥ−1∆̂∗n  H−1∆0. Therefore Ĥ−1∆̂∗n − θ̂n−θ0
εn
 H−1∆0.

Therefore by the bootstrap CMT (Proposition 10.7 in Kosorok (2007)), in `∞ (K),

Q̄∗n
(
h̄
) P
 
W
Q̄∞

(
h̄
)

=
(
h̄+H−1∆0

)′
H
(
h̄+H−1∆0

)
Therefore the same arguments as in part 2 of the proof of Theorem 4.2 apply. Q̄∗n

(
h̄
)
+

wn
(
h̄
)
→e−d Q̄∞

(
h̄
)

+ w
(
h̄
)

conditionally in probability, J̄ ∗n
P
 
W
J , and Ĵ ∗n

P
 
W
J .

Proof for Theorem 6.1 We follow the proof logic in Theorem 1(i) of Jun et al.

(2015), who already show that Ĵn  J . So we will focus on Ĵ ∗n
P
 
W
J . It suffices to
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show that ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
P
 
W
J . We write

ĥ∗n = ε−2γ
n

(
θ̂∗n − θ0

)
=

∫
hw (θ0 + hε2γn ) exp (ε−4γ

n Z∗ng (·, θ0 + hε2γn )) dh∫
w
(
θ0 + hε2γn

)
exp

(
ε−4γ
n Z∗ng

(
·, θ0 + hε2γn

))
dh

The goal is to show for any α ≥ 0, φ (H) = exp
(
−1

2
h′Hh

)
, and CH =

√
2π

dθ
det (H)dθ/2,

∫
hαw

(
θ0 + hε2γn

)
e

Z∗ng(·,θ0+hε
2γ
n )

ε
4γ
n dh

P
 
W
CHw (θ0)

∫
hαeZ0(h)− 1

2
h′Hhdh.

Since Theorem 4.1 already shows that
(Z∗n−P )g(·,θ0+hε2γn )

ε4γn

P
 
W
Z0 (h) in `∞ (K), this will

follow from CMT if it can be shown that, for ω0 (h) = ω (θ0 + hε2γn ),

∫
|h|α e

(Z∗n−P)g(·,θ0+hε
2γ
n )

ε
4γ
n

∣∣∣∣∣∣w0 (h) e

Pg(·,θ0+hε
2γ
n )

ε
4γ
n − w0 (0)φH (h)

∣∣∣∣∣∣ dh = o∗P (1) , (28)

and if for any η > 0, ∃K compact, such that w.p.c.1,∫
Kc

|h|αw
(
θ0 + hε2γn

)
exp

(
ε−4γ
n Z∗ng

(
·, θ0 + hε2γn

))
dh < η. (29)

Take γn = o
(
ε
−2γ/3
n

)
, and let Γn = {h : |h| ≤ γn},

κ1 (h) = |h|αw0 (h) exp
(
ε−4γ
n Z∗ng

(
·, θ0 + hε2γn

))
,

κ2 (h) = |h|αeε
−4γ
n (Z∗n−P )g(·,θ0+hε2γn )w0 (0)φH (h) .

Bound (28) by bounding each of the terms in∣∣∣∣∫
Γn

(κ1 − κ3)

∣∣∣∣+

∣∣∣∣∫
Γn

(κ3 − κ2)

∣∣∣∣+

∣∣∣∣∫
Γcn

κ2

∣∣∣∣+

∣∣∣∣∫
Γcn∩{θ0+hε2γn ∈Θ}

κ1

∣∣∣∣ (30)

where κ3 (h) = |h|αw0 (h) exp (ε−4γ
n (Z∗n − P ) g (·, θ0 + hε2γn ))φH (h). Consider the first

term in (30), bounded by |
∫

Γn
|h|αw0 (h) exp (ε−4γ

n (Z∗n − P ) g (·, θ0 + hε2γn )) |eRn(h) −
1|φH (h) dh| for Rn (h) = ε−4γ

n Pg (·, θ0 + hε2γn ) + 1/2h′Hh. Since Γn shrinks to θ0,

supΓn |Rn (h) | = O (ε−4γ
n γ3

nε
6γ
n ) = o (1). Next consider a bootstrap version of Lemma
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B.5 in Jun et al. (2015). For any γ∗ →∞, ∀ε > 0,

Pn

(
sup
|h|≥γ∗

∣∣∣∣ε−4γ
n (Z∗n − P ) g

(
·, θ0 + hε2γn

)
/ (1 + |h|)

∣∣∣∣ > ε

)
= oP (1) (31)

The key to (31) is using condition G in Jun et al. (2015) to argue that

ε1−4γ
n Ĝng

(
·, θ0 + hε2γn

)
/ (1 + |h|) Z0 (h) / (1 + |h|)

and ε1−4γ
n Ĝ∗ng (·, θ0 + hε2γn ) / (1 + |h|) P

 
W
Z0 (h) / (1 + |h|), both in `∞

(
Rd
)

(and not

only in `∞ (K)). Jun et al. (2015) already handled ε1−4γ
n Ĝng (·, θ0 + hε2γn ) / (1 + |h|)

so that

ε−4γ
n (Pn − P ) g

(
·, θ0 + hε2γn

)
/ (1 + |h|) = oP (1) ,

in `∞
(
Rd
)
. By similar arguments, (31) follows from taking j →∞ in

Pn

(
sup
|h|≥γ∗

∣∣∣∣ε−4γ
n Ĝ∗ng (·, θ0 + hε2γn )

(1 + |h|)

∣∣∣∣ > ε

)
≤ Pn

(
sup
|h|≥j

∣∣∣∣Z0 (h)

1 + |h|

∣∣∣∣ > ε

)
+ oP (1)

≤ C

ε4

∞∑
s=j+1

1/s2 + oP (1) .

Then Lemma B.6 in Jun et al. (2015) shows that

sup
h∈Rd
|ε−4γ
n (Z∗n − P ) g

(
·, θ0 + hε2γn

)
| − c|h| = O∗P (1) . (32)

Then up to multiplicative O∗P (1), the first term in (30) is bounded by

sup
Γn

|Rn (h) |
∣∣∣∣∫

Γn

|h|α exp (c|h|)φH (h) dh

∣∣∣∣ = o (1)O∗P (1) = o∗P (1) .

Similarly, (32) also bounds the second and third terms in (30) up to multiplicative

O∗P (1) by,

sup
Γn

|ω0 (h)− ω0 (0) |
∣∣∣∣∫

Γn

|h|α exp (c|h|)φH (h) dh

∣∣∣∣ = o (1)O∗P (1) = o∗P (1) .
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and
∣∣∣∫Γcn
|h|α exp (c|h|)φH (h) dh

∣∣∣ = o∗P (1). Finally, via Jun et al. (2015) Lemma B.4,

ε−4γ
n Pg

(
·, θ0 + ε2γn h

)
< −min

(
h′Hh/4, cαε

−4γ
n

)
.

Then with bounded Θ, using also (32), bound the 4th term in (30) up to multiplicative

O∗P (1) by, for some large M > 0, small δ > 0,∫
Γcn∩{|h|ε

2γ
n ≤δ}

|h|αec|h|e−
1
2
h′Hhdh+ e−cαε

−4γ
n

∫
{δ<|h|ε2γn ≤M}

|h|αec|h|dh.

Both terms are o (1) as γn →∞ and εn → 0, where the 2nd term is O
(
e−cαε

−4γ
n eMε2γn

)
.

Finally, (29) indeed follows from identical arguments to the 4th term in (30).

Proof for Theorem 6.2 Since this is a straightforward extension of Theorem 6.1, it

suffices to describe the key steps that differ. Recall that π (·) can always be replaced

by g (·). First note that the convergence of integrals in Jun et al. (2015) and in

Theorem 6.1 (such as (28) and (30)) all remain valid when the domain of integration

is confined to h ∈ nγ (C − θ0). First consider (6). By the same arguments in Jun et

al. (2015),∫
nγ(C−θ0)

|h|α
∣∣∣en2γPng(·;θ0+n−γh) − en2γ(Pn−P )g(·;θ0+n−γh)e−

1
2
h′Hh

∣∣∣ dh = oP (1)

Hence we can always replace
∫
nγ(C−θ0)

hα exp (n2γPng (·; θ0 + n−γh)) dh with∫
nγ(C−θ0)

hα exp
(
n2γ (Pn − P ) g

(
·; θ0 + n−γh

))
e−

1
2
h′Hhdh

in showing distributional convergence. Using the Skorohod representation, letZn (h) ≡
n2γ (Pn − P ) g (·; θ0 + n−γh)

a.s.−→ Z∞ (h). Then for all M in (3),∫
nγ(C−θ0)∩M

hα exp (Zn (h)) e−
1
2
h′Hhdh−

∫
nγ(C−θ0)∩M

hα exp (Z∞ (h)) e−
1
2
h′Hhdh

a.s.−→ 0.
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Alternatively, we may note that
∫
nγ(C−θ0)∩M hαeZn(h)e−

1
2
h′Hhdh is BL1 in Zn (ω, h).

Hence because the BL1 property is closed under composition, for

Xn,M ≡
∫
nγ(C−θ0)∩M

hα exp (Zn (h)) e−
1
2
h′Hhdh ∈ R

and

Yn,M ≡
∫
nγ(C−θ0)∩M

hα exp (Z∞ (h)) e−
1
2
h′Hhdh ∈ R

we have ρBL1 (Xn,M , Yn,M) → 0. Next by applying the dominated convergence theo-

rem (DOM) almost surely,

Yn,M
a.s.−→ YM ≡

∫
TC(θ0)∩M

hα exp (Z∞ (h)) e−
1
2
h′Hhdh. (33)

Therefore ρBL1 (Xn,M , YM) → 0 =⇒ Xn,M  YM for all M. Next by Lemmas B.2,

B.5 and B.6 in Jun et al. (2015), since suph∈Rd |Zn (h) |−c|h| = OP (1), for all δ, ε > 0

we can find M large enough so that

P

(∫
h/∈M

hα exp (Z∞ (h)) e−
1
2
h′Hhdh > ε

)
< δ (34)

and

lim sup
n→∞

P

(∫
h/∈M

hα exp (Zn (h)) e−
1
2
h′Hhdh > ε

)
< δ (35)

Then we combine (35), (34) and Xn,M  YM for all M to conclude that

Xn ≡
∫
nγ(C−θ0)

hα exp (Zn (h)) e−
1
2
h′Hhdh Y ≡

∫
TC(θ0)

hα exp (Z∞ (h)) e−
1
2
h′Hhdh.

Hence also (jointly in finite set of α):∫
nγ(C−θ0)

hα exp
(
n2γPng

(
·; θ0 + n−γh

))
dh 

∫
TC(θ0)

hα exp (Zn (h)) e−
1
2
h′Hhdh.

Then (8) follows from CMT.
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Next consider (7). By the same arguments leading to (28),∫
ε−2γ
n (C−θ0)

|h|αeε
−4γ
n (Z∗n−P )g(·,θ0+hε2γn )

∣∣∣eε−4γ
n Pg(·,θ0+hε2γn ) − φH (h)

∣∣∣ dh = o∗P (1) ,

so we can focus on analyzing the convergence of

X∗n =

∫
ε−2γ
n (C−θ0)

hαeε
−4γ
n (Z∗n−P )g(·,θ0+hε2γn )φH (h) dh.

As in the proof of Theorem 6.1,

ε−4γ
n (Z∗n − P ) g

(
·, θ0 + hε2γn

) P
 
W
Z∞ (h) in `∞ (K)

Then using the same BL1 arguments as above, for

X∗n,M ≡
∫
ε−2γ
n (C−θ0)∩M

hα exp
(
ε−4γ
n (Z∗n − P ) g

(
·, θ0 + hε2γn

))
e−

1
2
h′Hhdh

and

Y ∗n,M ≡
∫
ε−2γ
n (C−θ0)∩M

hα exp (Z∞ (h)) e−
1
2
h′Hhdh,

there is ρBL1

(
X∗n,M , Y

∗
n,M

)
= oP (1) for all M with radius M . Also as in (33)

ρBL1

(
Y ∗n,M , YM

)
= o (1) for all M . Therefore ρBL1

(
X∗n,M , YM

)
= oP (1) for all

M . Hence we can also find a sequence of Mn → ∞ sufficiently slowly such that

ρBL1

(
X∗n,Mn

, YMn

)
= oP (1).

Next use (32) to bound∫
Mc

n

|h|αeZ∗n(h)e−
1
2
h′Hhdh = O∗P (1)

∫
Mc

n

|h|αec|h|e−
1
2
h′Hhdh = O∗P (1) oP (1) = o∗P (1) .

Furthermore by (27) in Lemma B.5 of Jun et al. (2015), sup|h|>Mn

Z∞(h)
1+|h| = OP (1):∫

Mc
n

|h|αeZ∞(h)e−
1
2
h′Hhdh = OP (1)

∫
Mc

n

|h|αec|h|e−
1
2
h′Hhdh = OP (1) oP (1) = oP (1) .

It then follows from X∗n = X∗n,Mn
+o∗P (1), Y = YMn +op (1), and ρBL1

(
X∗n,Mn

, YMn

)
=

oP (1), that ρBL1 (X∗n, Y ) = oP (1). Finally note that the above convergence rates all
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hold jointly in a finite set of α ≥ 0. Then Ĵ ∗n
P
 
W
J follows from the bootstrap CMT

(e.g. Proposition 10.7) in Kosorok (2007)).

Proof for Theorem 6.3 For h̄ = h+ ε−1
n

(
θ̂n − θ0

)
and for ε−1

n

(
θ̂n − θ0

)
= oP (1),

we can write

Ĵ ∗n =

∫
ε−1
n (C−θ0)

h̄e(h̄+oP (1))′∆̂∗n−
1
2 (h̄+oP (1))′H(h̄+oP (1))dh̄∫

ε−1
n (C−θ0)

e(h̄+oP (1))′∆̂∗n− 1
2 (h̄+oP (1))′H(h̄+oP (1))dh̄

=

∫
ε−1
n (C−θ0)

h̄eh̄
′(∆̂∗n+oP (1))− 1

2 h̄
′Ĥh̄+oP (1)dh̄∫

ε−1
n (C−θ0)

e(h̄+oP (1))′∆̂∗n− 1
2 (h̄+oP (1))′H(h̄+oP (1))dh̄

It then suffices to show that jointly in a finite collection of α ≥ 0, for

X∗n =

∫
ε−1
n (C−θ0)

h̄αe(h̄+oP (1))
′
∆̂∗n− 1

2(h̄+oP (1))
′
H(h̄+oP (1))dh̄

and Y in the proof of Theorem 6.2, ρBL1 (X∗n, Y ) = oP (1). Define

X∗n,M =

∫
ε−2γ
n (C−θ0)∩M

h̄αe(h̄+oP (1))
′
∆̂∗n− 1

2(h̄+oP (1))
′
H(h̄+oP (1))dh̄.

By the same BL1 argument in the previous proof, and the previously defined Y ∗n,M ,

ρBL1

(
X∗n,M , Y

∗
n,M

)
= oP (1). Furthermore, for any Mn →∞∫
h̄/∈Mn

h̄αeh̄
′(∆̂∗n+oP (1))− 1

2
h̄′Ĥh̄+oP (1)dh̄ = o∗P (1) .

The same arguments in the previous proof then apply.

Proof for Theorem 6.5 Consider first (1):

ĥn =

∫
nγ(C−θ0)

nγ
(
φ
(
θ0 + n−γh

)
− φ0

)
p̂n (h) dh.

Let Wn (h) = n2γPnπ (zi; θ0 + n−γh) in (4) or Wn (h) = nQ̂n (θ0 + h/
√
n) in (11), so

that Wn (h) W∞ (h) = Z∞ (h)− 1
2
h′Hh in `∞ (K). For each M , let

XM
n =

{∫
nγ(C−θ0)∩M

nγ
(
φ
(
θ0 + n−γh

)
− φ0

)
eWn(h)dh,

∫
nγ(C−θ0)∩M

eWn(h)dh

}
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and

Y M
n =

{∫
nγ(C−θ0)∩M

nγ
(
φ
(
θ0 + n−γh

)
− φ0

)
eW∞(h)dh,

∫
nγ(C−θ0)∩M

eW∞(h)dh

}
By the sameBL1 embedding argument in the proof of Theorem 6.2, ρBL1

(
XM
n , Y

M
n

)
=

o (1). Next apply DOM almost surely:

Y M
n

a.s.−→ Y M =

{∫
TC(θ0)∩M

φ′θ0 (h) eW∞(h)dh,

∫
TC(θ0)∩M

eW∞(h)dh

}
Next by the polynomial growth condition on φ (·) and the exponentially small tail of

both Wn (h) and W∞ (h), for any Mn →∞, we have{∫
Mc

n

nγ
(
φ
(
θ0 + n−γh

)
− φ0

)
eWn(h)dh,

∫
Mc

n

eWn(h)dh

}
= oP (1) ,

and

{∫
Mc

n
φ′θ0 (h) eW∞(h)dh,

∫
Mc

n
eW∞(h)dh

}
= oP (1) . Therefore Xn ≡ XM=∞

n  

Y ≡ Y M=∞ follows from taking a sequence Mn →∞ slowly enough so that

ρBL1

(
XMn
n , Y Mn

n

)
= o (1) , ρBL1

(
Y Mn
n , Y Mn

)
= o (1) , Xn = XMn

n + oP (1)

and Y = Y Mn + oP (1). Then ĥn = Xn,1/Xn,2  J = Y1/Y2 follows from CMT.

Next consider (2). As before since ε−2γ
n

(
φ̂− φ0

)
= oP (1), it suffices to consider

(using redefined notation) ĥ∗n = ε−2γ
n

(
φ̂∗ − φ0

)
which can be rewritten as

ĥ∗n =

∫
h∈ε−2γ

n (C−θ0)

ε−2γ
n

(
φ
(
θ0 + ε2γn h

)
− φ0

)
p̂∗n (h) dh,

where p̂∗n (h) are defined in (7), (12), and (9) (with θ̂n replaced by θ0 and Ĝ∗n by Ĝ∗n +

εn

(
θ̂n − θ0

)
). Note p̂∗n,h (h) = ε2γn p̂

∗
n,θ

(
θ̂n + ε2γn h

)
and p̂∗n,θ (θ) = ε−1

n p̂∗n,h

(
ε−1
n

(
θ − θ̂n

))
.

Let W∗n (h) be π∗n (θ0 + ε−2γ
n h) in (7), −(h−Ĝ∗n)

′
Ĥ(h−Ĝ∗n)
2

in (9), and Q̂∗n(θ0+εnh)
εn

in (12).

Then W∗n (h)
P
 
W
W∞ (h) in `∞ (K). For each M , let

X∗n,M =

{∫
ε−2γ
n (C−θ0)∩M

ε−2γ
n

(
φ
(
θ0 + ε−2γ

n h
)
− φ0

)
eW
∗
n(h)dh,

∫
ε−2γ
n (C−θ0)∩M

eW
∗
n(h)dh

}
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and

Y ∗n,M =

{∫
ε−2γ
n (C−θ0)∩M

ε−2γ
n

(
φ
(
θ0 + ε−2γ

n h
)
− φ0

)
eW∞(h)dh,

∫
ε−2γ
n (C−θ0)∩M

eW∞(h)dh

}
First by BL1 embedding, ρBL1

(
X∗n,M , Y

∗
n,M

)
= oP (1). Next by almost sure DOM,

ρBL1

(
Y ∗n,M , Y

M
)

= o (1). Furthermore, ∀Mn →∞, both{∫
Mc

n

ε−2γ
n

(
φ
(
θ0 + ε−2γ

n h
)
− φ0

)
eW
∗
n(h)dh,

∫
Mc

n

eW
∗
n(h)dh

}
= o∗P (1) ,

and

{∫
Mc

n
ε−2γ
n (φ (θ0 + ε−2γ

n h)− φ0) eW∞(h)dh,
∫
Mc

n
eW∞(h)dh

}
= oP (1). Then find

some Mn → ∞ such that ρBL1

(
X∗n,Mn

, Y ∗n,Mn

)
= oP (1), ρBL1

(
Y ∗n,Mn

, Y Mn
)

= o (1).

Then use X∗n = X∗n,Mn
+ o∗P (1), Y = Y Mn + oP (1) to conclude that X∗n

P
 
W
Y . Apply

CMT for ĥ∗n
P
 
W
J .

Next consider (3). Note that we can equivalently write

φ̂τ = inf

{
x :

∫
nγ(C−θ0),φ(θ0+n−γh)≤x

p̂n (h) dh ≥ τ

}
,

and ĥτ = nγ
(
φ̂τ − φ0

)
= inf{x :

∫
nγ(C−θ0),nγ(φ(θ0+n−γh)−φ0)≤x p̂n (h) dh ≥ τ}. Given

M , define random processes on `∞
(
Rd
)
×R as

XM
n (·) =

{∫
nγ(C−θ0)∩M,nγ(φ(θ0+n−γh)−φ0)≤·

eWn(h)dh,

∫
nγ(C−θ0)∩M

eWn(h)dh

}
and

Y M
n (·) =

{∫
nγ(C−θ0)∩M,nγ(φ(θ0+n−γh)−φ0)≤·

eW∞(h)dh,

∫
nγ(C−θ0)∩M

eW∞(h)dh

}
Then by embedding the BL1 norm, ρBL1

(
XM
n (·) , Y M

n (·)
)

= o (1). Next by direc-

tional differentiability, uniformly in x,

|1 (nγ (φ (θ0 + n−γh)− φ0) ≤ x, |h| ≤M)− 1
(
φ′θ0 (h) ≤ x, |h| ≤M

)
| ≤ 1

(
|φ′θ0 (h) | ≤ o (1)

)
.

62



Therefore for Y M (·) =

{∫
TC(θ0)∩M,φ′θ0

(h)≤· e
W∞(h)dh,

∫
TC(θ0)∩M eW∞(h)dh

}
,

sup
x
|Y M
n (x)− Y M (x) | → 0 almost surely =⇒ ρBL1

(
Y M
n (·) , Y M (·)

)
= o (1) .

So ∃Mn → 0 slowly enough that ρBL1

(
XMn
n (·) , Y M (·)

)
= o (1). Next for any Mn →

∞, {
sup
x

∫
Mc

n,n
γ(φ(θ0+n−γh)−φ0)≤x

eWn(h)dh,

∫
Mc

n

eWn(h)dh

}
= oP (1) ,

and {
sup
x

∫
Mc

n,φ
′
θ0

(h)≤x
eW∞(h)dh,

∫
Mc

n

eW∞(h)dh

}
= oP (1) .

Namely, Xn (·) ≡ XM=∞
n (·) = XMn

n (·) + oP (1) and Y (·) ≡ Y M=∞ (·) = Y Mn (·) +

oP (1), leading to ρBL1 (Xn (·) , Y (·)) = o (1). Let

L̂n (·) =

∫
nγ(C−θ0),nγ(φ(θ0+n−γh)−φ0)≤·

p̂n (h) dh = Xn,1 (·) /Xn,2

and

L∞ (·) =

∫
TC(θ0),φ′θ0

(h)≤·
p∞ (h) dh = Y1 (·) /Y2.

Then by CMT, L̂n (·) L∞ (·) in `∞
(
Rd
)
. Finally, note that F−1 (τ) is a continuous

functional of F (·) whenever F (·) is strictly increasing at F−1 (τ). Therefore, as long

as L∞ (·) is almost surely strictly increasing at its τ percentile, the CMT implies that

ĥτ  J .

Finally consider (4), again replace ĥ∗τ = ε−2γ
n

(
φ̂∗τ − φ̂τ

)
with ĥ∗τ = ε−2γ

n

(
φ̂∗τ − φ0

)
and write

ĥ∗τ = inf

{
x :

∫
h∈ε−2γ

n (C−θ0),ε−2γ
n (φ(θ0+ε2γn h)−φ0)≤x

p̂∗n (h) dh ≥ τ

}
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Given M , define the following bootstrap random processes on `∞
(
Rd
)
×R:

X∗n,M (·) =

{∫
ε−2γ
n (C−θ0)∩M,ε−2γ

n (φ(θ0+ε2γn h)−φ0)≤·
eW
∗
n(h)dh,

∫
ε−2γ
n (C−θ0)∩M

eW
∗
n(h)dh

}
and

Y ∗n,M (·) =

{∫
ε−2γ
n (C−θ0)∩M,ε−2γ

n (φ(θ0+ε2γn h)−φ0)≤·
eW∞(h)dh,

∫
ε−2γ
n (C−θ0)∩M

eW∞(h)dh

}

As before, ρBL1

(
X∗n,M (·) , Y ∗n,M (·)

)
= oP (1), and

sup
x
|Y ∗n,M (x)− Y M (x) | → 0 almost surely =⇒ ρBL1

(
Y ∗n,M (·) , Y M (·)

)
= o (1) .

Hence for Mn → ∞ slowly enough, ρBL1

(
X∗Mn

(·) , Y M (·)
)

= oP (1). For any Mn →
∞, {

sup
x

∫
Mc

n,ε
−2γ
n (φ(θ0+ε2γn h)−φ0)≤x

eWn(h)dh,

∫
Mc

n

eWn(h)dh

}
= o∗P (1) ,

Therefore, X∗n (·) ≡ X∗n,M=∞ (·) = X∗n,Mn
(·) + o∗P (1), leading to ρBL1 (X∗n (·) , Y (·)) =

oP (1). Let L̂∗n (·) =
∫
ε−2γ
n (C−θ0),ε−2γ

n (φ(θ0+ε−2γ
n h)−φ0)≤· p̂

∗
n (h) dh = X∗n,1 (·) /X∗n,2. Then

by the bootstrap CMT, L̂∗n (·) P
 
W
L∞ (·) in `∞

(
Rd
)
. Therefore, as long as L∞ (·) is

almost surely strictly increasing at its τ percentile, the bootstrap CMT again implies

that ĥ∗τ
P
 
W
J .

Proof for Theorem 9.1 The proof for first part of the theorem is a simplified

version of the proof of Theorem 3.1 in Bugni et al. (2015) and is therefore omitted.

We will show consistency of the numerical bootstrap. Note that

Ĵ ∗n = inf
θ∈Θ̄

S

(
1

εn
Z∗ng(·, θ)

)
− inf

θ∈Θ̄

S

(
1

εn
Png(·, θ)

)
= inf

θ∈Θ̄

S

(
1

εn

(
Pn + εnĜ∗n

)
g(·, θ)

)
− inf

θ∈Θ̄

S

(
1

εn
Png(·, θ)

)
Ĵ ∗n,Θ = inf

θ∈Θ
S

(
1

εn
Z∗ng(·, θ)

)
− inf

θ∈Θ
S

(
1

εn
Png(·, θ)

)
= inf

θ∈Θ
S

(
1

εn

(
Pn + εnĜ∗n

)
g(·, θ)

)
− inf

θ∈Θ
S

(
1

εn
Png(·, θ)

)
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Using conditions (1),(2), and (3) in combination with Theorem 2.6 in Kosorok (2007),

we can show that Ĝ∗ng(·, θ) P
 
W
G0g(·, θ) uniformly over θ ∈ Θ and thereby also over

θ ∈ Θ̄ since Θ̄ ⊆ Θ. Let `n(θ) = 1
εn
Png(·, θ). Note that because

√
nεn → ∞,

`n(θ) = 1√
nεn

√
n (Pn − P ) g(·, θ) + 1

εn
Pg(·, θ) = op(1) + 1

εn
Pg(·, θ), which implies

that `n(θ)
p→ `(θ) ≡ lim

t↘0
Pg(·, θ)/t. By the bootstrap continuous mapping theo-

rem (Theorem 10.8 in Kosorok (2007)) applied to the functional φ (`(θ),G0g(·, θ)) =

inf
θ∈Θ̄

S (`(θ) + G0g(·, θ))− inf
θ∈Θ

S (`(θ) + G0g(·, θ)),

inf
θ∈Θ̄

S

(
1

εn

(
Pn + εnĜ∗n

)
g(·, θ)

)
− inf

θ∈Θ
S

(
1

εn

(
Pn + εnĜ∗n

)
g(·, θ)

)
= inf

θ∈Θ̄

S
(
`n(θ) + Ĝ∗ng(·, θ)

)
− inf

θ∈Θ
S
(
`n(θ) + Ĝ∗ng(·, θ)

)
P
 
W
inf
θ∈Θ̄

S (`(θ) + G0g(·, θ))− inf
θ∈Θ

S (`(θ) + G0g(·, θ)) ≡ JΘ̄ − JΘ

Under the null, inf
θ∈Θ̄

S (Pg(·, θ)) = 0, which implies inf
θ∈Θ̄

S
(

1
εn
Png(·, θ)

)
p→ inf

θ∈Θ̄

S (`(θ)) =

0. Additionally, since inf
θ∈Θ

S (Pg(·, θ)) ≤ inf
θ∈Θ̄

S (Pg(·, θ)), it follows that inf
θ∈Θ

S
(

1
εn
Png(·, θ)

)
p→ inf

θ∈Θ
S (`(θ)) = 0. By Slutsky’s Theorem, J̄ ∗n ≡ Ĵ ∗n − Ĵ ∗n,Θ

P
 
W
JΘ̄ − JΘ. �
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