Motivating Question

How to degenerate the Jacobian of a curve?

Review of the Jacobian

Recall that the *Jacobian* J_X of a genus g nonsingular curve X is g-dimensional abelian variety that can be described in two different ways:

Albanese: J_X is the universal abelian variety into which X embeds;

Picard: J_X is the moduli space of degree 0 line bundles on X.

Families of Jacobians

Given a (proper, flat) family of curves $f: X \to B$ with non-singular fibers, the Jacobians of the fibers of f fit together to form a family $J \rightarrow B$.

What if some fibers are singular? It may be impossible to extend to a family of abelian varieties over B. This is the case for the family in Fig. 1.

Figure 1: A family of plane cubics.

Refined Motivating Question

Given a (proper, flat) family of curves $f: X \to$ B with non-singular fibers over $b \in U \subset B$, how to extend the associated family of Jacobians $J_U \rightarrow U$ by adding degenerate fibers over the points $b \in B \setminus U$?

Degenerating the Jacobian

Jesse Leo Kass

Department of Mathematics, University of Michigan

Two Approaches to Degeneration

Main Theorem (Thm. A of [Kass10])

Suppose that $f: X \to B$ is a projective family of geometrically reduced curves over a Dedekind scheme with the property that the local rings of X_S are factorial for every strict henselization $S \to B$ (e.g. X is regular). Let $J \to B$ be the locus of line bundles in one of the following families of compact moduli spaces of sheaves:

- the Esteves compactified Jacobian;
- the Simpson compactified Jacobian associated to a f-very ample line bundle L with the property that every L-slope semi-stable, pure, rank 1 sheaf of degree 0 is slope stable. Then J is the Néron model of its generic fiber.

In other words, this theorem relates two different approaches to degenerating the Jacobian.

Approach 1: the Néron model

Viewing the Jacobian J_X as the Albanese variety, it is natural to try to extend $J_U \to U$ by adding	T] ge
degenerate group varieties. This leads to the Néron	de
model.	Pr
Set-Up : Let A_{η} be an abelian variety over the	
generic point η of a Dedekind scheme B .	
Definition: The Néron model $N(A_n)$ is a smooth	Sc
B-model of A_n that satisfies the Néron	
mapping property: given T a smooth	
B-scheme, every morphism $T_n \to A_n$ extends	
uniquely to $T \to N(A_n)$.	St
Existence : Néron proved that $N(A_{\eta})$ exists [Nér64].	
Taking $A_{\eta} = J_{X_{\eta}}$, Néron's work provides an extension of the Jacobian to a family over B .	E>
Example 1 : For Fig. 1, the special fiber of $N(A_{\eta})$ is the multiplicative group \mathbb{G}_m .	

Example 2: For Fig. 2, the special fiber is the disconnected group $\mathbb{Z}/2 \times \mathbb{G}_m$.

Figure 2: A second family of plane cubics.

Approach 2: Stable sheaves

The description of J_X as the *Picard variety* sugests that we should extend $J_U \rightarrow U$ by adding egenerate moduli spaces of sheaves.

- **roblem**: For X_b singular, there is *no* algebraic moduli space parameterizing degree 0 line bundles and their degenerations. (See Fig. 3.) olution: Impose a numerical condition on the
- multi-degree of a line bundle. Lots of papers on this: [AK80], [Cap94], [D'S79], [Est01], [Ish78], [Jar00], [OS79], [Pan96], [Sim94]....
- tability: If (X_b, L_b) is a polarized curve, then a pure sheaf I is **slope semi-stable** if the slope inequality $\mu(J) \leq \mu(I)$ holds for all $J \subset I$.
- **xistence**: The fine moduli space of stable sheaves with fixed Hilbert polynomial exists by [Sim94]. The **Simpson compactified Jacobian** is a connected component. Imposing a different numerical condition, we get the Esteves compactified Jacobian.

Hypotheses: When the fibers X_b are nodal, suitable polarizations L exist [MV10]. Generalization: Theorem 4.8 of [Kass10] applies when fibers are non-reduced. Non-reduced: For rational ribbons, Chen and I [ChKa11] proved a space exists iff genus is even (answering a question of Green–Eisenbud). Related Results: See [Cap10], [OS79], [MV10]. Proof of Theorem A is different (no combinatorics). Application: The Simpson Jacobian compactifies the Néron model. In [Kass09], I used this fact to partially answer a question of Lang [Lan83].

(2000)

[Nér64] André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux (1964). [OS79] Tadao Oda and C. S. Seshadri, Compactifications of the generalized Jacobian variety (1979). [Pan96] Rahul Pandharipande, A compactification over \overline{M}_q of the universal moduli space of slope-semistable vector bundles (1996)

[Sim94] Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety (1994).

Figure 3: Pure sheaves on the singular curve in Fig. 2.

Remarks on the theorem

Figure 4: The Simpson Jacobian of a genus 2 curve.

References

[AK80] Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme (1980). [Cap94] Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves (1994)

[Cap10] Lucia Caporaso, Compactified Jacobians of Néron type (2010).

[ChKa11] Dawei Chen and Jesse Leo Kass. Moduli of generalized line bundles on a ribbon (2011). [D'S79] Cyril D'Souza, Compactification of generalised Jacobians (1979).

[Est01] Eduardo Esteves, Compactifying the relative Jacobian over families of reduced curves (2001). [Ish78] Masa-Nori Ishida, Compactifications of a family of generalized Jacobian varieties (1978). [Jar00] Tyler J. Jarvis, Compactification of the universal Picard over the moduli of stable curves

[Kass09] Jesse Leo Kass, Good Completions of Néron models (2009)

[Kass10] Jesse Leo Kass, Degenerating the Jacobian: the Néron Model versus Stable Sheaves (2010). [Lan83] Serge Lang, Fundamentals of Diophantine geometry (1983).

[MV10] Margarida Melo and Filippo Viviani, Fine compactified Jacobians (2010).