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Abstract

In these notes, we discuss results due to Igusa and Mumford concerning
some surprising behavior of the Picard scheme of a smooth projective
variety in positive charateristic. There notes are based on a talk that the
author gave in Kiran Kedlaya’s STAGE seminar in March 2008.
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1 Introduction

In his paper “On Some Problems in Abstract Algebraic Geometry,” [Igu55],
Jun-ichi Igusa proved the surprising result that the Picard scheme of a smooth
surface over an algebraically closed field of positive characteristic can be non-
reduced. In the article, he explicitly constructed such a surface. We give an
exposition of the topic in modern scheme-theoretic language. Also discussed are
some later computations due to David Mumford. The focus of this note is on
the study some special features of the Picard scheme in characteristic p from
the perspective of elementary moduli theory. In particular, we do not discuss
various connections with p-adic cohomology theories. All of the results in this
note are due to Igusa, Mumford, Serre, and others, while all of the errors are
due to the author.

The author would like to thank Junecue Suh for informing him of the results
in Raynaud’s paper [Ray79]. Bhargav Bhatt and Davesh Maulik and Shizhang
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Li provided useful feedback on earlier drafts. Shizhang Li, in particular, pro-
vided the proof of Lemma 4.4, which corrects an earlier erroneous argument.

Let’s briefly recall the context of Igusa’s example. The Picard scheme of
a projective variety X is a scheme that parametrizes the line bundles on X.
When X is a non-singular curve, the rough features of the Picard scheme is
well-understood. The connected components of this scheme are indexed by the
integers and a given component parametrizes line bundles of a fixed degree. The
identity component is the Jacobian of the curve, an abelian variety of dimension
equal to the genus of X.

In [Poi10], Henri Poincaré used transcendental methods to prove a result that
implies that an analogous result for the Picard scheme of a smooth projective
variety of arbitrary dimension over the complex numbers. The Picard scheme
of such a variety is again a disjoint union of smooth projective varieties. It is
natural to ask if this result still holds over a field of positive characteristic. In
1955, Igusa proved that this is surprisingly not the case. The purpose of this
note is to explore this phenomenon.

2 Notation and Conventions

Let k be an algebraically closed field of characteristic p.

All schemes are implicitly assumed to be locally Noetherian unless we ex-
plicitly state otherwise. The term “variety” will mean an integral scheme that
is separated and of finite type over k.

The term “point” is somewhat ambiguous in algebraic geometry, so let us
be precise about what we mean. In this note, a k-point of a k-scheme X will
be a morphism Spec(k) → X over Spec(k). The set of k-points of a k-scheme
that is locally of finite type is in natural bijection with the set of closed points
of X. If no other adjectives are attached, then the term “point of X” will mean
a morphism T → X from some unspecified locally finite type k-scheme T to X.
We will primarily use this notion of point to prove identies of morphisms using
a Yoneda’s Lemma argument. We will write X(T ) for the set of all T -valued
points of X. The reader uncomfortable with formalism will lose little under-
standing in thinking of points in an intuitive manner.

Another overused term in algebraic geometry is the term “quotient”. In this
note, we will need to take the quotient of a variety by a finite group. Suppose
that X is a k-scheme that is locally of finite type and that G is a finite group of
automorphisms of X. We say that a quotient of X by G is a pair (Y, π), where
Y is a k-scheme that is locally of finite type and π : X → Y is a morphism that
satisfies the following conditions:

1. As a topological space, (|Y |, π) is the quotient of |X| by G.
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2. The morphism π : X → Y is G-invariant and the natural map OY →
π∗(OX)G is an isomorphism. Here the superscripted G denotes the sub-
sheaf of G-invariant sections.

3. The pair (Y, π) is universal. In other words, if f : X → Z is any G-
invariant morphism, then there is a unique morphism f̃ : Y → Z such
that f = f̃ ◦ π.

By general formalism, if a quotient exists then it is unique up to a unique
isomorphism. The basic existence theorem that we shall need is the following:

Theorem 2.1. If X is a projective variety over k and G is a finite group of
automorphisms, then a quotient (Y, π) of X by the group G exists. Further-
more, the morphism π is finite, surjective, and separable. The k-scheme Y is
projective. If the action of G is free, then π is étale.

A relatively elementary proof of this theorem can be found on page 66 of
Mumford’s book [Mum70]. Mumford’s theorem does explicitly not state that
the quotient Y is projective, but this can be proven using a “norm” construction.

3 The Picard Scheme

We now turn our attention to defining the Picard scheme. The Picard functor
PicX/k is the functor from k-schemes to sets that is given by the rule:

PicX/k(T ) = {line bundles on XT }/{line bundles on T}

When we write “line bundles” in this definition, we mean line bundles up
to isomorphism. The group of line bundles on T is considered a subset of the
group of line bundles on XT via pullback. One should think of the above set as
being “the set of algebraic families of line bundles on X that are parameterized
by T modulo the isotrivial families.” We should warn the ambitious reader that
we are sweeping some non-trivial technical issues under the rug. If we consider
smooth varieties over a base that is more complicated than the spectrum of an
algebraically closed field, then this definition would need to be modified. These
difficulties stem from the fact that a line bundles has non-trivial automorphisms.
The construction of the Picard functor is discussed in great detail in Kleiman’s
article on the Picard scheme [Kle05].

For our purposes, the following existence theorem is more than sufficient:

Theorem 3.1. Suppose that k is an algebraically closed field and that X/k is a
projective variety over k. Then the Picard functor PicX/k can be represented by
a separated scheme that is locally of finite type. Furthermore, this scheme can
be written as the disjoint union of open subschemes that are quasi-projective.

Proof. As stated this result is due to Grothendieck, although many of the ideas
are present in the work of Castelnuovo and Matsusaka. Grothendieck’s proof
can be found in the fifth expose of FGA [Gro95]. A modern exposition of the
proof can be found in Kleiman’s article [Kle05].
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We more can be said about the structure of the Picard scheme? Firstly,
the Picard scheme has natural group scheme structure coming from the tensor
product operation. Secondly, the Picard scheme has an infinite number of con-
nected components. Fix a projective embedding of X. For every integer d, one
can show that the locus inside of PicX/k that parametrizes degree d line bundles
is the union of a finite number of connected components of PicX/k. In this note,
we will not investigate the discrete structure of the Picard scheme and so we
make the following definition:

Definition 3.2. Let P oX/k denote the identity component of the Picard
scheme.

The focus of our study will be the scheme P oX/k. One can show that the line
bundles on X that correspond to points of P oX/k are precisely the line bundles
that are algebraically equivalent to zero.

In general, one can make the following assertions about the structure of
P oX/k:

Proposition 3.3. The following results hold:

1. The scheme P oX/k is a closed and open subgroup scheme of PicX/k that is
irreducible and of finite type.

2. If P oX/k contains an open subscheme that is reduced, then P oX/k is smooth
over k. In particular, if the dimension of the dimension of the Zariski
tangent space at a single k-valued point is equal to the combinatorial di-
mension of P oX/k, then P oX/k is smooth over k.

3. If X is normal (e.g. X is smooth over k), then P oX/k is projective.

Proof. The first two results are general facts about k-group schemes that are
separated and locally of finite type. To prove that P oX/k is projective, it is
enough to prove that this scheme is proper. This is most easily proved by
reducing to proving properness of an appropriate closed subscheme of a Hilbert
scheme. Proofs of these results can be found in section three of Kleiman’s article
[Kle05].

Our question “Is PicX/k a disjoint union of smooth projective varieties?”
can be restated as “Does P oX/K contain an open subscheme that is reduced?”

Here is a list of results:

• If X is 1-dimensional and the field k is arbitrary, then the Picard scheme
is reduced.

In fact, one can verify directly that P oX/k is formally smooth over k. Formal
smoothness says that every infinitesimal deformation of a line bundle may
be extended to every larger infinitesimal base. The obstruction to lifting
a given infinitesimal deformation lies in a second coherent cohomology
group of X. For dimensional reasons, this group must be zero.
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• If X has arbitrary dimension and k is the field of complex numbers, then
the Picard scheme is reduced.

This follows from Poincaré work. Alternatively, it is a theorem of Grothendieck
and Cartier that a k-group scheme that is separated and locally of finite
type over a field of characteristic zero is automatically reduced. In partic-
ular, their result applies to the Picard scheme of X. A third proof can be
given using the cohomology computations in the fifth section of this note.

• If X is a smooth projective surface and k is a field of positive characteristic,
then P oX/k can be non-reduced.

This is the content of Igusa’s example.

4 Igusa’s Example

In this section, we present Igusa’s construction. In order to prove that the Pi-
card scheme of Igusa’s surface is non-reduced, it is necessary to able to compute
the Zariski tangent space to the Picard scheme. Let us review how to compute
the tangent space to the Picard scheme or, more generally, the space of n-jets
to the Picard scheme.

Review of Tangent Vectors and Jets: In general, suppose that Y/k
is locally of finite type and that p0 ∈ Y (k) is a given k-point. The Zariski
tangent space to Y at p0, denoted Tp0(Y ), is defined as follows. The k-algebra
kε := k[ε]/(ε2) admits a natural augmentation k[ε]/(ε2) → k given by mapping
ε to 0. The set of elements of Y (kε) that map to p0 ∈ Y (k) under the map
induced by the augmentation is defined to be the Zariski tangent space Tp0(Y ).
It naturally has the structure of a k-vector space.

We can generalize this construction by replacing the algebra k[ε]/(ε2) with
k[ε]/(εn+1). In this note, we will call the resulting set the set of order n jets to
Y at p0 and denote it by Jnp0(Y ). This is a k-vector space and there are natural
maps Jn+1

p0 (Y )→ Jnp0(Y ).

When Y is equal to the Picard scheme of a projective variety X, then we
can compute the space of order n jets in terms of the cohomology of X:

Proposition 4.1. Suppose that X/k is a projective variety. Then there is a nat-
ural identification of the vector space Jne (P oX/k) with H1(X, 1 + εOX [ε]/(εn+1).

Here we are considering 1 + ε OX [ε]/(εn+1) as a sheaf of abelian group on the
underlying topological space of X.

Proof. Consider the split exact sequence:

0→ 1 + ε OX [ε]/(εn+1)→ OX [ε]/(εn+1)∗ → O∗X → 0

This induces a short exact sequence on first cohomology groups. By chasing
cocycles, one can identify this with a short exact sequence:

0→ H1(X, 1 + ε OX [ε]/(εn+1))→ PicX/k(k[ε]/(εn+1))→ PicX/k(k)→ 0
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Here PicX/k(k[ε]/(εn+1)) → PicX/k(k) is the map induced by the natural
augmentation. This completes the proof.

The sheaf 1+ε OX [ε]/(εn+1) will play an important role in the fourth section
of these notes, so it is useful to have some notation for it:

Definition 4.2. Let Vn(OX) denote the sheaf 1 + ε OX [ε]/(εn+1). This is a
sheaf on X.

We now turn out attention to Igusa’s example. Igusa’s construction works
only when p = 2.

For the remainder of this section assume that the characteristic of k is equal
to 2.

Igusa’s Surface: Let E0 be an ordinary elliptic curve over k. The sub-
scheme E0[2] of 2-torsion is non-reduced, but it contains a reduced sub-group
scheme of order 2 (the group of “physical” 2-torsion points). Let t0 ∈ E0[2](k)
be the non-trivial 2-torsion k-point. We set E equal to the quotient of E0 by
the action of t0. We will not need to make use of this fact, but when the field k
is perfect the Verschiebung map defines an isomorphism between this quotient
and the “twist” of E0 by Frobenius, E(p).

To be totally explicit, one can take k to be the algebraic closure F̄2 of the field
with two elements and E0 to be the elliptic curve associated to the Weierstrass
equation y2 + xy+ y = x3 + x+ 1. The non-trivial 2-torsion k-point t0 ∈ E0(k)
of this curve is equal to (1, 1). Since E0 is defined over Fp, the curve E is
abstractly isomorphic to E0.

Set X0 = E0 ×k E0. This is an abelian surface. Igusa’s surface is defined
to be a quotient of X0. Define an involution i : X0 → X0 by the rule i(x, y) =
(x + t0,−y) and let X be the quotient of X0 by i. The map i is a fixed-point
free involution of a projective variety, so X is a smooth projective surface and
the quotient map π : X0 → X is étale. The surface X is Igusa’s surface.

Theorem 4.3 (Igusa). The Picard scheme of Igusa’s surface X is non-reduced.

Proof. There are two parts to this proof. We first prove that the Zariski tangent
space to the Picard scheme at the origin is 2-dimensional and then we prove that
the combinatorial dimension of P oX/k is equal to 1. In fact, we show that the

reduced subscheme is isomorphic to the elliptic curve E∨. Here E∨ is the dual
elliptic curve. The dual elliptic curve is naturally isomorphic to E, but it occurs
as the dual curve.

The proof is broken up into the two lemmas below.

Lemma 4.4. The dimension of the Zariski tangent space to P oX/k at at the
origin is 2.

Proof. Shizhang Li provides the following argument.
Let’s look at the Hochschild–Serre spectral sequence:
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Ei,j2 = Hi(G,Hj(X0,OX0)) =⇒ Hi+j(X,OX),

where G is isomorphic to Z/2 generated by the involution i.
We have: Hj(X0,OX0) = k if j = 0 or 2 and H1(X0,OX0) = k2, and G acts

trivially on all of them. Here are two facts concerning these group cohomology
groups:

1. Hi(Z/2, k) ∼= k for all i ≥ 0;

2. H2(Z/2,F2) ∼= F2, and cupping with the nonzero class (call it α for now)
induces 2-periodicity: Hi(Z/2, k) ∼= Hi+2(Z/2, k) (note that we have k⊗Z
F2
∼= k).

These are standard facts, let me skip the proof here. Now we see that our
Hochschild–Serre spectral sequence has an operator (cupping with α) acting on
it. We will utilize this fact. Let’s write out the spectral sequence:

E0,2
2 = k

g

**

∪α
**

E1,2
2 = k

**

· · ·

E0,1
2 = k2

f

**

∪α ++

E1,1
2 = k2

**

E2,1
2 = k2

h

**

E3,1
2 = k2

**

· · ·

E0,0
2 = k E1,0

2 = k E2,0
2 = k

∪α
++

E3,0
2 = k E4,0

2 = k · · ·
Now let’s analyze this spectral sequence, we know it converges to the coho-

mology of OX . Hence the infinity page shouldn’t have anything of degree greater
than 2. But for degree reason, everything in the middle row, if it survived af-
ter the second page, will survive to the infinity page. Therefore, we conclude
im(g) = ker(f). The map g cannot be surjective for dimensional reasons, so h
is nonzero and thus, again for dimensional reasons, surjective. Since cupping
with α induces isomorphisms (we do not check that this is compatible with the
differential, but it is clear from the definition), we therefore also conclude that
f is surjective. Hence we see that H1(X,OX) is two-dimensional.

The above analysis actually yields that on the infinity page, only 4 terms
are left, namely the lower left square. Moreover, the cup product induce an
isomorphism between the tensor product of (0, 1) and (1, 0) terms and the (1, 1)
term. Concretely, this says that ∧2H1(X,OX) ∼= H2(X,OX).

Now let us turn out attention to the second lemma. The proof that the
reduced subscheme of P oS/k is isomorphic to E∨ uses some basic facts about the
Albanese variety.

The Albanese Variety: The relationship between the Picard scheme and
the Albanese variety is discussed in section 2 of the sixth expose of FGA [Gro95].
We will briefly review the facts that we need. The following discussion holds
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when the field k is an arbitrary algebraically closed field, or more generally, a
perfect field. The reader interested in the Albanese variety in greater generality
is advised to consult the literature.

Definition. Let Y/k be a smooth projective variety and p0 ∈ Y (k) a distin-
guished k-point. Given a map (Y, p0)→ (A, e) from a smooth projective variety
to an abelian variety, we say that this map satisfies the Albanese mapping
property if this map is universal with respect to maps of (Y, p0) into an abelian
variety that take p0 to the origin. In other words, if (Y, p0)→ (B, e) is any map
from (Y, p0) into another abelian variety then there is a unique homomorphism
A→ B with that makes the following diagram commute:

Y A

B

-

@
@
@R ?

If (Y, p0) → (A, e) satisfies the Albanese property, then we say that A is the
Albanese variety of X. By general formalism, the Albanese property deter-
mines the abelian variety A up to isomorphism so we are justified in calling A
the Albanese variety.

Under our assumptions, the Albanese variety always exists and can be con-
structed from the Picard scheme.

Lemma 4.5. Suppose that Y/k is a smooth projective variety over k. Then
the reduced subscheme of P oY/k is an abelian variety and the dual of this abelian
variety is the Albanese variety of Y .

Proof. The reduced subscheme of P oY/k is a proper, connected group variety
and hence an abelian variety. Let A be the dual abelian variety. By general
formalism, there is a natural map Y → A. Using the reflexivity relation (A∨)∨ ∼=
A for abelian varieties and the universal property of the Picard scheme, one can
show that this map satisfies the Albanese mapping property.

We now complete the proof of our main theorem:

Lemma 4.6. The reduced subscheme of P oX/k is isomorphic to the elliptic curve

E∨.

Proof. Set p0 ∈ X(k) equal to the image of (e, e) ∈ X(k) under the quotient
map. By the previous lemma, it is enough to prove that E is isomorphic to
the Albanese variety of (X, p0). Let f : X0 → E be the map given by the first
projection map followed by the quotient map E0 → E. This map is i-invariant
and hence induces a map f : X → E. Under f , the point p0 is sent to the
identity.
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Let us prove that f satisfies the Albanese mapping property. Suppose that
(X, p0) → (B, e) is a map from X into an arbitrary abelian variety. Consider
the composition X0 → X → B. Call this map g. This map sends the identity
to the identity, so, by rigidity, it is a homomorphism. The map satisfies the
relation g(i(x, y)) = g(x, y) for all points (x, y) of X. Using the fact that g is
a group homomorphism, we can expand out this relation and obtain the two
relations:

g(t0, 0) = 0

and
2g(0, y) = 0 for all y

The second relation says that [2] ◦ g(0, y) is identically zero. The map [2] is an
isogeny, so this can only happen if g(0, y) is identically zero. In other words,
the kernel of the homomorphism g must contain the closed subgroup:

< t0 > ×kE0

Thus g factors through the quotient map X0 → E. This proves that f : X → E
satisfies the Albanese property, completing the proof.

Remark: In our discussion of the Albanese variety, we have made use of
the fact that the reduced subscheme of P oX/k is a k-group scheme. Over an
algebraically closed field, the reduced subscheme of a group scheme is always
a subgroup scheme. Over a non-algebraically closed field, this does not need
to be true. An example can be found in Waterhouse’s book [Wat79]. Such a
pathology can never occur for the group scheme Pic0X/k. It is a general theorem
that the reduced subscheme of a connected finite type commutative k-group
scheme that is proper is always a subgroup scheme. A proof of this can be found
in the section 2 of the sixth expose of FGA [Gro95]. On the other hand, one
can probably prove that this pathological phenomenon can occur for PicτX/k
using a theorem of Raynaud (see sections 4.2.3 and 4.2.6 of [Ray79]). Here
PicτX/k denotes the subscheme of PicX/k that parametrizes line bundles that are
numerically equivalent to zero. The author does not know what happens if one
considers the Picard scheme of a singular projective variety.

5 Mumford’s Computation

In his book [Mum66], Mumford computes the Zariski tangent space to the re-
duced subscheme to the Picard scheme:

Proposition 5.1. Suppose that X/k is a smooth projective variety over k. Then
the Zariski tangent space to the reduced subscheme of the Picard scheme at the
identity is equal to those elements of the tangent space to the Picard scheme that
lift to n-th order jets for all n. In symbols, we have that:

Te(P
o
X/k,red) =

⋂
im(Jne (P oX/k)→ Te(P

o
X/k))
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Proof. The inclusion of the left-hand term in the right-hand term is automatic
since P o

X/k,red is formally smooth (by virtue of being a reduced group scheme

that is locally of finite type over a field). The reverse inclusion is a rather general
fact.

Suppose that v lies in the intersection
⋂

im(Jne (P oX/k) → Te(P
o
X/k)). Con-

sidering v as a morphism out of Spec(k[ε]/(ε2)), we need to show that there is
a factorization:

P o
X/k,red

Spec(k[ε]/(ε2)) P oX/k

?p p p p p p p p p
p p p p3ṽ

-v

The question is local in nature, so let O equal the local ring of P oX/k at e.

The morphism v corresponds to a homomorphism v∗ : O → k[ε]/(ε2). Since the
vector v is based at e, this homomorphism must be given by:

v∗(f) = f(e) +D(f) ε

Here f is an arbitrary element of O and D is a fixed k-valued derivation on O.
To prove the existence of ṽ, it is enough to prove that v∗ kills all nilpotent

elements of O. Suppose that f ∈ O satisfies fn = 0. We have that f(e) = 0, so
we really just need to prove that D(f) = 0.

By hypothesis, the tangent vector v lifts to an n-th order jet j. On the level
of algebras, we have that

k[ε]/(εn+1) O

k[ε]/(ε2)

?

�j
∗

�
�

�
�
�	

v∗

Evaluating j∗ on fn, we get that 0 = j∗(fn) = D(f)εn. This proves that
D(f) = 0, completing the proof.

Corollary 5.2. If X/k is a smooth projective variety, then P oX/k is a smooth

projective variety if and only if the natural map H1(X,Vn(OX)))→ H1(X,OX)
is surjective for all positive integers n.

Relation with Serre’s Witt Cohomology: In his Mexico paper [Ser58],
Serre developed a p-adic cohomology theory using Witt vectors. Mumford ob-
served that the surjectivity of H1(X,Vn(OX))→ H1(X,OX) can be restated in
terms of Serre’s Witt cohomology theory. Let us briefly recall some facts about
Witt cohomology theory and sketch the connection to Igusa’s work.
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Recall that if A is a ring and l is a positive integer, then the ring of length
l Witt vectors, written Wl(A), is a certain ring whose underlying set is equal
to Al. This ring has the property that the quotient ring Wl(A)/pWl(A) is iso-
morphic to A. The Witt vector rings carry several distinguished endomorphism.
In this note, we will need to make use of the Frobenius, Verschiebung, and trun-
cation operations. These operations are often denoted by F : Wl(A)→ Wl(A),
V : Wl(A) → Wl+1(A), and R : Wl(A) → Wl−1(A) respectively. The Ver-
schiebung and truncation operations can be used to define short exact sequences:

0→Wl−m(A)
Vm

−→Wl(A)
Rl−m

−→ Wm(A)→ 0

for l ≥ m. We also have that W1(A) = A. For a more detailed discussion
of Witt vectors, we direct the interested reader to section 1 of Serre’s article
[Ser58].

Now suppose that X is a scheme over an algebraically closed field k of charac-
teristic p. For every open subset U of X, we can consider the ring Wl(Γ(U,OX)).
These rings fit together to form a coherent sheaf of rings Wl(OX) that we will
call the length l Witt vector sheaf. Serre’s Witt cohomology is defined to
be the inverse limit lim←−H

∗(X,Wl(OX)). Here the inverse limit is taken with re-
spect to the map H∗(X,Wl+1(OX))→ H∗(X,Wl(OX)) induced by truncation.

We now turn to the relation between this cohomology theory and the ge-
ometry of the Picard scheme. The connection is established by the following
proposition:

Proposition 5.3. Let X/k be a smooth projective variety over an algebraically
closed field k of characteristic p. The sheaf Vn(OX) can be described in terms
of the Witt sheaves as follows. If i is an integer that is relatively prime to p
and satisfies 1 ≤ i ≤ n− 1, then let ri denote least integer r such that pr ≥ n/i.
Then there is an isomorphism of sheaves of abelian groups:∏

1≤i≤n
(i,p)=1

Wri(OX) ∼= Vn(OX)

Here the sheaf Wri(OX) is considered as a sheaf of additive groups.
Furthermore, this isomorphism may be chosen so that the natural map Vn(OX)→

OX is identified with the map
∏
Wri(OX)→ OX given by truncating Wr1(OX)

and forgetting about the other factors.
In particular, the scheme P oX/k is reduced if and only if the natural map

H1(X,Wl(OX))→ H1(X,OX) is surjective for all positive integers l.

Proof. The isomorphism is constructed using the Artin-Hasse exponential. A
proof can be found in [Mum66] or chapter 5 of [Ser88]. In [Ser88] Serre works
only with the algebraic group Vn(k), but the argument generalizes without dif-
ficulty.

The image of the map H1(X,Wl(OX))→ H1(X,OX) plays a significant role
Serre’s theory:
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Theorem 5.4. There is a spectral sequence

Ei,j1 = Hi+j(X,OX)⇒ lim←−H
i+j(X,Wl(OX))

The groups of cocycles and coboundaries of the r-page are given by:

Bi,jr = ker(Hi+j(X,OX)
V r−1

−→ Hi+j(X,Wr(OX)))

and

Zi,jr = im(Hi+j(X,Wr(OX))
Rr−1

−→ Hi+j(X,OX))

Proof. The existence of the spectral sequence follows from a general result about
the existence of a spectral sequence associated to an inverse system of coherent
sheaves.

In particular, observe that we have E0,1
r = Z0,1

r = im(H1(X,Wl(OX)) →
H1(X,OX)). Let βr : E0,1

r → Er,2−rr be the differential. We call this map the
r-th Bockstein operator. As a corollary to the previous two results, we have:

Corollary 5.5. Suppose that X/k is a smooth projective variety over an alge-
braically closed field k of characteristic p > 0. The scheme P oX/k is reduced if
and only if the Bockstein operators βr are all zero.

From the form of the spectral sequence, it follows that βr = 0 for r ≥ 3 so
one only needs to examine the operators β1 and β2. One can restate this fact
in a way that does not explicitly mention Witt cohomology:

Corollary 5.6. Suppose that X/k is a smooth projective variety over an alge-
braically closed field k of characteristic p > 0. The scheme P oX/k is reduced if

and only if the map Jp
2

e (X)→ Te(X) is surjective.

6 Igusa’s Example Revisited

Now suppose that X is the Igusa surface over an algebraically closed field k of
characteristic 2. By the last corollary of the previous section, it follows that
there are first order deformations of the trivial line bundle on X that do not
lift to deformations of order 4. Two questions natural follow-up questions are:
“which tangent vectors lift to arbitrary order?” and “if v is a tangent vector
that does not lift to fourth order, can we lift v to second order?”

The proof of Lemma 4.4 suggests an answer to the first question. The
spectral sequence describes H1(X,OX) as containing H1(G,H0(X0,OX0

)) with
quotient

H1(X,OX)/H1(G,H0(X0,OX0)) = ker(H1(X0,OX0)G → H2(G,H0(X0,OX0)).

A reasonable guess is that H1(G,H0(X0,OX0
)) ⊂ H1(X,OX) is the subspace of

liftable tangent vectors and all vectors fail to life to order 2. Lemma 4.6 describes
the reduced subscheme of the Picard scheme is the image of E∨toP oX/k under
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the map induced by X0 = E0 ×k E0 → E, and the subspace of liftable tangent
vectors is the image of the tangent space to E∨, so one could try to verify the
guess using this description.

In Igusa’s article, he observes that it is possible to generalize his construction
of the Igusa surface to construction smooth projective varieties over fields of odd
characteristic whose Picard scheme is non-reduced. Let p > 0 be an odd prime.
Consider the plane curve defined by the equation

Zp −Xp−1Z + Zp−2Y 2 = 0

The Jacobian of the normalization of this curve admits an automorphism of
order p. By imitating the construction of the Igusa surface, one can construct
a smooth projective variety of dimension p− 1 over F̄p whose Picard scheme is
non-reduced.

In his Mexico paper [Ser58], Serre constructed further example as group
quotients of complete intersections in projective space. To be specific, the source
of his examples is the following proposition:

Proposition 6.1. Suppose that k is an algebraically closed field of character-
istic p. Let G be a finite group and n ≥ 1 an integer. Then there exists an
n-dimensional projective variety Y/k that is a complete intersection in some
projective space and a fixed-point free action of G on Y . For p ≥ 5, when n = 2
and G = Z/pZ we can take Y to be a surface in P3.

Proof. This is proposition 15 in [Ser58].

Using the Serre-Hochshild spectral sequence, one can construct further ex-
ample of smooth projective varieties whose Picard scheme is non-reduced by
taking G equal to an abelian group of p-power order. For example, the propo-
sition implies that there is a smooth surface Y in P3 that admits a fixed-point
free action of G := Z/pZ. The quotient surface X = Y/G has the property that
β1 6= 0.

Real-world examples of smooth projective surfaces of general type whose
Picard scheme is non-reduced appeared as a by-product of the thesis work of
Junecue Suh. In his thesis [Suh07], he finds examples of quaternionic and uni-
tary Shimura surfaces whose mod p reduction is a smooth projective surface
with non-reduced Picard scheme.
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