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The goal of Dieudonné theory is to “classify” all finite commutative p-groups
over a perfect field of characteristic p. The following notes are an overview of
the fundamentals of Dieudonné theory over a field (rather than a more general
base). A good reference for the material covered in these notes is Fontaine’s
book Groupes p-divisibles sur les corps locaux [2].

These notes are based on a lecture given by Brian Conrad at Oberwolfach
in summer 2005. The author would like to thank Brian Conrad both for the
lecture that he gave and for the valuable comments that he provided on earlier
drafts of these notes.

1 Frobenius

Suppose that S is a Fp-scheme and X is a S-scheme. Recall that on S there
is the absolute Frobenius morphism FS : S → S. As a map of topological
spaces, the morphism FS is the identity. The absolute Frobenius morphism acts
on sections by sending a section t to tp. This morphism is functorial in S.

We let X(p) denote the scheme defined by the cartesian diagram:

X(p) X

S S

-

? ?
-FS

The scheme X(p) is often referred to as a “twist” of X.
By the functoriality of absolute Frobenius, the following diagram commutes:

X X

S S
?

-FX

?
-FS

This diagram induces a unique morphism FX/S : X → X(p) called the relative
Frobenius morphism. The relative Frobenius morphism is an S-morphism
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that is natural in the structure morphism X → S and its formation commutes
with base change in S (but not in X).

In the special case where X is an S-group scheme, then it follows from func-
toriality that X(p) is also an S-group scheme and FX/S is an S-group morphism.

Examples:

1. Suppose that X = Gm/S or Ga/S is the multiplicative group or the
additive group. Then X(p) can be identified with X in such a way that
FG/S is the map t 7→ tp. Here t is the standard coordinate on X.

2. Say that G is a d-dimensional smooth group scheme, locally of finite type
over a field k of characteristic p. Then G(p) is a k-group of the same type.
The homomorphism FG/k : G → G(p) is surjective. In fact, it is finite
faithfully flat of degree pd. This is proven in homework 1, exercise 10
(hint: work over ÔG,e)

3. Say that X is a finite k-scheme, where k is any field of characteristic p.
Then X → k is étale if and only if FX/k is an isomorphism. To prove this,
base change to k̄. Say X̄ = Spec(A) and A = k ⊕ m with m nilpotent.
Study the action of Frobenius on m.

In slightly more generality, we can define the n-fold relative Frobenius
FX/S,n by the recursive formula FX/S,n = FX(p)/S,n−1 ◦ FX/S .

Example: If G is a finite k-group, then G is connected if and only if
FG/k,n = 0 for all sufficiently large n. To prove this, base change to k̄ and
chase components.

2 Verschiebung

Suppose that X is a flat S-scheme. In SGA 3, Exp. XII, sections 4.2-4.4 [1],
Lazard’s Theorem is used to construct the Verschiebung map VX/S : X(p) → X
with the same good functorial properties as FX/S . In the case where X is a flat
commutative S-group, the following diagrams commute:

X

X(p) X
?

FX/S

@
@

@@R

[p]X

-
VX/S

X(p)

X X(p)
?

VX/S

@
@

@@R

[p]
X(p)

-
FX/S
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In SGA 3, Exp. XII, section 4.3 [1], it is proven that for X a finite, locally free
commutative S-group the canonical identification (X∨)(p) ' (X(p))∨ identifies
VX/S with F∨

X/S . When the base scheme S is Spec(k), this can be taken to be
the definition of VX/S .

Examples

1. We have that FGm/Fp
= [p]Gm/Fp

. This implies that VGm/Fp
= idGm/Fp

.
Since Verschiebung commutes with base change, we have VGm/S = id for
every Fp-scheme S.

2. For Ga/Fp, multiplication by p is the zero map so FGa/Fp
◦ VGa/Fp

= 0.
Since FGa/Fp

is faithfully flat, it follows that VGa/Fp
= 0.

3. For µp, we have that Fµp/Fp
= 0 and Vµp/Fp

= id.

4. For αp = kerFGa/Fp
, we have that Fαp/Fp

= Vαp/Fp
= 0.

5. For Z/pZ, we have that FZ/pZ/Fp
= id and VZ/pZ/Fp

= 0

3 The Dieudonné Ring

Let k be a perfect field. Let W = W (k) denote the Witt ring of k. Recall
that this is a complete discrete valuation ring of mixed characteristic (0, p) with
residue field k and uniformizer p. For k a finite field with pn elements, this is
the valuation ring of the unique degree n unramified extension of Qp.

On W , there is a distinguished automorphism σ that is the unique lift of the
Frobenius map on k. If [·] : k → W is the Teichmüller map, then every element
of W can be written as

∑
[an]pn. The action of σ can be described by:

σ(
∑

[an]pn) =
∑

[ap
n]pn

Let K denote the fraction field of W . The Dieudonné ring Dk is defined
to be

W (k){F, V }/(FV − p)

Here W (k){F, V } is a non-commutative polynomial ring in two commuting vari-
ables F and V with the relations:

V F = FV

Fc = σ(c)F, “σ-linearity”
V c = σ−1(c)V, “σ−1-linearity”

Every element of W (k) can be written as∑
n≥0

a−nV n + a0 +
∑
n≥0

anFn

with an ∈ W (k), an = 0 for |n| � 0.
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In the special case where k = Fp, the ring Dk is actually commutative and
equal to W [F, V ]/(FV − p). In general, W ∩ Z(Dk) = Zp.

For any finite commutative p-group scheme G/k, there is a canonical decom-
position G = G0 ×Gét. A similar result hold for Dk modules. Suppose that D
is a (left) Dk-module of finite W -length. We define

Dét = ∩n>0F
n(D)

and
D0 = ∪n>0 ker(Fn : D → D)

On Dét, F acts as an isomorphism, while on D0 it is a nilpotent operator.
Furthermore, D = Dét ⊕ D0.

There is also an analog for Dieudonné modules of the“twisting” operation
on p-divisible groups. Suppose that D is a W -module. The “twist” D(σ) of D is
defined by taking the underlying abelian group structure of D and adding W -
structure by making c ∈ W act on D(σ) as σ−1(c) acts on D. This construction
can alternatively be viewed in terms of extending scalars via σ : W (k) → W (k).

For every Dieudonné module D, the semi-linear operators F and V induce
W -linear homomorphisms F (σ) : D(σ) → D and V (σ) : D → D(σ). We refer to
F (σ) and V (σ) as the linearization of F and V respectively.

The process of linearization is reversible. Suppose that D is a W -module and
F (σ) : D(σ) → D and V (σ) : D → D(σ) are homomorphisms such that both of
the maps F (σ) ◦ V (σ) and V (σ) ◦ F (σ) are equal to the multiplication-by-p map.
There is then a unique Dk-module structure on D such that that linearization
of F is F (σ) and the linearization of V is V (σ). We refer to F and V as the
delinearization of F (σ) and of V (σ) respectively.

The basic operations on Dieudonné modules are:

• Duality: Suppose that D is a Dk-module of finite W -length. Set D∨ =
HomK(D,K/W ). This is a W -module. This module can be given the
structure of a (left) Dk-module in a natural manner, as follows. Let FD∨

be the operator given by dualizing the linearization of VD and then de-
linearizing the resulting operator. The operator VD∨ is defined in the
analogous manner. In more concrete terms, if f ∈ D∨, then:

FD∨(f) = σ ◦ f ◦ VD

VD∨(f) = σ−1 ◦ f ◦ FD

The operators FD∨ and VD∨ endow D∨ with the structure of a Dieudonné
module. We call this Dieudonné module the dual of D.

• Base Change: Let k → k′ be an extension of perfect fields. Let D be
a finite-length Dk-module. Consider the W (k′)-module W (k′) ⊗W (k) D
obtatined from D by extending scalars to W (k′). There is a canonical way
to extend the Dieudonné structure on D to W (k′)-module W (k′)⊗W (k) D.
Define Fk′ to be the operator obtained by linearizing F , extending scalars
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to W (k′), and then delinearizing. In the analogous way, define the operator
Vk′ . An explicit formula for these operators is given by:

Fk′(c⊗ x) = σ(c)⊗ F (x)
Vk′(c⊗ x) = σ−1(c)⊗ V (x)

These operators define the Dk′ structure on W (k′)-module W (k′)⊗W (k)D.
This Dieudonné module is referred to as the Diuedonné module obtained
from D by base-changing to k′.

The duality and base change functors commute with each other in an evident
manner.

The significance of Dieudonné modules stems from the following theorem:

Theorem 1 (Fontaine, Ast. 47, Ch. III [2]). There is a natural anti-equivalence
of abelian categories

Dk : {finite comm. p-grps /k} → {Dk- modules of finite W -length}

with the following properties:

1. The homomorphism Dk(FG/k) is equal to the linearization of FDk(G) and
Dk(VG/k) is equal to the linearization of VDk(G).

2. We have that #G = p`W (Dk(G)). Here `W (Dk(G)) denotes the length of
the Dk(G) as a module over W .

3. There is a canonical Dk-isomorphism Dk(G)∨ ' Dk(G∨).

4. There exist canonical k-linear isomorphisms t∗G ' Dk(G)/F (Dk(G)) and
tG∨ ' ker (Dk(G) V−→ Dk(G)). Here tG denote the tangent space at the
identity.

5. There is a canonical Dk′-isomorphism W (k′) ⊗W Dk(G) ' Dk′(k′ ⊗k G)
for any extension k′/k of perfect fields. Furthermore, this isomorphism is
transitive with respect to further extension of the perfect base field.

Properties/Examples:

1. Suppose that G is k-étale. Let W ′ equal W (k̄) and K ′ denote the field of
fractions of W ′. Then we have that D(G) = HomGal(k̄/k)(G(k̄),K ′/W ′).
The operator FDk(G) acts as σ, so:

(FDk(G)χ)(g) = χ(σ(g)) = σ(χ(g))

for χ ∈ HomGal(k̄/k)
(G(k̄),K ′/W ′) and g ∈ G(k̄)

2. For Z/pZ, we have that Dk(Z/pZ) = ( 1
pW )/W ' k with F = Frobk and

V = 0.

3. For µp, we have that Dk(µp) = k with F = 0 and V = Frob−1
k .

4. For αp, we have that Dk(αp) = k and F = V = 0.
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