CHOW RING OF A BLOW-UP

JESSE LEO KASS

1. Introduction

In this document, we compute the Chow ring of the blow-up of \mathbb{P}^{3} along the twisted cubic. Our goal is to illustrate the main results of $\S 6.7$ of [Ful84] with a concrete example. We begin by fixing notation.
(1) X denotes projective space \mathbb{P}^{3},
(2) Z denotes the twisted cubic curve in X,
(3) \tilde{X} denotes the blow-up of X along Z,
(4) \tilde{Z} denotes the exceptional divisor of the blow-up.

If we forget about the embedding in X, then Z is just the projective line.
These three schemes fit into the following Cartesian diagram:

Our goal is to give a complete description of the Chow ring $\operatorname{Ch}^{*}(\tilde{X})$.
Following Fulton, we describe the additive structure of $\mathrm{Ch}^{*}(\tilde{X})$ in terms of the groups $\mathrm{Ch}^{*}(X), \mathrm{Ch}^{*}(\tilde{Z})$, and $\mathrm{Ch}^{*}(Z)$, together with the Chern classes of the normal bundle $N:=N_{Z / X}$. Having described the additive structure, we then compute the multiplicative structure using some standard intersection theory tools.

The Chow rings of X and Z are well-known. They are given by

$$
\begin{align*}
& \operatorname{Ch}(X)=\mathbb{Z}[h] /\left(h^{4}\right) \tag{1.2}\\
& \operatorname{Ch}(Z)=\mathbb{Z}[w] /\left(w^{2}\right) \tag{1.3}
\end{align*}
$$

Here h is the class of a hyperplane and w is the class of a point. The maps i_{*} and i^{*} are also easy to describe. The subvariety Z is the image of a map $\mathbb{P}^{1} \rightarrow X$ given by cubic polynomials, and it is easy to deduce the following equations from that fact:

$$
\begin{gather*}
i_{*}(1)=3 h^{2} \tag{1.4}\\
i_{*}(w)=h^{3} \tag{1.5}\\
i^{*}(h)=3 w \tag{1.6}
\end{gather*}
$$

We begin by describing the ring $\operatorname{Ch}^{*}(\tilde{Z})$.

2. Geometry of the Exceptional Divisor

The blow-down map $g: \tilde{Z} \rightarrow Z$ realizes the exceptional divisor as a projective bundle over Z. More precisely, the scheme \tilde{Z} is the projectivized normal bundle $\mathbb{P}(N)$. The geometry of \tilde{Z} can thus be completely described in terms of the Chern classes of N.

As both X and Z are non-singular, N is the quotient of $\left.T(X)\right|_{Z}$ by $T(Z)$. The Chern classes of these tangent bundles can be computed from the Euler exact sequence. This computation shows that

$$
\begin{equation*}
c(N)=1+10 w \tag{2.1}
\end{equation*}
$$

and we can conclude that the Chow ring of \tilde{Z} may be described by

$$
\begin{equation*}
\mathbb{Z}[w, z] /\left(w^{2}, z^{2}+10 w z\right) \tag{2.2}
\end{equation*}
$$

Here we are abusing notation and writing $w \in A^{1}(\tilde{Z})$ for the pull-back $g^{*}(w)$, and we will frequently use this notation for classes. Concretely, $w \in A^{1}(\tilde{Z})$ is the class of a fiber of $\tilde{Z} \rightarrow Z$. The class z is the Chern class $c_{1}(\mathcal{O}(1))$ of the relative Serre bundle.

3. The Additive Structure of $\mathrm{Ch}^{*}(\tilde{X})$

Having described the Chow ring of \tilde{Z}, we can almost immediately describe the additive structure of $\mathrm{Ch}^{*}(\tilde{X})$. The additive structure is described by Proposition 6.7 of [Ful84]. Recall that there is a short exact sequence

$$
\begin{equation*}
\operatorname{Ch}_{k}(Z) \hookrightarrow \operatorname{Ch}_{k}(\tilde{Z}) \oplus \operatorname{Ch}_{k}(X) \rightarrow \operatorname{Ch}_{k}(\tilde{X}) \tag{3.1}
\end{equation*}
$$

for every integer k. The injective map is given by $x \mapsto\left(c_{1}(M) \cap g^{*}(x),-i_{*}(x)\right)$, while the surjective map is given by $(\tilde{x}, y) \mapsto j_{*}(\tilde{x})+f^{*}(y)$. Here E denotes the excess normal bundle.

Recall that the excess normal bundle is defined to be the quotient bundle $M:=$ $g^{*}(N) / \mathscr{O}(-1)$. The Chern classes are given by

$$
\begin{aligned}
c(E) & =(1+10 w) /(1-z) \\
& =(1+10 w)\left(1+z+z^{2}\right) \\
& =1+10 w+z+z^{2}+10 w z \\
& =1+10 w+z
\end{aligned}
$$

We now have enough information to describe the additive structure of the Chow ring. Let $e \in \mathrm{Ch}_{2}(\tilde{X})$ denote the class of the exceptional divisor and $h \in \mathrm{Ch}_{2}(\tilde{X})$ denote the image of the hyperplane class under f^{*}. As additive groups, the Chow groups can be described as
(1) $\mathrm{Ch}_{3}(\tilde{X})$ is freely generated by the fundamental class 1 ;
(2) $\mathrm{Ch}_{2}(\tilde{X})$ is freely generated by h and e;
(3) $\mathrm{Ch}_{1}(\tilde{X})$ is generated by the elements w, z, and h^{2}, which satisfy the relation $10 w+z=3 h^{2} ;$
(4) $\mathrm{Ch}_{0}(\tilde{X})$ is freely generated by h^{3}.

Both w and z are the images of the appropriate classes under j_{*}, so the geometric meaning of these classes should be clear. On the other hand, the class h is the image of the hyperplane class under f^{*}, and in general, the geometric meaning of pulling back via a blow-up map is slightly obscure. Say that $V \subset X$ denotes a general hyperplane. If \tilde{V} is the proper transform, then the class h can be computed as

$$
\begin{equation*}
h=[\tilde{V}]+j_{*}\left\{c(M) \cap g^{*} s(V \cap Z, V)\right\}_{2} \tag{3.2}
\end{equation*}
$$

The scheme-theoretic intersection $V \cap X$ consists of 3 points, so $g^{*} s(V \cap Z, V)$ is supported on the union of 3 fibers of $\tilde{Z} \rightarrow Z$, and hence the second term in Equation (3.2) must be zero for dimensional reasons. We can conclude that the class h is just the class of the proper transform of a hyperplane.

Another obvious subvariety of \tilde{X} that can be associated to V is the total transform. This variety is the union of the proper transform \tilde{V} and 3 rational curves. In
particular, the variety is not pure dimensional, and hence does not have a natural class in $\mathrm{Ch}_{2}(\tilde{X})$. We now turn out attention to the multiplicative structure.

4. The Multiplicative Structure of $\mathrm{Ch}^{*}(\tilde{X})$

We describe the multiplicative structure of $\mathrm{Ch}^{*}(\tilde{X})$ by describing the intersection pairing between curves and divisors. The pairing can be described by the following matrix:

	w	z	h^{2}
e	-1	10	0
h	0	3	1

How are the intersection numbers computed? The numbers

$$
\int_{\tilde{X}} w h, \int_{\tilde{X}} h^{2} e, \int_{\tilde{X}} h^{2} h
$$

can be computed by elementary considerations. Observe that, for example, a general line in X is disjoint from the twisted cubic Z.

The computation of the number $z h$ is an application of the adjunction formula. We have

$$
\begin{align*}
\int_{\tilde{X}} z h & =\int_{\tilde{X}} j_{*}\left(c_{1}(\mathcal{O}(1))\right) \cap f^{*} h \tag{4.2}\\
& =\int_{\tilde{Z}} c_{1}(\mathcal{O}(1)) \cap j^{*} f^{*} h \\
& =\int_{\tilde{Z}} c_{1}(\mathcal{O}(1)) \cap g^{*} i^{*} h \\
& =\int_{\tilde{Z}} c_{1}(\mathcal{O}(1)) \cap 3 w \\
& =3
\end{align*}
$$

The remaining intersection numbers can be computed using the excess intersection formula. For example we have

$$
\begin{align*}
\int_{\tilde{X}} e w & =\int_{\tilde{X}} j_{*}(1) j_{*}\left(w_{0}\right) \tag{4.3}\\
& =\int_{\tilde{Z}} j^{*} j_{*}\left(w_{0}\right) \\
& =\int_{\tilde{Z}} c_{1}(\mathcal{O}(-1)) \cap w_{0} \\
& =-1
\end{align*}
$$

The computation of $z e$ is similar.

5. Applications

Let us now compute some Chow classes in terms of the bases that we have exhibited. There is a net of space quadrics that contain the twisted cubic Z. Fix a general such quadric Q, and let \tilde{Q} equal the proper transform of Q and \tilde{q} the class of \tilde{Q}. As a subvariety of Q, the twisted cubic is divisor, and so the blow-down map $\tilde{Q} \rightarrow Q$ is an isomorphism. What is the class q in terms of the basis e, h ?

We can compute the class using the Blow-Up Formula (Theorem 6.7) from [Ful84]. Using the fact that $f^{*}([Q])=2 h$, we have

$$
\begin{equation*}
2 h=q+j_{*}\left\{c(M) \cap g^{*} s(Q \cap Z, Q)\right\}_{2} \tag{5.1}
\end{equation*}
$$

The scheme-theoretic intersection $Q \cap Z$ is just the twisted cubic Z. Considered as a divisor on Q, the twisted cubic is the divisor of type $(2,1)$. The normal bundle
to Z in Q is trivial, and so $s(Q \cap Z, Q)=c\left(N_{Z / Q}\right)^{-1}=1$. We can compute the second term in (5.1). It is:

$$
\begin{align*}
c(M) \cap g^{*} s(Q \cap Z, Q) & =c(M) \cap 1 \tag{5.2}\\
& =1+10 w+z
\end{align*}
$$

We can conclude that $q=2 h-e$. As an aside, this computation shows that $f^{*}[Q]$ is the class of the total transform of the quadric.

We could also try to compute the class q by computing two of the three intersection numbers

$$
\int_{\tilde{X}} w q, \int_{\tilde{X}} z q, \int_{\tilde{X}} h^{2} q .
$$

The first and last of these numbers is the easiest to compute. Indeed, we have

$$
\int_{\tilde{X}} h^{2} q=2
$$

since a general line meets Q at 2 points that do not lie on Z. The first number can be given by elementary considerations as well. Considered as a subvariety of \tilde{Q}, the scheme-theoretic intersection $\tilde{Q} \cap \tilde{Z}$ is just the twisted cubic. If we instead consider $\tilde{Q} \cap \tilde{Z}$ as a subvariety of \tilde{Z}, then this locus is a section of $g: \tilde{Z} \rightarrow Z$, and so \tilde{Q} meets a fiber of g in a single point. Glossing over issues of transversality, we have that

$$
\int_{\tilde{X}} w q=1
$$

The class of $\tilde{Q} \cap \tilde{Z}$ in $\operatorname{Ch}_{1}(\tilde{Z})$ is $j^{*}(q)=6 w+e$ and we see that $6 w+e$ is the class of a section of $\tilde{Z} \rightarrow Z$.

From the determination of the class q, we can compute the self-intersection number as

$$
\begin{align*}
\int_{\tilde{X}} q^{3} & =\int_{\tilde{X}}(2 h-e)^{3} \tag{5.3}\\
& =\int_{\tilde{X}} 8 h^{3}+-12 h^{2} e+6 h e^{2}+-e^{3} \\
& =8+0+18+-10 \\
& =16 . \\
\quad & \text { REFERENCES }
\end{align*}
$$

[Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.

E-mail address: kass@math.harvard.edu

