CHOW RING OF A BLOW-UP

JESSE LEO KASS

1. INTRODUCTION

In this document, we compute the Chow ring of the blow-up of P3 along the
twisted cubic. Our goal is to illustrate the main results of §6.7 of [Ful84] with a
concrete example. We begin by fixing notation.

(1) X denotes projective space P3,

(2) Z denotes the twisted cubic curve in X,

(3) X denotes the blow-up of X along Z,

(4) Z denotes the exceptional divisor of the blow-up.

If we forget about the embedding in X, then Z is just the projective line.
These three schemes fit into the following Cartesian diagram:

7 1 X

(1.1) gl fl
Z —t X
Our goal is to give a complete description of the Chow ring Ch* gf( ).
Following Fulton, we describe the additive structure of Ch*(X) in terms of the
groups Ch*(X), Ch*(Z), and Ch*(Z), together with the Chern classes of the normal
bundle N := Nz, x. Having described the additive structure, we then compute the

multiplicative structure using some standard intersection theory tools.
The Chow rings of X and Z are well-known. They are given by

(1.2) Ch(X) = Z[h]/(h"),
(1.3) Ch(Z) = Z[w]/(w?).

Here h is the class of a hyperplane and w is the class of a point. The maps i,
and i* are also easy to describe. The subvariety Z is the image of a map P! — X

given by cubic polynomials, and it is easy to deduce the following equations from
that fact:

(1.4) i.(1) = 3h%,
(1.5) iv(w) = h,
(1.6) i*(h) = 3w.

We begin by describing the ring Ch*(Z).

2. GEOMETRY OF THE EXCEPTIONAL DIVISOR

The blow-down map g: Z — Z realizes the exceptional divisor as a projective
bundle over Z. More precisely, the scheme Z is the projectivized normal bundle
P(N). The geometry of Z can thus be completely described in terms of the Chern
classes of V.
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As both X and Z are non-singular, N is the quotient of T'(X)|z by T(Z). The
Chern classes of these tangent bundles can be computed from the Euler exact
sequence. This computation shows that

(2.1) ¢(N) =1+ 10w,

and we can conclude that the Chow ring of Z may be described by

(2.2) Zw, 2]/ (w?, 2% + 10wz).

Here we are abusing notation and writing w € A'(Z) for the pull- back g*(w), and
we will frequently use this notation for classes. Concretely, w € A*(Z ) is the class

of a fiber of Z — Z. The class z is the Chern class ¢1(O(1)) of the relative Serre
bundle.

3. THE ADDITIVE STRUCTURE OF Ch*(X)

Having described the Chow ring of Z, we can almost immediately describe the
additive structure of Ch*(X). The additive structure is described by Proposition
6.7 of [Ful84]. Recall that there is a short exact sequence

for every integer k. The injective map is given by = — (01 (M) N g*(z), —i(x)),
while the surjective map is given by (Z,y) — j.«(Z) + f*(y). Here E denotes the

excess normal bundle.
Recall that the excess normal bundle is defined to be the quotient bundle M :=
g*(N)/O(—1). The Chern classes are given by

¢(E)=(1410w)/(1 - 2)
= (1+10w)(1 4 z + 2?)
=1+ 10w+ 2z + 2% + 10wz
=14+ 10w+ 2.

We now have enough information to describe the additive structure of the Chow
ring. Let e € Chy(X) denote the class of the exceptional divisor and h € Chy(X)
denote the image of the hyperplane class under f*. As additive groups, the Chow
groups can be described as

(1) Chs(X) is freely generated by the fundamental class 1;

(2) Cha( ~) is freely generated by h and e;

(3) Chi(X) is generated by the elements w, z, and h?, which satisfy the relation
10w + z = 3h%;

(4) Cho(X) is freely generated by h?.

Both w and z are the images of the appropriate classes under j., so the geometric
meaning of these classes should be clear. On the other hand, the class h is the image
of the hyperplane class under f*, and in general, the geometric meaning of pulling
back via a blow-up map is slightly obscure. Say that V' C X denotes a general
hyperplane. If V is the proper transform, then the class h can be computed as

(3.2) h=[V]+j{c(M)Ng*s(VNZ,V)},.

The scheme-theoretic intersection V' N X consists of 3 points, so g*s(V N Z,V) is
supported on the union of 3 fibers of Z — Z, and hence the second term in Equation
(3.2) must be zero for dimensional reasons. We can conclude that the class h is just
the class of the proper transform of a hyperplane.

Another obvious subvariety of X that can be associated to V is the total trans-
form. This variety is the union of the proper transform V and 3 rational curves. In
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particular, the variety is not pure dimensional, and hence does not have a natural
class in Cha(X). We now turn out attention to the multiplicative structure.

4. THE MULTIPLICATIVE STRUCTURE OF Ch*(X)

We describe the multiplicative structure of Ch*(X') by describing the intersection
pairing between curves and divisors. The pairing can be described by the following
matrix:

| w oz h?
(4.1) e|l—1 10 O
h 0 3 1

How are the intersection numbers computed? The numbers

/wh,/ h2e,/ h2h
X X X

can be computed by elementary considerations. Observe that, for example, a gen-
eral line in X is disjoint from the twisted cubic Z.

The computation of the number zh is an application of the adjunction formula.
We have

(4.2) A@Mjéﬁ@NWDDﬂﬁh
=/qwmmfﬂh

Z

— [ a0y ngin

:/201((’)(1))03111
=3.

The remaining intersection numbers can be computed using the excess intersec-
tion formula. For example we have

(4.3) Joev= [ g o)

= /Zj*j* (wo)

z/cl((’)(—l))ﬂwo

Z
=1

The computation of ze is similar.

5. APPLICATIONS

Let us now compute some Chow classes in terms of the bases that we have
exhibited. There is a net of space quadrics that contain the twisted cubic Z. Fix a
general such quadric @, and let Q equal the proper transform of Q and § the class
of Q. As a subvariety of Q, the twisted cubic is divisor, and so the blow-down map
Q — Q is an isomorphism. What is the class ¢ in terms of the basis e, h?

We can compute the class using the Blow-Up Formula (Theorem 6.7) from
[Ful84]. Using the fact that f*([Q]) = 2h, we have

(5.1) 2h = q+j{c(M)Ng"s(QN Z,Q)}, -

The scheme-theoretic intersection Q N Z is just the twisted cubic Z. Considered
as a divisor on @, the twisted cubic is the divisor of type (2,1). The normal bundle
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to Z in Q is trivial, and so s(Q N Z,Q) = ¢(Nz/g)~ " = 1. We can compute the
second term in (5.1). Tt is:
(5.2) c(M)Ng's(QNZ,Q)=c(M)N1
=1+ 10w+ z.
We can conclude that ¢ = 2h — e. As an aside, this computation shows that f*[Q)]

is the class of the total transform of the quadric.
We could also try to compute the class ¢ by computing two of the three inter-

section numbers
/wq,/ zq,/ h?q.
X X X

The first and last of these numbers is the easiest to compute. Indeed, we have

/h2q:2
X

since a general line meets @ at 2 points that do not lie on Z. The first number
can be given by elementary considerations as well. Considered as a subvariety of
Q, the scheme-theoretic intersection Q N Z is just the twisted cubic. If we instead
consider Q NZasa subvariety of Z, then this locus is a section of g: Z — Z, and
so Q meets a fiber of g in a single point. Glossing over issues of transversality, we

have that
/ wq = 1.
X

The class of @ N Z in Chy(Z) is j*(¢q) = 6w + e and we see that 6w + e is the
class of a section of Z — Z.

From the determination of the class ¢, we can compute the self-intersection
number as

(5.3) /Xq3 :/;z(% —e)’

= / 8h® + —12h%e + 6he® + —¢®
X
=8+0+ 18+ —10
=16.
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