CHOW RING OF A BLOW-UP

JESSE LEO KASS

1. INTRODUCTION

In this document, we compute the Chow ring of the blow-up of \mathbb{P}^3 along the twisted cubic. Our goal is to illustrate the main results of §6.7 of [Ful84] with a concrete example. We begin by fixing notation.

- (1) X denotes projective space \mathbb{P}^3 ,
- (2) Z denotes the twisted cubic curve in X,
- (3) \tilde{X} denotes the blow-up of X along Z,
- (4) Z denotes the exceptional divisor of the blow-up.

If we forget about the embedding in X, then Z is just the projective line. These three schemes fit into the following Cartesian diagram:

$$\begin{array}{ccc} \tilde{Z} & \stackrel{j}{\longrightarrow} \tilde{X} \\ g & & f \\ Z & \stackrel{i}{\longrightarrow} X \end{array}$$

Our goal is to give a complete description of the Chow ring $\operatorname{Ch}^*(X)$.

Following Fulton, we describe the additive structure of $\operatorname{Ch}^*(X)$ in terms of the groups $\operatorname{Ch}^*(X)$, $\operatorname{Ch}^*(\tilde{Z})$, and $\operatorname{Ch}^*(Z)$, together with the Chern classes of the normal bundle $N := N_{Z/X}$. Having described the additive structure, we then compute the multiplicative structure using some standard intersection theory tools.

The Chow rings of X and Z are well-known. They are given by

(1.2)
$$\operatorname{Ch}(X) = \mathbb{Z}[h]/(h^4),$$

(1.3)
$$\operatorname{Ch}(Z) = \mathbb{Z}[w]/(w^2).$$

Here h is the class of a hyperplane and w is the class of a point. The maps i_* and i^* are also easy to describe. The subvariety Z is the image of a map $\mathbb{P}^1 \to X$ given by cubic polynomials, and it is easy to deduce the following equations from that fact:

(1.4)
$$i_*(1) = 3h^2$$

 $i_*(1) = 3h^2,$ $i_*(w) = h^3,$ $i^*(h) = 3w.$ (1.5)

We begin by describing the ring $\operatorname{Ch}^*(\tilde{Z})$.

2. Geometry of the Exceptional Divisor

The blow-down map $q: \tilde{Z} \to Z$ realizes the exceptional divisor as a projective bundle over Z. More precisely, the scheme \hat{Z} is the projectivized normal bundle $\mathbb{P}(N)$. The geometry of \tilde{Z} can thus be completely described in terms of the Chern classes of N.

As both X and Z are non-singular, N is the quotient of $T(X)|_Z$ by T(Z). The Chern classes of these tangent bundles can be computed from the Euler exact sequence. This computation shows that

(2.1)
$$c(N) = 1 + 10w$$

and we can conclude that the Chow ring of \tilde{Z} may be described by

(2.2)
$$\mathbb{Z}[w, z]/(w^2, z^2 + 10wz)$$

Here we are abusing notation and writing $w \in A^1(\tilde{Z})$ for the pull-back $g^*(w)$, and we will frequently use this notation for classes. Concretely, $w \in A^1(\tilde{Z})$ is the class of a fiber of $\tilde{Z} \to Z$. The class z is the Chern class $c_1(\mathcal{O}(1))$ of the relative Serre bundle.

3. The Additive Structure of $\operatorname{Ch}^*(\tilde{X})$

Having described the Chow ring of \tilde{Z} , we can almost immediately describe the additive structure of $\operatorname{Ch}^*(\tilde{X})$. The additive structure is described by Proposition 6.7 of [Ful84]. Recall that there is a short exact sequence

(3.1)
$$\operatorname{Ch}_k(Z) \hookrightarrow \operatorname{Ch}_k(X) \oplus \operatorname{Ch}_k(X) \twoheadrightarrow \operatorname{Ch}_k(X)$$

for every integer k. The injective map is given by $x \mapsto (c_1(M) \cap g^*(x), -i_*(x))$, while the surjective map is given by $(\tilde{x}, y) \mapsto j_*(\tilde{x}) + f^*(y)$. Here E denotes the excess normal bundle.

Recall that the excess normal bundle is defined to be the quotient bundle $M := g^*(N)/\mathscr{O}(-1)$. The Chern classes are given by

$$c(E) = (1 + 10w)/(1 - z)$$

= (1 + 10w)(1 + z + z²)
= 1 + 10w + z + z² + 10wz
= 1 + 10w + z.

We now have enough information to describe the additive structure of the Chow ring. Let $e \in \operatorname{Ch}_2(\tilde{X})$ denote the class of the exceptional divisor and $h \in \operatorname{Ch}_2(\tilde{X})$ denote the image of the hyperplane class under f^* . As additive groups, the Chow groups can be described as

- (1) $\operatorname{Ch}_3(X)$ is freely generated by the fundamental class 1;
- (2) $\operatorname{Ch}_2(X)$ is freely generated by h and e;
- (3) $\operatorname{Ch}_1(\tilde{X})$ is generated by the elements w, z, and h^2 , which satisfy the relation $10w + z = 3h^2$;
- (4) $\operatorname{Ch}_0(\tilde{X})$ is freely generated by h^3 .

Both w and z are the images of the appropriate classes under j_* , so the geometric meaning of these classes should be clear. On the other hand, the class h is the image of the hyperplane class under f^* , and in general, the geometric meaning of pulling back via a blow-up map is slightly obscure. Say that $V \subset X$ denotes a general hyperplane. If \tilde{V} is the proper transform, then the class h can be computed as

(3.2)
$$h = [\tilde{V}] + j_* \{c(M) \cap g^* s(V \cap Z, V)\}_2.$$

The scheme-theoretic intersection $V \cap X$ consists of 3 points, so $g^*s(V \cap Z, V)$ is supported on the union of 3 fibers of $\tilde{Z} \to Z$, and hence the second term in Equation (3.2) must be zero for dimensional reasons. We can conclude that the class h is just the class of the proper transform of a hyperplane.

Another obvious subvariety of X that can be associated to V is the total transform. This variety is the union of the proper transform \tilde{V} and 3 rational curves. In particular, the variety is not pure dimensional, and hence does not have a natural class in $\operatorname{Ch}_2(\tilde{X})$. We now turn out attention to the multiplicative structure.

4. The Multiplicative Structure of $\operatorname{Ch}^*(\tilde{X})$

We describe the multiplicative structure of $\operatorname{Ch}^*(\tilde{X})$ by describing the intersection pairing between curves and divisors. The pairing can be described by the following matrix:

How are the intersection numbers computed? The numbers

$$\int_{\tilde{X}} wh, \int_{\tilde{X}} h^2 e, \int_{\tilde{X}} h^2 h$$

can be computed by elementary considerations. Observe that, for example, a general line in X is disjoint from the twisted cubic Z.

The computation of the number zh is an application of the adjunction formula. We have

(4.2)
$$\int_{\tilde{X}} zh = \int_{\tilde{X}} j_*(c_1(\mathcal{O}(1))) \cap f^*h$$
$$= \int_{\tilde{Z}} c_1(\mathcal{O}(1)) \cap j^*f^*h$$
$$= \int_{\tilde{Z}} c_1(\mathcal{O}(1)) \cap g^*i^*h$$
$$= \int_{\tilde{Z}} c_1(\mathcal{O}(1)) \cap 3w$$
$$= 3.$$

The remaining intersection numbers can be computed using the excess intersection formula. For example we have

(4.3)
$$\int_{\tilde{X}} ew = \int_{\tilde{X}} j_*(1)j_*(w_0)$$
$$= \int_{\tilde{Z}} j^*j_*(w_0)$$
$$= \int_{\tilde{Z}} c_1(\mathcal{O}(-1)) \cap w_0$$
$$= -1.$$

The computation of ze is similar.

5. Applications

Let us now compute some Chow classes in terms of the bases that we have exhibited. There is a net of space quadrics that contain the twisted cubic Z. Fix a general such quadric Q, and let \tilde{Q} equal the proper transform of Q and \tilde{q} the class of \tilde{Q} . As a subvariety of Q, the twisted cubic is divisor, and so the blow-down map $\tilde{Q} \to Q$ is an isomorphism. What is the class q in terms of the basis e, h?

We can compute the class using the Blow-Up Formula (Theorem 6.7) from [Ful84]. Using the fact that $f^*([Q]) = 2h$, we have

(5.1)
$$2h = q + j_* \{c(M) \cap g^* s(Q \cap Z, Q)\}_2.$$

The scheme-theoretic intersection $Q \cap Z$ is just the twisted cubic Z. Considered as a divisor on Q, the twisted cubic is the divisor of type (2, 1). The normal bundle to Z in Q is trivial, and so $s(Q \cap Z, Q) = c(N_{Z/Q})^{-1} = 1$. We can compute the second term in (5.1). It is:

(5.2)
$$c(M) \cap g^* s(Q \cap Z, Q) = c(M) \cap 1$$

= 1 + 10w + z.

We can conclude that q = 2h - e. As an aside, this computation shows that $f^*[Q]$ is the class of the total transform of the quadric.

We could also try to compute the class q by computing two of the three intersection numbers

$$\int_{\tilde{X}} wq, \int_{\tilde{X}} zq, \int_{\tilde{X}} h^2 q.$$

The first and last of these numbers is the easiest to compute. Indeed, we have

$$\int_{\tilde{X}} h^2 q = 2$$

since a general line meets Q at 2 points that do not lie on Z. The first number can be given by elementary considerations as well. Considered as a subvariety of \tilde{Q} , the scheme-theoretic intersection $\tilde{Q} \cap \tilde{Z}$ is just the twisted cubic. If we instead consider $\tilde{Q} \cap \tilde{Z}$ as a subvariety of \tilde{Z} , then this locus is a section of $g: \tilde{Z} \to Z$, and so \tilde{Q} meets a fiber of g in a single point. Glossing over issues of transversality, we have that

$$\int_{\tilde{X}} wq = 1.$$

The class of $\tilde{Q} \cap \tilde{Z}$ in $\operatorname{Ch}_1(\tilde{Z})$ is $j^*(q) = 6w + e$ and we see that 6w + e is the class of a section of $\tilde{Z} \to Z$.

From the determination of the class q, we can compute the self-intersection number as

(5.3)
$$\int_{\tilde{X}} q^3 = \int_{\tilde{X}} (2h-e)^3$$
$$= \int_{\tilde{X}} 8h^3 + -12h^2e + 6he^2 + -e^3$$
$$= 8 + 0 + 18 + -10$$
$$= 16.$$

References

[Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete
(3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.

Harvard University, Department of Mathematics, One Oxford Street, Cambridge MA 02138, USA

E-mail address: kass@math.harvard.edu