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These notes are a summary of some of the fundamental facts concerning
abelian schemes. Most proofs have been omitted. Full proofs for most of
the results discussed in these notes can be found in Néron Models by Bosch,
Lütkebohmert, and Raynaud [1] and in chapter 6 of Geometric Invariant The-
ory by Mumford, Fogarty, and Kirwan [3]. Another good source for the material
in these notes is Mumford’s Abelian Varieties [5].

These notes are based on a lecture given by Brian Conrad at Oberwolfach
in summer 2005. The author would like to thank Brian Conrad both for the
lecture that he gave and for the valuable comments that he provided on earlier
drafts of these notes. He would also like to thank Thanos Papaioannou and
Qinjun Yan for pointing out that the definition of isogeny in an earlier draft of
these notes was incorrect.

1 Abelian Schemes

Let S be an arbitrary scheme. An abelian scheme over S is an S-group
scheme A → S that is proper, flat, finitely-presented, and has smooth and
connected geometric fibers.

When S = Spec(k) is the spectrum of a field, this is the standard definition
of an abelian variety.

Remark. The function s → dimAs is locally constant in the Zariski topology.
We typically assume that it is constant and equal to g.

Example. Some basic examples of abelian schemes are as follows:

1. If C → S is a proper, smooth S-curve with geometrically connected fibers,
then J = Pic0

C/S is an abelian scheme called the relative Jacobian of
C/S.

2. Suppose that S is a connected Dedekind scheme (for example, the spec-
trum of a Dedekind ring or a regular curve over a field). Let η be the
generic point of S. Given an abelian variety Aη over the generic point, it
is a theorem of Néron that if Aη extends to an abelian scheme AU over
a non-empty open subset U of S, then this extension is unique and func-
torial in Aη. It follows from uniqueness and “denominator-chasing” that
Aη extends over a maximal open subset.
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The Weil Extension Lemma combined with the valuative criteria of proper-
ness implies that for any abelian scheme A → S over a base S that is
normal, connected, and locally noetherian and a smooth and any sepa-
rated S-scheme Z → S, the natural map HomS(Z,A)→ Homη(Zη, Aη) is
bijective.

An isogeny f : A′ → A of abelian S-schemes is a surjective S-group map
that is quasi-finite (has finite fibers). The Miracle Flatness Theorem (see home-
work 1) together with “proper + quasi-finite⇒ finite” imply that f is finite and
locally free.

Theorem 1. Any abelian scheme A/S is commutative. Any S-scheme map
A→ G to a separated S-group scheme that maps the identity to the identity is
a S-group homomorphism.

Proof. Begin by reducing to the case where S is the spectrum of an Artin
local ring. To make this reduction, one uses properness, the Krull Intersection
Theorem, and lim−→ formalism from EGA IV3. Implicitly, we make use of the fact
that the identity section of G is cut out by a quasi-coherent sheaf of ideals. This
is where the hypothesis that G is separated is necessary.

The case where S is the spectrum of an algebraically closed field is classical
(see Mumford [5], Chapter 2). The case where S is the spectrum of a possibly
non-algebraically closed field immediately follows since extending scalars from
k to k̄ defines a faithful functor.

This proves the result on the actual fibers (rather than just on the geometric
fibers) over points s ∈ S. By “taking differences”, we are reduced to proving:

Lemma 1 (GIT Lemma). Suppose that S is the spectrum of an Artin local ring
with closed point s ∈ S and that we are given a diagram:

X Y

S
?

π

-f

�
�
�	

with π proper and flat. Let e ∈ X(S). Assume that H0(Xs,OXS
) = k(s) (e.g.

Xs̄ is connected and geometrically reduced). If f(Xs) = {point}, then there
exists η ∈ Y (S) such that f = η ◦ π.

Proof. By the theory of cohomology and Base Change (see chapter 3 of Hartshorne),
it follows that OS ' π∗(OX). On the level of topology define the section η to
be the continuous map f ◦ e : |S| → |Y |. Check that defining η# to be the
composition

OY
f#

−→ f∗OX = (η ◦ π)∗OX = η∗ ◦ π∗OX ' η∗OX
defines a morphism S → Y satisfying the desired properties.
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Corollary 1. For N ≥ 1, the morphism [N ]A : A→ A given by multiplication-
by-N is an isogeny of degree N2g. Here g = relative dimension of A. In partic-
ular, A[N ] is a finite, locally free S-group scheme of order N2g. Furthermore,
the system A[`∞] = {A[`n]}n defines an `-divisible group of height 2g.

Proof. This is Homework 3, exercise 5.

Exercise. Some basic facts about the `-divisible group of an abelian scheme:

1. Let A/k be a g-dimensional abelian scheme over a field k. For ` 6= char(k),
we have that A[`∞] is an étale `-divisible group of height 2g. In particular,
A[`∞] is the “same” as the Tate module T`(A) = lim←−A[`n](ks) as a finite
free Z`-module of rank 2g with continuous Galois action.

2. Let k be a perfect field of characteristic p > 0. Then the p-divisible group
A[p∞] is the “same” as the Dieudonne module D(A[p∞]) = lim←−D(A[pn]).
This is a module over the Dieudonne ring, Dk, that is finite and free of
rank 2g over W (k).

3. In characteristic p, the Serre-Tate Equivalence implies that the connected
component of A[p∞] is isomophic to ÔA,0, the formal group of A. This is
in homework set 3.

Suppose that f : A → A′ is an isogeny. Since f is finite and locally free, it
follows that ker (f) is a finite, locally free S-group scheme. The rank of ker f is
locally constant over S. We call it the degree of f .

Consider the case where the degree of f is constant and equal to N . By
Deligne’s Theorem (see problem 1 on homework set 2) the kernel of f , ker (f),
is killed by [N2g]A. One can use considerations with fppf sheaves to prove that
there exists an isogeny f ′ : A′ → A such that f ′◦f = [N2g]A and f◦f ′ = [N2g]A′ .
In particular, there exists an isogeny f ′ : A′ → A. We say that A and A′ are
isogenous if there exists an isogeny f : A→ A′. We have just shown that the
property of being isogenous is an equivalence relation.

Remark. There is a wonderful Theorem of Raynaud that says that any finite
locally free commutative group scheme G → S is Zariski locally on S a closed
subgroup of a relative Jacobian. This provides a foundation for crystalline
Dieudonné theory for such group schemes by using Dieudonné theory for abelian
schemes.

2 Abelian Varieties

Theorem 2. All abelian varieties over a field are projective (i.e. admit an
ample line bundle).

Proof. Mumford [5] proves this in the case where the field is algebraically closed.
A trick shows that if X is a proper k-scheme and Xk̄ is projective, then X is
projective.
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Theorem 3. Let A and A′ be abelian varieties over a field k. For any prime
`, the natural map

t` : Z` ⊗Z Homk(A,A′)→ Homk(A[`∞], A′[`∞])

induced by functoriality is injective.

Proof. First reduce to the case where k is algebraically closed. When ` 6=
char(k), the proof can be found in Mumford’s book [5]. For ` = char(k), the
same argument goes through with the Dieudonné module on the geometric fiber
playing the role of the Tate module.

Corollary 2. If f ∈ Endk(A), set Pf (n) = deg ([n]A − f). This is understood
to be 0 if [n]A − f is not an isogeny. Then Pf is a polynomial in n with integer
coefficients. It is a monic of degree 2g. Let k′/k be any perfect extension. The
polynomial Pf is equal to characteristic polynomial of the induced endmorphism
on {

T`(A) ` 6= char(k)
D(Ak′ [p

∞]) ` = char(k)

Here we consider T`(A) as a Z`-module and D(Ak′ [p
∞]) as a W (k′)-module.

Proof. First reduce to the case where k is algebraically closed and k = k′. For
` 6= p, a proof can be found on pages 180-181 of Mumford’s Abelian Varieties
[5]. For ` = p, the same proof carries over by using Dieudonné modules.

Using theorem 3 and some cleverness, one can show that Homk̄(Ak̄, A
′
k̄) is

finitely generated over Z and of rank at most 4 dimA dimA
′
. It follows that the

same holds for Homk(A,A′).

Corollary 3 (Riemann Hypothesis). Suppose k is finite and of cardinality q.
If f = FA/k is the relative Frobenius morphism, then all the complex roots of
Pf have absolute value

√
q (i.e. are “Weil q-numbers”).

Proof. See pages 203-207 of Mumford [5].

Theorem 4 (Tate’s Conjecture). If k is finitely generated over the prime field,
then the map t` is an isomorphism.

Proof. This was proven by Tate in the case where k is a finite field. Zahrin
extended this result to the case where k is finitely generated over a finite field.
Building on Tate’s method, Faltings proved the result in the case where k is a
number field and later extended his proof to the general case where k is finitely
generated over Q.
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3 Duality Theory

We will now discuss the duality theory of abelian schemes. First, we define
Picard schemes. A Picard scheme is a certain space that parameterizes line
bundle on a fixed scheme and is defined for a fairly general class of schemes.
For the remainder of this section, we will let π : X → S be a proper, flat, finitely-
presented morphism with π∗(OX) = OS holding “universally”. Furthermore,
let e : S → X be a section of π. We will be particularly interested in the case
where X/S is an abelian variety and e is the identity section.

Given an S-scheme T , we define a functor PicX/S,e( ) by:

PicX/S,e(T ) = {(L , i) : L is an invertible sheaf on XT , i : e∗T (LT ) ' OT }/ ∼=

Here ∼= indicates that isomorphic pairs (L , i) are identified. However, the hy-
potheses on π are set up so that an object (L , i) has no non-trivial auto-
morphisms. This ensures that no real information is lost in passing from the
category of rigidified line bundles over XT to the set of isomorphism classes. In
particular, the fact that a rigidified line bundle (L , i) has no non-trivial auto-
morphisms implies that assignment T 7→ PicX/S,e(T ) defines a Zariski sheaf of
abelian groups, called the relative Picard functor.

Exercise. The absolute Picard group of a scheme Y , denoted Pic(Y ), is
defined to be the group of isomorphism classes of line bundles on Y . Given a line
bundle L overXT , define τe(L ) = L⊗π∗T (e∗T (L −1). Here π denotes projection
onto T . Show that this line bundles carries a canonical trivialization ican over
e. Given the existence of this trivialization, the assignment L 7→ (τe(L ), ican)
defines a functorial homomorphism

Pic(XT )→ PicX/S,e(T )

Prove that the kernal of this homomorphism is π∗T (Pic(T )).

There are several general theorems that assert the existence of the Picard
scheme of a scheme under suitable hypotheses. For our purposes, the following
theorem is more than sufficient.

Theorem 5 (Grothendieck-Oort). If S = Spec(k) and X → S satisfies the
hypothesis stated at the beginning of this section, then PicX/k,e is representable
by a locally finite type k-group PicX/k,e. This scheme is a disjoint union of
quasi-projective k-schemes.

We let ℘ denote the universal line bundle on X × PicX/k,e. This bundle
comes equipped with a canonical trivialization (e × 1)∗(℘) ' OPicX/k,e

. The
connected component of PicX/k,e containing the identity is denoted PicoX/k,e.
The restriction of ℘ to the scheme PicoX/k,e is denoted ℘o and is called the
Poincaré bundle. In general, PicoX/k,e is geometrically connected and quasi-
compact.

Exercise. 1. If Xk̄ is smooth, then PicoX/k,e is proper (and hence projective
over k). Hint: use the valuative criterion.
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2. The scheme PicX/k,e can be non-smooth even whenX/k is smooth. In fact,
one can take X to be a surface over a field of characteristic p. Hint: This
is highly non-trivial. Examples can be found among the surfaces discussed
in Igusa’s paper [2]. For more details, see Mumford’s book Lectures on
Curves on an Algebraic Surface [4]

We now specialize to the case of an abelian variety A/k.

Theorem 6. If A/k is an abelian variety, then the Picard scheme A∨/k =
PicoA/k,e/k is smooth and hence an abelian variety.

We call A∨ the dual abelian variety of A.
Remark: By construction, the Poincaré sheaf ℘o has a canonical trivializa-

tion over {e} × A∨. The Poincaré sheaf also has a distinguished trivialization
over A×{e∨}. The argument for this is as follows. By the functorial definition
of PicX/T,e, the restriction of ℘o to A × {e∨} is equal to the identity element

of Pic0
A/k,e(k). Now the identity element of this group is the trivial bundle on

A equipped with its canonical trivialization. In particular, the restriction of
℘o|A×{e∨} has a distinguished trivialization.

The bundle ℘o equipped with this distinguished trivialization over A×{e∨}
induces a morphism κA : A → (A∨)∨. The morphism κA of abelian varieties
maps the identity section to the identity section. By theorem 1, any such mor-
phism is a homomorphism of abelian varieties.

Theorem 7. The morphism κA is an isomorphism

Proof. Reduce to the case where k is algebraically closed. This case is covered
by Mumford [5].

Given φ : A → A∨, there is an induced morphism (A∨)∨ → A∨. The
homomorphism κA can be used to identify A with (A∨)∨. Once this is done, we
obtain a morphism A→ A∨ called the dual map, denoted φ∨. We say that φ
is symmetric if φ = φ∨.

A polarization of A is a symmetric isogeny φ : A→ A∨ with the property
that (1, φ)∗(℘) is ample. A polarization is said to be a principal polarization
if it is of degree 1.

A symmetric homomorphism of an abelian variety is analogous to a symmet-
ric bilinear form on a finite dimensional real or rational vector space. Under this
analogy, a polarization is analogous to a positive-definite quadratic form on such
a vector space. The Poincaré line bundle corresponds to the evaluation pairing
V × V ∨ → k on a vector space. In the complex-analytic theory of abelian vari-
eties, this analogy can be made more precise by relating polarizations to bilinear
pairings on H1(A(C),Z).

In the general algebraic setting, the homology group H1(A(C),Z) is replaced
with the Tate module. Fix a prime ` not equal to the characteristic. By defi-
nition, there is an evaluation pairing A[`∞] × (A[`∞])∨ → µ`∞ . Since ` is not
equal to the characteristic of the ground field, this pairing can be identified with
the evaluation pairing e : T`(A)× T`(A)∨ → Z`(1).

6



Given a symmetric homomorphism φ : A→ A∨, there is an induced map on
the `-divisible groups A[`∞]→ A∨[`∞]. One can show that A∨[`∞] can be iden-
tified with the Cartier dual (A[`∞])∨ of A[`∞]. By universal formalism, giving
a homomorphism from an `-divisible group to its Cartier dual is equivalent to
giving a bilinear pairing eφ : A[`∞]× A[`∞]→ µ`∞ . Since ` is not equal to the
characteristic, the `-divisible groups A[`∞] and µ`∞ can be identified with their
groups of geometric points with the induced Galois action. After making this
identification, we obtain a bilinear pairing eφ : T`(A)×T`(A)→ Z`(1) called the
Weil pairing. This pairing is the pairing induced by e via φ in the sense that
eφ(x, y) = e(x, φ(y)). When φ is a polarization, it can be shown that eφ is non-
degenerate. However, one should beware that the pairing eφ is skew-symmetric,
not symmetric.

Using the classification of simple, finite, connected, commutative p-divisible
groups over an algebraically closed field, one can describe all polarizations φ
of an abelian variety over k̄ and deduce that deg φ is a perfect square. In the
complex-analytic case, this property follows from the fact that a non-degenerate
symplectic space over the integers has square determinant (via Pfaffians).

The notion of the dual abelian scheme can be defined over a fairly general
base S. In this generality, one can still define what is meant by a polarization.
The fiber-wise degree of a polarization of an abelian scheme is (Zariski-)locally
constant on the base S. Given this formalism, one can prove the following
theorem:

Theorem 8 (Mumford). Fix integers g, d,N ≥ 1. For any Z[1/N ]-scheme S,
let Mg,d,N (S) be the set of isomorphism classes of triples (A, φ, i), where A is
an abelian scheme over S of relative dimension g, φ is a degree d2 polarization
on A, and i : (Z/NZ)2g → A[N ] is an isomorphism of S-groups. Such triples
admit no non-trivial automorphisms for N ≥ 3, and for such N the functor
Mg,d,N is represented by a quasi-projective Z[1/N ]-scheme. In particular, up
to isomorphism, over any finite field there are only finitely many g-dimensional
abelian varieties equipped with a polarization of degree d2.
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