
MODULI OF ABELIAN VARIETIES

JESSE LEO KASS

LECTURE 1 (November 6, 2012 - Jesse Kass)

In this lecture we recall the complex analytic construction of the Torelli map and then
explain how to construct this map using algebraic geometry. We begin by fixing g ≥ 1 and
working over the field of complex numbers k = C. Define Hg equal to the Siegel upper
half-plane. Recall that is

Hg =: {τ ∈ Mg(C) : τt = τ, Im τ > 0}.

Here τt denotes the transpose, and we write Im τ > 0 indicate that the symmetric matrix
Im τ is positive definite.

We can construct elements of Hg as follows. Let C be a compact Riemann surface of genus
g. Fix a basis A1, . . . , Ag, B1, . . . , Bg for the homology H1(C,Z) such that the intersection
pairing satisfies

#Ai ∩Aj =0
#Bi ∩ Bj =0
#Ai ∩ Bi =+ 1

#Ai ∩ Bj =0 if i 6= j.

Then there is a unique basis ω1, . . . ,ωg of holomorphic 1-forms with the property that∫
Bi

ωj =

{
1 if i = j;

0 otherwise.

Consider the matrix formed by the remaining periods

τC := (τi,j =

∫
Ai

ωj).

Riemann’s Bilinear Relations Theorems states that τC ∈ Hg, so the rule that assigns to C
together with the basis (A1, · · · , Ag, B1, · · · , Bg) the matrix τC defines a set map

(1) {(C;A1, . . . , Ag, B1, . . . , Bg)}→ Hg
from the set of pairs consisting of a compact Riemann surface C and a symplectic basis
(A1, . . . , Ag, B1, . . . , Bg) for the homology of C. Given a Riemann surface C, the symplectic
or modular group

Γg := Sp(2g,Z)
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acts transitively on the collection of symplectic bases for H1(C,Z). We can make Γg act on
Hg by the rule (

a b
c d

)
· τ = (aτ+ b)(cτ+ d)−1.

With this action, the map (1) is Γg-equivariant, so there is an induced quotient map

t : Mg → Hg/Γg := Ag,1
out of the set Mg of compact Riemann surfaces of genus g. This map is the Torelli map.

We have constructed the Torelli map using elementary Hodge theory. We would like to
interpret this construction in terms of moduli and then construct t over an arbitrary field
using tools from algebraic geometry.

To begin, let us interpret Ag,1 as a (coarse) moduli space. Given τ ∈ Hg, define Λτ ⊂ Cg
to be abelian group spanned by the columns

(
τ idg

)
and set Xτ equal to the complex torus

Xτ := Cg/Λτ.

This torus admits a distinguished divisor defined as follows. The expression

Θ(z, τ) :=
∑
m∈Zg

exp iπ(mtτm+ 2mtz)

defines a holomorphic function on Cg known as the Riemann theta function. The Riemann
theta function is not Λτ-invariant, but the zero locus is invariant, and we set

Θτ := {[z] ∈ Xτ : Θ(z, τ) = 0} ⊂ Xτ.

One can show that Θτ is an ample divisor with χ(O(Θτ)) = 1. The reader familiar with
the literature on moduli of high dimensional varieties might be tempted to conjecture that
Ag,1 is the coarse moduli space of pairs (Xτ, Θτ), but this unfortunately is incorrect. Given
γ ∈ Γg with τ2 = γ · τ1 with τ1 ∈ Hg, an isomorphism

iγ : Xτ1 → Xτ2

is defined by z 7→ ((cτ1 + d)
t)−1z, but this isomorphism does NOT satisfy i−1γ (Θτ2) = Θτ1 .

Rather, we have

i−1γ (Θτ2) = Θτ1 + zγ

for a certain zγ ∈ Xτ1 .

What is unique is the polarization determined by Θτ. The polarization is the cohomology
class c1(O(Θτ)) ∈ H1,1(Xτ). This cohomology class can be described very explicitly. We have

H1,1(Xτ) = {Hermitian forms H on Cg with Im(Λτ, Λτ) ⊂ Z },

and under this identification c1(O(Θτ)) is the Hermitian form Hτ whose matrix with respect
to the standard basis is (Im τ)−1. The reader may check that ImHτ has integer values on
Λτ, and the form is independent of τ in the sense that if τ1 and τ2 are as before, then

zt1(Im τ1)
−1z2 = w

t
1(Im τ2)

−1w2

for

wi := ((cτ1 + d)
t)−1wi.
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The form Hτ is not an arbitrary element of H1,1(Xτ). The form is positive defined and
the imaginary part ImHτ, which is skew-symmetric form, is unimodular. An element H ∈
H1,1(Xτ) such that ImHτ is unimodular is called a principal polarization. The quotient Ag,1
is the moduli space of principally polarized complex tori of dimension g. The Torelli map
Mg → Ag,1 is the map that associates to a Riemann surface C the principally polarized
complex torus defined by the period matrix. This is a moduli-theoretic description of the
Torelli map, but it is still not algebraic description.

Mumford gave an algebraic description and construction of Ag,1 in his book cite book.
We now replace C with an arbitrary algebraically closed field k. The algebraic analogue
of a complex torus is an abelian variety, which we defined to be a proper smooth con-
nected k-group scheme of finite type. The algebraic definition of a polarization is a bit more
complicated. To define it, we ned to review some facts about line bundles on an abelian
variety.

Associated to an abelian variety X is the Picard scheme PicX/k = Pic(X/k), which is
defined as follows. Write 0 for the identity of X. The Picard scheme is the k-scheme that
represents the functor Pic(X/k) that assigns to a k-scheme T the set of isomorphism classes
of pairs (L, t) consisting of a line bundle L on X×k T and isomorphism (or trivialization)

t : L|0×kT
∼= OT .

The reader may verify that this rule defines a functor, and it is a difficult theorem of
Grothendieck that PicX/k exists as a locally finite type k-scheme. Because PicX/k is lo-
cally of finite type, it makes sense to talk about the connected components of PicX/k, and we
define the dual abelian variety X∨ to be the connected component containing the trivial
line bundle. The name dual abelian variety is not a misnomer.

Theorem 0.0.1. The dual abelian variety X∨ is an abelian variety.

Proof. Tensor product (of line bundles and trivializations) defines a group law on X∨, so the
content of the theorem is that X∨ is smooth and proper. Properness can be verified using the
valuative criteria, and smoothness can be verifying by an infinitesimal computation (though
one must take care: the relevant obstruction group H2(X,OX) is nonzero). Alternatively, one
can construct X∨ as Mumford does in BOOK by fixing an ample line bundle L and then
defining X∨ to be the quotient of X but the finite subgroup scheme K(L) that we defined
below. �

Now suppose that we are given a line bundle L on X. Define m : X × X → X to be the
addition morphism (coming from the k-group scheme structure) and p1, p2 : X × X → X to
be the projection morphisms. Consider the line bundle m∗L⊗p1L−1⊗p2L−1 on X×X. This
line bundle has the property that the restriction to 0 × X = X is canonically isomorphic to
L⊗OX⊗L−1, and in particular, there is a canonical trivialization tcan of m∗L⊗p1L−1⊗p2L−1.
The pair (m∗L ⊗ p∗1L−1 ⊗ p∗2L−1, tcan) is an element of PicX/k(X) = Hom(X, PicX/k), so it
determines a morphism X→ PicX/k. In fact, the image lies in X∨ ⊂ PicX/k because the image
is connected and contains OX (which is the image of 0 ∈ X). We define

φL : X→ X∨
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to be the associated morphism. Informally, this is the morphism that sends a point x ∈ X
to the line bundle T ∗xL⊗ L−1, where Tx : X→ X is the map given by translation by x.

LECTURE 2 (November 13, 2012 - Matteo Tommasini)

Theorem 0.0.2. The morphism φL has the following properties:

(1) for every line bundle L on X, φL is a group homomorphism;
(2) φL = 0 if and only if L ∈ X∨;
(3) φL⊗M = φL +φM and φL−1 = −φL; this means that we have a group homomorphism

Φ : Pic(X)→ Hom(X,X∨)

given by L 7→ φL.
(4) deg(φL) = χ(L)

2.
(5) provided h0(X, L) 6= 0, K(L) := φ−1

L (0) is finite if and only if L is ample.

By the above theorem, if L is an ample line bundle, then φL is surjective with finite kernel
K(L). Furthermore, two ample line bundles L and M define the same surjection precisely
when L = M ⊗N for N ∈ X∨. When k = C, one can show that the condition L = M ⊗N
if an only if c1(L) = c1(M) or, equivalently, the two associated Hermitian forms are equal.
We have thus found our algebraic definition of a polarization.

Definition 0.0.3. A polarization of X is a surjective homomorphism φ : X→ X∨ with the
property that there exists an ample line bundle L with φ = φL. We say that a polarization
φ has degree d if the degree of the finite k-scheme K(φ) := ker(φ) is d2. A principal
polarization is a polarization of degree 1.

We would now like to give an algebraic definition of the moduli space Ag,1 of principally
polarized abelian varieties. In order to do that, first we need to set the definitions of “family”
of abelian variety (namely abelian schemes), dual of any such family and polarizations.

First of all, we need to recall the definition of the relative functor Pic.
Definition 0.0.4. Let us fix any flat projective morphism π : X → T . Then for all locally
noetherian T -schemes f : S→ T we set (see GIT, pp.22-23)

(2) PicX/T(S) :=
{group of invertible sheaves on XS := X×T S}

{subgroup of sheaves of the form p∗2(M) for M ∈ Pic(S)}
,

where we are considering a cartesian diagram:

XS X

�

S T.
f

p1

πp2
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If π : X→ T has a section ε : T → X, then we can prove that

PicX/T(S) = {group of pairs of isomorphism classes of pairs (L, t)

(3) where L is any invertible sheaf on XS and t : (ε ◦ f, idS)∗L
∼→ OS}.

Here we the map (ε ◦ f, idS) is the unique morphism induced by the following diagram:

S T

y
XS X

y
�

S T.

idS

ε

p1

π

f

f

p2

Even without the existence of ε, PicX/T is a contravariant functor from locally noetherian
T -schemes to abelina groups. A known fact is that there exists a scheme PicX/T over T and
a natural transformation of functors

δ : PicX/T → PicX/T

i.e. a family of compatible set maps

δS : PicX/T(S)→ HomT(S, PicX/T)

for S varying in the category of S-schemes, such that

(a) δS is always injective;
(b) δS is surjective whenever XS → S admits a section.

In particular, if X → T has a section, then XS → S has a section for every T -scheme
S→ T . Therefore in this case δ is a natural equivalence of functors, so the functor PicX/T is
represented by PicX/T .

Also when π : X→ T has no sections, we can write PicX/T as a disjoint union of components
PicPX/T defined as follows. Take any sheaf OX(1), relatively ample for π. For all invertible

sheaves L on XS and for all s ∈ S, let Ls be the sheaf induced by restriction on X×TSpec(k(s)).
Then for every polynomial P ∈ Z[n], PicPX/T is the connected component of PicX/T associated

to the functor PicPX/T defined for every T -scheme S by

PicPX/T(S) := {[L] for L invertible sheaf on XS such that

5



χ(Ls(n)) = P(n) for n >> 0} ⊂ PicX/T(S).

Every PicX/T is a quasi-projective scheme over T .

Definition 0.0.5. Given a k-scheme T , we define an abelian scheme π : X→ T of dimen-
sion g to be any finitely presented, smooth, proper T -group scheme with connected geometric
fibers of dimension g. Given an abelian scheme X/T , we define the dual abelian scheme
X∨/T to be the connected component of the relative Picard scheme PicX/T /T containing the
trivial line bundle. We denote by π∨ the structure morphism X∨ → T .

Note that since X→ T is a T -group, we have a section of π, namely the identity ε of the
T -group, so we can use either (2) or (3).

Definition 0.0.6. A polarization of an abelian scheme X/T is a T -group scheme homo-
morphism

X X∨

y

T

π∨π

φ

such that for all geometric points t of T the induced homomorphism

φt : Xt → (X∨)t = (Xt)
∨

is a polarization in the sense defined earlier. We say that the degree of φ is d is the degree
of every φt is so. A principal polarization is a polarization φ of degree 1.

In other terms, we are imposing that for every t of T there exists an ample line bundle Lt
on Xt such that φt = φLt . We would like to prove that there is a global L over X such that
φ = φL. Actually, this will not always be the case (see below).

Since π : X → T has a section ε, then by the previous description of the functor PicX/T
we get that such a functor is represented by PicX/T . In particular, there exists a universal
object

univ ∈ PicX/T(PicX/T).

The inclusion X∨ ↪→ PicX/T induces a map

PicX/T(PicX/T)→ PicX/T(X∨).

We denote by univ ′ the image of univ by this map. By (2) univ ′ is the class of an
invertible sheaf L over X×T X∨, modulo tensor product with objects of the form p∗2(M) for
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M invertible sheaf on X∨. Now let us denote by ε ◦π∨× idX∨ the unique morphism induced
by the following diagram

X∨ T

y
X×T X∨ X

y
�

X∨ T.

id
X∨

ε

p1

π

π∨

π∨

p2

Then there exists a unique Luniv in the class univ ′ such that

(ε ◦ π∨)× idX∨)∗Luniv = OX∨

(see pp. 120-121 GIT). Now for every morphism of T -schemes φ : X→ X∨ we set

L∆(φ) := (idX, φ)
∗(Luniv).

Here (idX, φ) is the unique morphism induced by the following diagram (we recall that φ
is a morphism of T -schemes, so the external part of the diagram commutes)

X

y

X×T X∨ Xy

�

X∨ T.

idX

π∨

p1

φ

p2 π

So we have associated to every morphism of T -schemes φ : X/T → X∨ an invertible sheaf
L∆(φ) on X.

Theorem 0.0.7. (GIT, proposition 6.10) If φ is any polarization for X/T , then φL∆(φ) = 2φ.

It turns out (GIT proposition 6.11) that the objects of the form L∆(φ) are relatively ample
with respect to π : X→ T . Moreover, any relatively ample L can be obtained in at most one
way as L = L∆(φ) for a polarization φ of X/T .
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In addition, for every polarization φ of X/T , the sheaf (L∆(φ))⊗3 is very ample with respect
to π. For any polarization φ, let us consider the OT -module

E(φ) := π∗((L∆(φ))⊗3).

It turns out that E is locally free and that

rk(E(φ)) = 6g · d
where d is the degree of φ. In particular, if φ is a principal polarization, we have that such
rank is equal to 6g.

Now for every k-scheme T over k we set

Ag,1(T) := {all pairs (X/T,φ) s.t. X/T is an abelian scheme and

φ : X→ X∨ is a principal polarization of X/T }.

It turns out that Ag,1 is a contravariant functor from the category of k-schemes to the
category of sets.

Theorem 0.0.8. (Mumford) Ag,1 has a coarse moduli space Ag,1 that is a quasi-projective
k-scheme.

Proof. (sketch) For every pair (X/T,φ) the sheaf (L∆(φ))⊗3 is very ample with respect to
π : X→ T , so it induces an embedding X ↪→ Pm× T , where m := 6g− 1. To be more precise,
there exists an isomorphism θ and a diagram as follows:

X P(E(φ)) Pm × T.

y y

T

π

θ˜

p2

We say that any θ as before is a linear rigidification of the pair (X/T,φ).

In general linear rigidifications are not unique because one can always replace θ with
(α× idT) ◦ θ for any α ∈ Aut(Pm) = PGL(m+ 1). Therefore Mumford defines also another
contravariant functor Hg,1 on the category of k-schemes by setting

Hg,1(T) := {all triples (X/T,φ, θ) s.t. X/T is an abelian scheme,
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φ : X→ X∨ is a principal polarization of X/T

and θ is a linear rigidification of (X/T,φ)}

for each k-scheme T . First of all, Mumford proves that this functor is represented by a
quasi-projective scheme Hg,1 that is obtained as a suitable locally closed subscheme of an
Hilber scheme HilbPPm . The group PGL(m + 1) acts on Hg,1 by change of basis and Ag,1
should be the quotient of Hg,1 by PGL(m+ 1). Mumford shows that this quotient exists bt
using the method of the covariant.

Mumford fixes a large integer M and then shows that the rule that assigns to a linearly
rigidified abelian variety theM-torsion on the abelian variety defines a PGL(m+1) morphism
Hg,1 → Pm × · · · × Pm whose image is contained in the open locus (Pm × · · · × Pm)st of GIT
stable points. The geometric quotient of this stable locus exists by the main theorem of
GIT, and the main theorem of the covariant asserts that we can conclude that the geometric
quotient of Hg,1 exists. This completes the proof sketch. �

LECTURE 3 (November 20, 2012 - Nicola Tarasca) - THINGS NOT SAID IN THE SEC-
OND LECTURE

We can now algebraically construct the Torelli map t : Mg → Ag,1. Recall that Mg is the
coarse moduli space of smooth curves. That is, Mg is the quasi-projective k-scheme that
co-represents the functor Mg that assigns to a scheme T the set of isomorphism classes of
proper smooth T -curve C→ T with geometrically connected genus g smooth fibers.

Definition 0.0.9. Given a T -curve C→ T , for any d we denote by Jd be the subscheme of
PicC/T that parameterizes degree d line bundles. We set J(C/T) := J0.

Note: we don’t write C∨ for J(C/T) since in general C → T is not an abelian scheme.
Nonetheless, we have:

Theorem 0.0.10. J(C/T)→ T is an abelian scheme.

Now we want to show that J(C/T) → T admits a distinguished principal polarization. If
we are able to do that, then we can associate to any element (C → T) ∈ Mg(T) a point in
Ag,1(T). This will give a natural transformation of functors

α :Mg → Ag,1
and this will correspond to the Torelli map α :Mg → Ag,1.

In order to do that, first of all let us consider the diagonal ∆ ⊂ C×T C. This is a relative
Cartier divisor over C; the associated line bundle OC×TC(∆) is such that its restriction to
every point of C gives a line bundle on C of degree 1. Therefore OC×TC(∆) induces a unique
morphism
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δ : C→ J1.

Suppose that π : C→ T has a section ε and define the morphism of T -schemes

θε := δ− δ ◦ ε ◦ π : C→ J(C/T).

Set theoretically, this morphism is given by

p ∈ C 7→ OC(p− ε(π(p)))
By pullbacks, θε induces a morphism

PicJ(C/T) → PicC/T

and by restriction to line bundles of degree zero also a morphism:

ψε : J
∨(C/T)→ J(C/T).

Lemma 0.0.11. Suppose that π : C → T has a section ε. Then the morphism ψε is an
isomorphism.

Lemma 0.0.12. If there are 2 sections εi : T → X for i = 1, 2, then

ψε1 = ψε2.

Now by base change S → T we can always assume that π : X → T has a section, at least
étale locally. Since any 2 sections as before give rise to the same morphism we concllude
that there is a unique

ψ : J∨(C/T)→ J(C/T)

that is induced by the local ψε (note: we are not claiming that there exists a global section
ε, but only that there exists a global ψ). Since ψε is always an isomorphism, so is ψ.

Theorem 0.0.13. ψ−1 : J(C/T)→ J∨(C/T) is a polarization of the abelian scheme J(C/T)/T .

LECTURE 3 (November 20, 2012 - Nicola Tarasca) - THETA DIVISOR

Definition 0.0.14. Given an Abelian variety A, a Poincaré sheaf P is a sheaf on A× A∨

such that (i) P |A×{b} ∈ Pic0(A× {b}) for every b ∈ A∨, and (ii) P |{0A}×A∨ is trivial.
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Given an Abelian variety A, a pair (A∨,P), where A∨ is the dual Abelian variety and
P is a Poincaré sheaf, satisfies the following universal property: for every pair (B,L) with
B an algebraic variety and L a sheaf on A × B verifying the following two properties: (i)
L|A×{b} ∈ Pic0(A × {b}) for every b ∈ B, and (ii) L|{0A}×B is trivial, there exists a unique
regular map α : B→ A∨ such that (1× α)∗P ∼= L.

Let C be a complete nonsingular curve over a field k, with char(k) = 0. Let P0C be the
functor defined as follows: given T an algebraic space over k,

P0C(T) := {L ∈ Pic(C× T) | deg(L|t) = 0 ∀ t}/π∗2Pic(T).

Theorem 0.0.15. There exists an Abelian variety J defined over k that represents the functor
P0C.

Proposition 0.0.16. The tangent space to J at 0 is canonically isomorphic to H1(C,OC).
In particular, dim J = genus(C) =: g.

When g = 0, one has J = 0. In the following we will assume g > 0.

Definition 0.0.17. Given P ∈ C, let us define fP : C → J so that Q 7→ L(Q) ⊗ L(p)−1, or
equivalently Q 7→ [Q− P], the linear equivalence class of Q− P.

Remark 1. (i) The induced map Div0(C)→ J,
∑

Q nQ ·Q 7→∑Q nQfP(Q) = [
∑

Q nQ ·Q]
is independent of P, is surjective, and its kernel coincides with principal divisors.

(ii) If P ′ ∈ C is a different point, then fP ′ = t[P−P ′] ◦ fP.

In the following, set f := fP. Let fr : Cr → J, (P1, . . . , Pr) 7→ [P1 + · · · + Pr − rP] be the
induced map on Cr. The map fr is symmetric, hence it induces a map f(r) : C(r) := Cr/Sr =
Divr(C)→ J such that D 7→ [D− rP] for D ∈ Divr(C). The fiber of f(r) containing D is the
complete linear system |D|.

Definition 0.0.18. Wr := Im(f(r)).

Theorem 0.0.19. For every r ≤ g, the morphism f(r) : C(r) →Wr is birational, in particular
f(g) is a birational map from C(g) onto J.

Corollary 0.0.20. For every r ≤ g, the morphism fr : Cr →Wr has degree r!

Proof. The morphism fr is the composition of the followings Cr → C(r) →Wr. �

Definition 0.0.21. The theta divisor is defined as Θ :=Wg−1 in J.

Remark 2. (i) For every effective divisor D in J, considerm∗L(D)⊗π∗1L(D)−1⊗π∗2L(D)−1 :=
L ′(D), where m : J × J → J is the addition map, and πi : J × J → J is the projection on the
i-th factor. Since L ′(D) admits a trivialization on {0J}×J and J×{0J}, it induces a morphism
ϕL(D) : J→ J∨.

(ii) A divisor D is ample if and only if ϕL(D) is an isogeny. In this case (1×ϕL(D))
∗P =

L ′(D).
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Definition 0.0.22. (i) Θ− = (−1)∗Θ, where (−1) : J→ J is the inverse map.

(ii) Θa := Θ+ a, for a ∈ J.

(iii) Θ−
a := (Θ−)a.

Remark 3. ϕL(Θ−) = ϕL(Θ) = ϕL(Θa).

Theorem 0.0.23. The morphism ϕL(Θ) : J→ J∨ is an isomorphism.

In the remaining part of this section we will sketch a proof of this theorem. The treatment
is loosely based on the proof from Milne’s book ”Abelian Varieties”.

The proof can be divided into 4 steps.

Lemma 0.0.24. Let U be the largest open subset of J such that: (i) the fibre of f(g) : C(g) → J
at any point of U has dimension 0, and (ii) if a ∈ U and D(a) is the unique element in
(f(g))(−1)(a), then D(a) =

∑g
i=1 Pi, where Pi 6= Pj for i 6= j.

Then f−1(Θ−
a ) = D(a) for every a ∈ U, where f := fP : C→ J.

Proof. Let a ∈ U and D := D(a) =
∑g

i=1 Pi be the unique element in (f(g))(−1)(a). Let
Q1 ∈ C. Then f(Q1) ∈ Θ−

a iff there exist Q2, . . . , Qg such that f(Q1) = −
∑g

i=2 f(Qi) + a.
That is,

∑g
i=1Qi is linear equivalent to D. Since a ∈ U, it follows that

∑g
i=1Qi = D. Hence

the support of f−1(Θ−
a ) is {P1, . . . , Pg}. Furthermore, one shows that deg f−1(Θ−

a ) ≤ g, hence
the statement. �

Lemma 0.0.25. Let a ∈ J and D ∈ C(g) such that f(g)(D) = a. Then f∗L(Θ−
a )

∼= L(D).

Proof. The Lemma is true on a dense open subset of J by Lemma 1.0.24. �

Let M be a universal sheaf on C × J, that is, (i) M|C×{a} ∼= L(D − gP), for D such that

f(g)(D) = a, and (ii) M|{P}×J is trivial.

Lemma 0.0.26. On C× J we have (f× (−1)J)
∗L ′(Θ−) ∼=M.

Remark 4. Note that the composition of the following maps C→ C× {a}
f×(−1)−−−−→ J× J m−→ J

is t−a ◦ f.

(i) (f× (−1))∗m∗L(Θ−)|C×{a} ∼= L(t−1−aΘ−)|f(C) ∼= L(Θ−
a )|f(C)

∼= f∗L(Θ−
a ).

(ii) (f× (−1))∗π∗1L(Θ−)|C×{a} ∼= f
∗L(Θ−).

(iii) (f× (−1))∗π∗2L(Θ−)|C×{a} ∼= O.

Proof of Lemma 1.0.26. From Remark 4 (i) and Lemma 1.0.25 we have

(f× (−1))∗m∗L(Θ−)|C×{a} ∼= f
∗L(Θ−

a )
∼=M⊗ π∗1L(gP)|C×{a}.
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When a = 0, one has f∗L(Θ−) ∼= L(gP). It follows that (f × (−1))∗π∗1L(Θ−) ∼= π∗1L(gP).
Finally

(f× (−1))∗(m∗L(Θ−)⊗ π∗1L(Θ−)−1) ∼=M⊗ π∗2N
for some sheaf N on J. Computing the restriction of the sheaves to {P} × J, one finds
N ∼= (−1)∗L(Θ−). �

Consider the sheaf (f× 1)∗P on C× J∨. This sheaf comes with a trivialization on {P}× J∨
and C×{0J∨}, hence there exists a unique homomorphism f∨ : J∨ → J such that (1×f∨)∗M ∼=
(f× 1)∗P .

Lemma 0.0.27. The morphism ϕL(Θ−) is injective, hence it is an isomorphism.

Proof. We have the following isomorphisms

(1× f∨ ◦ (−ϕL(Θ−)))
∗M ∼= (1× (−ϕL(Θ−)))

∗(1× f∨)∗M
∼= (1× (−ϕL(Θ−)))

∗(f× 1)∗P
∼= (f× (−ϕL(Θ−)))

∗P
∼= (f× (−1))∗(1×ϕL(Θ−))

∗P
∼= (f× (−1))∗L ′(Θ−)
∼= M.

It follows that f∨ ◦ (−ϕL(Θ−)) : J → J is such that (1 × f∨ ◦ (−ϕL(Θ−)))
∗M ∼= M, hence

f∨ ◦ (−ϕL(Θ−)) is the identity and ϕL(Θ−) is injective. �
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