No cost for canceling causal inferences in the comprehension of short English narratives

John Duff, Pranav Anand, and Amanda Rysling

UC Santa Cruz Linguistics AMLaP 29, 1 September 2023 jduff@ucsc.edu

Online commitment to pragmatic inferencing

- Are inferences generated actively and incrementally?
- Do inferences require costly reanalysis to retract?

Our test case: Causal inferences in discourse.

Sally voted for the candidate ß that has a progressive platform $\boldsymbol{\alpha}$

EXPLANATION(α , β): α because β

Comprehenders use schemata like EXPLANATION(α, β) to expect certain form and content in running discourse [9–12, 14].

Experiment 2a/b: Protagonist knowledge (n = 71, 80**)**

Prolonged task-dependent difficulty with ignorant protagonists, no clear results.

A-Maze and SPR tasks manipulating contextual possibility of inference via normed protagonist KNOWLEDGE of the potentially causal property, 40 items (+70 fillers).

Sally lives in a small city, where recently there was a citywide election for a new mayor with several candidates, and she had to decide among them on her mail-in ballot.

- Knowledgeable She spent some time reading everything she could about the candidates before mailing in her ballot.
 - She didn't have any time to read anything about the candidates Ignorant before mailing in her ballot.

- When is the associated inference $|\alpha|$ because β | computed?
- Does it become a firm representational commitment?

What does incremental commitment look like?

Two features diagnose active and firm representational commitment in lexical [6, 8], aspectual [4, 13], and quantificational [5, 7] ambiguities:

Representation costs at the ambiguous region when content or recent context is inconsistent with a heuristic preference or default. (e.g. subordinate access, coercion)

Reanalysis costs at late disambiguation if incompatible with a heuristic preference.

Hypotheses & Predictions

Causal inferences are incremental and heuristic:

- When α begs explanation, readers predict α because β .
- Predicts difficulty on β when it is not a plausible or possible explanation for α .

Causal inferences are firm:

- Readers register α because β as a representational commitment.
- Predicts difficulty when an explicit, contrary explanation is later given for α .

- In the end, she voted for Pat Mirabella.
- **S**2 He has the most progressive platform in the race.
- **S**3 He's from a very socio-economically diverse area...
- She voted for him because his name was first on the ballot. **S4**

Experiment 1: Causal plausibility (n = 128**)**

RCs in choice contexts are expected as explanations, but later retraction comes for free.

 2×2 A-Maze task [2] crossing normed causal PLAUSIBILITY of an RC (Plaus, Implaus) and the POSITION of *because* (Early, Late) across 64 items (+ 80 fillers).

Context: Sally lives in a small city, where recently there was a citywide election for a new mayor with several candidates, and she had to decide among them on her mail-in ballot.

Vean Vean					T
Z S1	S2		S3	S4 Matrix	Because
S2	95% Crl	S 3	95% Crl	Because	95% Crl
Knowledge (Kn.)	(-0.04, 0.00)		(-0.04, -0.00)		(-0.04, -0.00)

Incremental: In SPR, protagonist ignorance led to slightly slower reading across the board: general difficulty rather than difficulty with causal inference.

Not firm: No reanalysis cost for *because* after possible explanation. ($BF_{10} < 0.2$)

Discussion

- Evidence of slowdowns on implausibly causal properties supports early, heuristic expectations for a causal inference.
 - In E1, automatic enough that context (pre-existing explanation) cannot supercede.
 - E2 nulls perhaps attributable to this context-insensitivity.
- No apparent reanalysis costs: **no evidence for firm commitment**.
 - Cf. lack of cancellation costs for scalar implicatures [1].
- Task comparisons in E2 suggest that Maze performance may be less sensitive to subtle discourse manipulations.
 - SPR slightly more sensitive to differences in narrative typicality? (but cf. [3])
 - SPR-specific slowdown at the S4 matrix: Costs for unexpected topic resumption?

Conclusions

brms linear m/e models for Resid. $\ln(RT)$:

RC (has a)	95% Crl	Because	95% Crl
Plausibility (Plaus)	(-0.49, -0.27)		(-0.06, 0.04)
Position (Late)	(-0.08, 0.02)		(-0.44, -0.27)
$Plaus\timesPos$	(-0.09, 0.05)		(-0.06, 0.08)

RC RTs better predicted by GPT-2 surprisals given causal context (because he has a large mustache) than RC context. ($BF > 10^{100}$)

Incremental:

Implausible = slow, even after early because.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Not firm: No reanalysis X cost for *because* after plausible explanation. $(BF_{10} = 0.05)$

- We find evidence that **causal inferences are considered incrementally**, and without reference to context.
- Nevertheless, a persistent lack of reanalysis costs suggests that readers hedge these inferences, rather than forming a firm commitment.

References

Bergen & Grodner. 2012. <i>J Exp Psych: Learn Mem Cog</i> .	[8]	Frazier & Rayner. 1990. <i>J Mem Lang</i> .
Boyce, Futrell & Levy. 2020. <i>J Mem Lang</i> .	[9]	Garvey & Caramazza. 1974. <i>Linguistic Inquiry</i> .
Boyce & Levy. 2023. <i>Glossa Psycholinguistics</i> .	[10]	Hoek, Rohde, Evers-Vermeul & Sanders. 2021. Cognition.
Brennan & Pylkkänen. 2008. <i>Brain & Lang</i> .	[11]	Koornneef & Sanders. 2013. Lang Cog Proc.
Dotlačil & Brasoveanu. 2015. <i>Lang Cog Neuro</i> .	[12]	Mak & Sanders. 2013. <i>Lang Cog Proc</i> .
Duffy, Morris & Rayner. 1988. <i>J Mem Lang</i> .	[13]	Piñango, Zurif & Jackendoff. 1999. <i>J Psycholing Res</i> .
Filik, Paterson & Liversedge. 2004. <i>Psychonom Bull Rev</i> .	[14]	Rohde, Levy & Kehler. 2011. Cognition.

Supplementary materials for E1: https://osf.io/gf64q/?view_only=152a684014334f22bfde21aee5a85a05 and E2: https://osf.io/a4vx6/?view_only=fb61c88454ed4448914223651daeeb50

Acknowledgements: Many thanks to RAs Sebastian Bissiri and Kasey La, plus Vera Demberg, Hannah Rohde, and Matt Wagers for helpful discussions and feedback on this work.