Problem Set 8 (Due 3/12/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. We will discuss the methods for computing the integrals in P3 \& P4 on Tuesday 3/9.

P1. This problem gives another formula for the residue at a pole that is sometimes convenient. Suppose that f has a pole of order m at $z_{0} \in \mathbb{C}$. Prove that

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

P2. For each function $f(z)$, classify all of its isolated singularities as either: removable, essential, or a pole. If an isolated singularity is a pole, make sure so specify the order. Compute the residue at every isolated singularity. ${ }^{1}$
(a) $f(z)=\frac{1}{\sin z}$;
(b) $f(z)=\frac{1}{\sin ^{2} z}$;
(c) $f(z)=\sin \left(\frac{1}{z}\right)$;
(d) $f(z)=\frac{z}{\cos z}$;
(e) $f(z)=\frac{1}{e^{z}-1}$;
(f) $f(z)=z e^{\frac{1}{z-2}}$;
(g) $f(z)=\frac{e^{z}-1}{z}$.

P3. Compute the following improper integral using complex analysis:

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{6}+1} d x
$$

P4. Let $a>0$. Compute the following improper integral using complex analysis:

$$
\int_{0}^{\infty} \frac{\cos a x}{x^{2}+1} d x
$$

[^0]
[^0]: ${ }^{1}$ Note: computing a Laurent series is not always the easiest way to identify the type of singularity.

