Problem Set 8 (Due 3/12/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. We will discuss the methods for computing the integrals in P3 & P4 on Tuesday 3/9.

P1. This problem gives another formula for the residue at a pole that is sometimes convenient. Suppose that f has a pole of order m at $z_0 \in \mathbb{C}$. Prove that

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)].$$

- **P2.** For each function f(z), classify all of its isolated singularities as either: removable, essential, or a pole. If an isolated singularity is a pole, make sure so specify the order. Compute the residue at every isolated singularity.¹
 - (a) $f(z) = \frac{1}{\sin z};$
 - (b) $f(z) = \frac{1}{\sin^2 z};$
 - (c) $f(z) = \sin(\frac{1}{z});$
 - (d) $f(z) = \frac{z}{\cos z};$
 - (e) $f(z) = \frac{1}{e^z 1};$
 - (f) $f(z) = ze^{\frac{1}{z-2}};$
 - (g) $f(z) = \frac{e^z 1}{z}$.

P3. Compute the following improper integral using complex analysis:

$$\int_0^\infty \frac{x^2}{x^6+1} \, dx$$

P4. Let a > 0. Compute the following improper integral using complex analysis:

$$\int_0^\infty \frac{\cos ax}{x^2 + 1} \, dx$$

 $^{^1\}mathrm{Note:}\,$ computing a Laurent series is not always the easiest way to identify the type of singularity.