Problem Set 7 (Due 3/5/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work.
P1. Use formal division and multiplication of power series to determine the first 4 nonzero terms of following series. It is not necessary to show the steps of the division/multiplication, but you should briefly explain which power series are being dividing/multiplied, and why it is justified.
(a) The Laurent series of $\frac{1}{e^{z}-1}$ on the annulus $0<|z|<2 \pi$.
(b) The Taylor series of $e^{z} \cos z$ about 0 .
(c) The Laurent series of $\csc z=\frac{1}{\sin z}$ on the annulus $0<|z|<\pi$.

P2. Let C be the positively oriented unit circle. Compute the following integrals. Justify your computations.
(a) $\int_{C} \frac{1}{e^{z}-1} d z$;
(b) $\int_{C} e^{z} \cos z d z$;
(c) $\int_{C} \csc z d z$.

P3. For each function $f(z)$, compute $\underset{z=0}{\operatorname{Res}} f(z)$. Justify your computations.
(a) $f(z)=z \cos \left(\frac{1}{z}\right)$;
(b) $f(z)=\frac{\csc z}{z^{4}}$.

P4. For each function $f(z)$, compute $\int_{C} f(z) d z$ where C is the positively oriented circle $|z|=\frac{31}{10} .{ }^{1}$ Justify your computations.
(a) $f(z)=z \cos \left(\frac{1}{z}\right)$;
(b) $f(z)=\frac{\csc z}{z^{4}}$;
(c) $f(z)=\frac{1}{2-z}$;
(d) $f(z)=\frac{z}{(z-1)(z-3)}$;
(e) $f(z)=\frac{z}{1+z^{2}}$.

P5. Let C be the unit circle with positive orientation. Let $n \geq 0$ be a nonnegative integer.
(a) The function $f(z)=z^{n} e^{\frac{1}{z}}$ has an isolated singularity at $z_{0}=0$. Find the Laurent series expansion for f on the annulus $0<|z|<\infty$.
(b) Use the theory of residues to compute the integral

$$
\int_{C} z^{n} e^{\frac{1}{z}} d z
$$

[^0](c) Prove that ${ }^{2}$
$$
\int_{C} e^{z+\frac{1}{z}} d z=2 \pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

P6. Consider the function

$$
f(z)=\frac{2 z^{3}+1}{\left(z^{2}-1\right)\left(z^{2}+1\right)}
$$

Show that $f(z)$ has no antiderivative on the domain $D=\{z \in \mathbb{C}:|z|>1\} .{ }^{3}$

P7. (Optional.) ${ }^{4}$

(a) Suppose that f is analytic everyone on \mathbb{C}, except at a finite number of (isolated) singular points z_{1}, \ldots, z_{n}. Show that

$$
\sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)+\operatorname{Res}_{z=\infty} f(z)=0
$$

(b) Let

$$
p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}, \quad a_{n} \neq 0
$$

be a polynomial of degree $n \geq 2$. Let C be a positively oriented simple closed contour whose interior contains all the zeros of $p(z)$. Show that ${ }^{5}$

$$
\int_{C} \frac{1}{p(z)} d z=0
$$

(c) Using (a) and (b), compute the integral

$$
\int_{C} \frac{1}{\left(z^{2021}+1\right)(z-3)} d z
$$

where C is the positively oriented circle $|z|=2$.

[^1]
[^0]: ${ }^{1}$ Hint: several of these functions appeared in PSet 6.

[^1]: ${ }^{2}$ Hint: write $e^{z+\frac{1}{z}}=e^{\frac{1}{z}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, then apply the theorem on integrating power series.
 ${ }^{3}$ Hint: consider a circle C that lies in D and contains all the singularities of f in it's interior. Compute $\int_{C} f(z) d z$ by computing the residue at ∞. Use the theorem that says $\operatorname{Res}_{z=\infty} f(z)=\operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)$.
 ${ }^{4}$ Worth 4 points of extra credit, added to you score on this assignment.
 ${ }^{5}$ Hint: show that $\operatorname{Res}_{z=\infty} \frac{1}{p(z)}=0$.

