Problem Set 7 (Due 3/5/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work.

- **P1.** Use formal division and multiplication of power series to determine the first 4 nonzero terms of following series. It is not necessary to show the steps of the division/multiplication, but you should briefly explain which power series are being dividing/multiplied, and why it is justified.
 - (a) The Laurent series of $\frac{1}{e^z-1}$ on the annulus $0 < |z| < 2\pi$.
 - (b) The Taylor series of $e^z \cos z$ about 0.
 - (c) The Laurent series of $\csc z = \frac{1}{\sin z}$ on the annulus $0 < |z| < \pi$.
- **P2.** Let C be the positively oriented unit circle. Compute the following integrals. Justify your computations.
 - (a) $\int_C \frac{1}{e^z 1} dz;$
 - (b) $\int_C e^z \cos z \, dz;$
 - (c) $\int_C \csc z \, dz$.
- **P3.** For each function f(z), compute $\operatorname{Res}_{z=0} f(z)$. Justify your computations.
 - (a) $f(z) = z \cos\left(\frac{1}{z}\right);$
 - (b) $f(z) = \frac{\csc z}{z^4}$.
- **P4.** For each function f(z), compute $\int_C f(z) dz$ where C is the positively oriented circle $|z| = \frac{31}{10}$.¹ Justify your computations.
 - (a) $f(z) = z \cos\left(\frac{1}{z}\right);$
 - (b) $f(z) = \frac{\csc z}{z^4};$
 - (c) $f(z) = \frac{1}{2-z};$
 - (d) $f(z) = \frac{z}{(z-1)(z-3)};$
 - (e) $f(z) = \frac{z}{1+z^2}$.
- **P5.** Let C be the unit circle with positive orientation. Let $n \ge 0$ be a nonnegative integer.
 - (a) The function $f(z) = z^n e^{\frac{1}{z}}$ has an isolated singularity at $z_0 = 0$. Find the Laurent series expansion for f on the annulus $0 < |z| < \infty$.
 - (b) Use the theory of residues to compute the integral

$$\int_C z^n e^{\frac{1}{z}} \, dz.$$

¹Hint: several of these functions appeared in PSet 6.

$$\int_C e^{z + \frac{1}{z}} dz = 2\pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}.$$

P6. Consider the function

$$f(z) = \frac{2z^3 + 1}{(z^2 - 1)(z^2 + 1)}.$$

Show that f(z) has no antiderivative on the domain $D = \{z \in \mathbb{C} : |z| > 1\}$.³

P7. $(Optional.)^4$

(a) Suppose that f is analytic everyone on \mathbb{C} , except at a finite number of (isolated) singular points z_1, \ldots, z_n . Show that

$$\sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) + \operatorname{Res}_{z=\infty} f(z) = 0.$$

(b) Let

$$p(z) = a_0 + a_1 z + \dots + a_n z^n, \quad a_n \neq 0$$

be a polynomial of degree $n \ge 2$. Let C be a positively oriented simple closed contour whose interior contains all the zeros of p(z). Show that⁵

$$\int_C \frac{1}{p(z)} \, dz = 0$$

(c) Using (a) and (b), compute the integral

$$\int_C \frac{1}{(z^{2021}+1)(z-3)} \, dz$$

where C is the positively oriented circle |z| = 2.

²Hint: write $e^{z+\frac{1}{z}} = e^{\frac{1}{z}} \sum_{n=0}^{\infty} \frac{z^n}{n!}$, then apply the theorem on integrating power series. ³Hint: consider a circle *C* that lies in *D* and contains all the singularities of *f* in it's interior. Compute $\int_C f(z) dz$ by computing the residue at ∞ . Use the theorem that says $\operatorname{Res}_{z=\infty} f(z) = \operatorname{Res}_{z=0} \frac{1}{z^2} f\left(\frac{1}{z}\right)$.

 $^{^4\}mathrm{Worth}$ 4 points of extra credit, added to you score on this assignment.

⁵Hint: show that $\operatorname{Res}_{z=\infty} \frac{1}{p(z)} = 0.$