Problem Set 5 (Due 2/12/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. Make use of theorems like the Triangle Inequality for Contour Integrals, the Fundamental Theorem of Contour Integrals, and the Cauchy-Goursat theorem, where applicable.

P1. Let

$$
f(z)=\frac{z^{2}+2}{\left(z^{2}+3\right)\left(z^{2}+2 z+1\right)}
$$

and let C_{R} denote the semicircle of radius R parameterized by $z(t)=R e^{i t}$ with $t \in[0, \pi]$. Show that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0
$$

P2. Let C be a positively oriented simply closed contour and let R be the region consisting of C and its interior.
(a) Show that the area A of the region R is given by the formula ${ }^{1}$

$$
A=\frac{1}{2 i} \int_{C} \bar{z} d z
$$

(b) Compute the area A of the region enclosed by the cardioid C with parameterization $z(t)=\frac{1}{2}+e^{i t}+\frac{1}{2} e^{2 i t}$ where $t \in[0,2 \pi]$.

P3. Let C be a closed contour and let $z_{0} \in \mathbb{C}$ be a point not lying on C. The winding number of C about z_{0} is defined by the integral

$$
n\left(C, z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{1}{z-z_{0}} d z
$$

(a) Compute $n\left(C_{1}, z_{0}\right)$ where C_{1} is parameterized by $z(t)=z_{0}+R e^{i t}, t \in[0,2 k \pi], k \in$ $\mathbb{Z}, R>0$.
(b) Compute $n\left(C_{2}, z_{0}\right)$, where C_{2} is any circle and z_{0} is any point not lying on or interior to C_{2}.
(c) Let C_{3} be any closed contour and z_{0} any point not lying on C_{3}, parameterized by z : $[a, b] \rightarrow \mathbb{C}$. For any such contour, we can always find real-valued (piece-wise) differentiable functions $r, \theta:[a, b] \rightarrow \mathbb{R}$ with $r(t)>0$ such that $z(t)=z_{0}+r(t) e^{i \theta(t)}$. Compute $n\left(C_{3}, z_{0}\right)$.
(d) Give a geometric interpretation of the winding number. You must justify your interpretation.

[^0]P4. Let $f(z)=\frac{1}{z^{2}-1}$. Determine all possible values of the integral

$$
\int_{C^{(k)}} f(z) d z
$$

where $C^{(k)}$ is any circle, traversed k-times, and not passing through 1 and -1 . You must justify your claim.

P5. Let $a, b \in \mathbb{C}$ and let C_{R} be the circle of radius R centered at the origin, traversed once in the positive orientation. If $|a|<R<|b|$, show that

$$
\int_{C_{R}} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

P6. Let $f(z)=\frac{1}{z^{2}+1}$. Determine whether f has an antiderivative on the given domain D. You must prove your claims.
(a) $D=\mathbb{C} \backslash\{i,-i\}$;
(b) $D=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$

[^0]: ${ }^{1}$ Hint: Green's theorem

