Problem Set 4 (Due 2/5/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. Note: you may not use any results proved in class on $2 / 2 / 21$ or $2 / 4 / 21$ to solve these problems (i.e. anything after Section 46 of the textbook cannot be used).

P1. (a) Let $w=\cos ^{-1} z$. Show that $\cos ^{-1} z=-i \log \left(z+i\left(1-z^{2}\right)^{1 / 2}\right)$ by solving the equation

$$
z=\frac{e^{i w}+e^{-i w}}{2}
$$

(b) The expression for $\cos ^{-1} z$ is multiple-valued. By taking the principal branch of \log and the principle branch of the square root^{1} (making $\cos ^{-1} z$ single-valued and analytic), show that

$$
\frac{d}{d z} \cos ^{-1} z=\frac{-1}{\left(1-z^{2}\right)^{1 / 2}}
$$

P2. Let $z:[a, b] \rightarrow \mathbb{C}$ be a parameterization of a smooth arc C and suppose $f(z)$ is analytic at a point $z_{0}=z\left(t_{0}\right)$ on C. Show that ${ }^{2}$

$$
(f \circ z)^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t)
$$

when $t=t_{0}$.
P3. Let $\alpha, \beta \in \mathbb{R}$. Evaluate the following integral of real-valued functions

$$
\int_{0}^{\pi} e^{\alpha x} \cos \beta x d x \quad \text { and } \quad \int_{0}^{\pi} e^{\alpha x} \sin \beta x d x
$$

simultaneously by computing a single integral of a complex-valued function. ${ }^{3}$
$\mathbf{P} 4$. Let $z_{1}, z_{2} \in \mathbb{C}$. Compute the integral

$$
\int_{C} 1 d z
$$

where C is any contour joining z_{1} to z_{2}.
P5. Let C denote the unit circle with positive orientation. Compute the integral

$$
\frac{1}{2 \pi i} \int_{C} \frac{(1+z)^{n}}{z^{k+1}} d z
$$

for any integers $0 \leq k \leq n .{ }^{4}$
P6. Integrate the function $f(z)=\bar{z}$ over the following contours:
(a) C_{1} : the line segment joining 0 to $1+i$;
(b) C_{2} : the line segment joining 0 to 1 , following by the line segment joining 1 to $1+i$.

[^0]
[^0]: ${ }^{1}$ Evidently, the value of $\frac{d}{d z} \cos ^{-1} z$ depends on the branch of square root we choose.
 ${ }^{2}$ Hint: Write $f(z)=u(x, y)+i v(x, y)$ and $z(t)=x(t)+i y(t)$. Then $(f \circ z)(t)=u(x(t), y(t))+i v(x(t), y(t))$. Use the chain rule from vector calculus to compute $(f \circ z)^{\prime}$ and then use the Cauchy-Riemann equations.
 ${ }^{3}$ Hint: consider the complex-valued function of a real variable $f(x)=e^{\alpha x} \cos \beta x+i e^{\alpha x} \sin \beta x$.
 ${ }^{4}$ Hint: you may assume the binomial theorem holds for complex numbers.

