Problem Set 4 (Due 2/5/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. Note: you may not use any results proved in class on 2/2/21 or 2/4/21 to solve these problems (i.e. anything after Section 46 of the textbook cannot be used).

P1. (a) Let
$$w = \cos^{-1} z$$
. Show that $\cos^{-1} z = -i \log(z + i(1 - z^2)^{1/2})$ by solving the equation
$$z = \frac{e^{iw} + e^{-iw}}{2}.$$

(b) The expression for $\cos^{-1} z$ is multiple-valued. By taking the principal branch of log and the principle branch of the square root¹ (making $\cos^{-1} z$ single-valued and analytic), show that

$$\frac{d}{dz}\cos^{-1}z = \frac{-1}{(1-z^2)^{1/2}}.$$

P2. Let $z : [a, b] \to \mathbb{C}$ be a parameterization of a smooth arc C and suppose f(z) is analytic at a point $z_0 = z(t_0)$ on C. Show that²

$$(f \circ z)'(t) = f'(z(t))z'(t)$$

when $t = t_0$.

P3. Let $\alpha, \beta \in \mathbb{R}$. Evaluate the following integral of real-valued functions

$$\int_0^{\pi} e^{\alpha x} \cos \beta x \, dx \quad \text{and} \quad \int_0^{\pi} e^{\alpha x} \sin \beta x \, dx$$

simultaneously by computing a single integral of a complex-valued function. ³

P4. Let $z_1, z_2 \in \mathbb{C}$. Compute the integral

$$\int_C 1 \, dz$$

where C is any contour joining z_1 to z_2 .

P5. Let C denote the unit circle with positive orientation. Compute the integral

$$\frac{1}{2\pi i} \int_C \frac{(1+z)^n}{z^{k+1}} \, dz$$

for any integers $0 \le k \le n$.⁴

- **P6.** Integrate the function $f(z) = \overline{z}$ over the following contours:
 - (a) C_1 : the line segment joining 0 to 1 + i;
 - (b) C_2 : the line segment joining 0 to 1, following by the line segment joining 1 to 1 + i.

⁴Hint: you may assume the binomial theorem holds for complex numbers.

Created by J.V. Breland (January 30, 2021)

¹Evidently, the value of $\frac{d}{dz} \cos^{-1} z$ depends on the branch of square root we choose.

²Hint: Write f(z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t). Then $(f \circ z)(t) = u(x(t), y(t)) + iv(x(t), y(t))$. Use the chain rule from vector calculus to compute $(f \circ z)'$ and then use the Cauchy-Riemann equations.

³Hint: consider the complex-valued function of a real variable $f(x) = e^{\alpha x} \cos \beta x + i e^{\alpha x} \sin \beta x$.