Problem Set 3 (Due 1/29/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work.

- **P1.** Let U be a domain. Prove that if f is a real-valued function analytic on U, then f is constant on U.
- **P2.** Let f(z) = u + iv be a complex-valued function defined on an open set $U \subseteq \mathbb{C}$. Suppose that the first-order partial derivatives of $\operatorname{Re} f = u$ and $\operatorname{Im} f = v$ exist and are continuous on U. Define the differential operators¹

$$\frac{\partial f}{\partial z} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{and} \quad \frac{\partial f}{\partial \overline{z}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Note: we also define $\frac{\partial f}{\partial x} \stackrel{\text{def}}{=} \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$, and similarly for $\frac{\partial}{\partial y}$.

- (a) Show that f is analytic on U if and only if and only if $\frac{\partial f}{\partial \overline{z}} = 0$.
- (b) If f is analytic on U, show that $f' = \frac{\partial f}{\partial z}$.
- **P3.** (Optional.)² Let U be an open set and let f be a function that is continuous on U with the property

$$e^{f(z)} = z, \ z \in U.$$

- (a) Show that f is analytic on U^{3} .
- (b) Consider the function $f(z) = \log z \stackrel{\text{def}}{=} \ln |z| + i \arg z$, |z| > 0, $-\pi < \arg z \le \pi$. What, if anything, does part (a) tell you about f? Justify your conclusions.
- **P4.** Find all solutions to the equation $e^{2z} 2ie^z = 1$.
- **P5.** (a) Find real valued functions $u, v : \mathbb{R}^2 \to \mathbb{R}$ such that $e^z = u(x, y) + iv(x, y)$.
 - (b) Find real valued functions $U, V : \mathbb{R}^2 \to \mathbb{R}$ such that $\cos z = U(x, y) + iV(x, y)$.
 - (c) Show that $e^{\overline{z}} = \overline{e^z}$ and $\cos \overline{z} = \overline{\cos z}$.
- P6. Determine the points at which the following functions are analytic:
 - (a) $e^{\overline{z}}$;

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial}{\partial y}\frac{\partial y}{\partial z} = \frac{\partial}{\partial x}\frac{1}{2} + \frac{\partial}{\partial y}\frac{1}{2i},\\ \frac{\partial}{\partial z} = \frac{\partial}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial}{\partial y}\frac{\partial y}{\partial z} = \frac{\partial}{\partial x}\frac{1}{2} - \frac{\partial}{\partial y}\frac{1}{2i}.$$

 2 This is worth 3 points extra credit, added to your score on this assignment.

³This shows that a continuously defined logarithm on an open set is automatically analytic.

¹These operators are inspired by the following formal (meaningless) calculation. Consider the functions $x(z, \overline{z}) = \frac{z+\overline{z}}{2}$ and $y(z, \overline{z}) = \frac{z-\overline{z}}{2i}$ (note z = x + iy) and formally apply the chain rule

- (b) $\cos \overline{z}$.
- **P7.** Let $z \in \mathbb{C}$.
 - (a) Prove that $\mathcal{V} |1^z|$ is single-valued if and only if Im z = 0.
 - (b) Find a necessary and sufficient condition for $|i^{iz}|$ to be single-valued.
 - (c) **(Optional.)**⁴ Show by counterexample that the statement is false: 1^z is single-valued if and only if Im z = 0.

 $^{^4\}mathrm{Worth}$ 1 point extra credit, added to your score on this assignment.