Problem Set 2 (Due 1/22/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work.
P1. Compute the following limits and prove your claim by using only the $\varepsilon-\delta$ definition.
(a) $\lim _{z \rightarrow i} \bar{z}$
(b) $\lim _{z \rightarrow 1+i} z^{2}$.

P2. Let $M(z)=\frac{z-3}{1-2 z}$. Prove that $\lim _{z \rightarrow \infty} M(z)=-1 / 2$ and $\lim _{z \rightarrow 1 / 2} M(z)=\infty$.
P3. Consider the complex valued function

$$
f(z)= \begin{cases}\frac{\bar{z}^{2}}{z}, & z \neq 0 \\ 0, & z=0\end{cases}
$$

Show that f is not differentiable at the origin. ${ }^{1}$
P4. Let U be a domain and $f: U \rightarrow \mathbb{C}$ a complex valued function that is differentiable at every point in U. Consider the domain $U^{*} \stackrel{\text { def }}{=}\{z \in \mathbb{C}: \bar{z} \in U\}$ and the function $f^{*}: U^{*} \rightarrow \mathbb{C}$ defined by $f^{*}(z)=\overline{f(\bar{z})}$. Show that f^{*} is differentiable at every point in U^{*}.

P5. For each function, determine all points at which the derivative exists. When the derivative exists, find its value. You must justify your claims.
(a) $f(z)=z+i \bar{z}$;
(b) $g(z)=(z+i \bar{z})^{2}$;
(c) $h(z)=z \operatorname{Im} z$.

P6. (Optional.) ${ }^{2}$ By definition, a function $f: U \rightarrow \mathbb{C}$ is differentiable at $z_{0} \in U$ if the limit $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists. Unpacking the limit definition, we see that f is differentiable at z_{0} if and only if for all $\varepsilon>0$, there exists $\delta>0$ such that

$$
0<\left|z-z_{0}\right|<\delta \text { implies }\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}-f^{\prime}\left(z_{0}\right)\right|<\varepsilon
$$

By appealing only to the definition, show that $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=\bar{z}$ is not differentiable anywhere by completing the following steps:

[^0](a) Let $z_{0} \in \mathbb{C}$ and assume that $f^{\prime}\left(z_{0}\right)$ exists. Choose $\delta>0$ according to the definition using $\varepsilon=\frac{1}{2}$.
(b) Consider $z=z_{0}+\frac{\delta}{2}$ and conclude from (a) that $\left|1-f^{\prime}\left(z_{0}\right)\right|<\varepsilon$.
(c) Consider $z=z_{0}+\frac{i \delta}{2}$ and conclude from (a) that $\left|1+f^{\prime}\left(z_{0}\right)\right|<\varepsilon$.
(d) Using the triangle inequality together with (b) and (c), obtain a contradiction.

[^0]: ${ }^{1}$ In the lecture, we showed that f satisfies the Cauchy-Riemann equations at the origin. Thus, this will show that the satisfaction of the Cauchy-Riemann equations is not sufficient for the differentiability of f.
 ${ }^{2}$ This is worth 3 points extra credit, added to your score on this assignment.

