Problem Set 2 (Due 1/22/21 11:59PM)

Your Name:

Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work.

- **P1.** Compute the following limits and prove your claim by using only the $\varepsilon \delta$ definition.
 - (a) $\lim_{z \to i} \overline{z}$
 - (b) $\lim_{z \to 1+i} z^2$.

P2. Let $M(z) = \frac{z-3}{1-2z}$. Prove that $\lim_{z\to\infty} M(z) = -1/2$ and $\lim_{z\to 1/2} M(z) = \infty$.

P3. Consider the complex valued function

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & z \neq 0\\ 0, & z = 0. \end{cases}$$

Show that f is not differentiable at the origin.¹

- **P4.** Let U be a domain and $f: U \to \mathbb{C}$ a complex valued function that is differentiable at every point in U. Consider the domain $U^* \stackrel{\text{def}}{=} \{z \in \mathbb{C} : \overline{z} \in U\}$ and the function $f^*: U^* \to \mathbb{C}$ defined by $f^*(z) = \overline{f(\overline{z})}$. Show that f^* is differentiable at every point in U^* .
- **P5.** For each function, determine all points at which the derivative exists. When the derivative exists, find its value. You must justify your claims.
 - (a) $f(z) = z + i\overline{z};$
 - (b) $g(z) = (z + i\overline{z})^2;$
 - (c) $h(z) = z \operatorname{Im} z$.
- **P6.** (Optional.)² By definition, a function $f: U \to \mathbb{C}$ is differentiable at $z_0 \in U$ if the limit $f'(z_0) = \lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ exists. Unpacking the limit definition, we see that f is differentiable at z_0 if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$0 < |z - z_0| < \delta$$
 implies $\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon$

By appealing only to the definition, show that $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \overline{z}$ is not differentiable anywhere by completing the following steps:

¹In the lecture, we showed that f satisfies the Cauchy-Riemann equations at the origin. Thus, this will show that the satisfaction of the Cauchy-Riemann equations is not sufficient for the differentiability of f.

 $^{^2\}mathrm{This}$ is worth 3 points extra credit, added to your score on this assignment.

- (a) Let $z_0 \in \mathbb{C}$ and assume that $f'(z_0)$ exists. Choose $\delta > 0$ according to the definition using $\varepsilon = \frac{1}{2}$.
- (b) Consider $z = z_0 + \frac{\delta}{2}$ and conclude from (a) that $|1 f'(z_0)| < \varepsilon$.
- (c) Consider $z = z_0 + \frac{i\delta}{2}$ and conclude from (a) that $|1 + f'(z_0)| < \varepsilon$.
- (d) Using the triangle inequality together with (b) and (c), obtain a contradiction.