## Problem Set 1 (Due 1/15/20 11:59PM)

## Your Name:

## Names of Any Collaborators:

Please review the problem set guidelines in the syllabus before turning in your work. Additionally:
(a) you may use freely any results that we discussed during the lecture;
(b) you may use any results that are proved in Chapter 1 of the textbook;
(c) you may use any exercises from Chapter 1 of the textbook if and only if they do not render the problem trivial.

In any case, you should make it clear when a statement in your proof follows from another result, and which result you are using.
$\mathbf{P} 1$. Let $p(z)=a z^{2}+b z+c$ be a polynomial with complex coefficients $(a \neq 0)$.
(a) By completing the square, show that the solution to $p(z)=0$ is $^{1}$

$$
z=\frac{-b+\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

(b) Find the roots of the polynomial $p(z)=i z^{2}-1$ in the form $z=x+i y$.

P2. Consider the set of matrices

$$
X \stackrel{\text { def }}{=}\left\{\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

It is easy to see that $X$ is closed under matrix addition and matrix multiplication, that is, if $A, B \in X$, then $A+B, A B \in X .{ }^{2}$
(a) Let $\mathbb{C}$ denote the set of complex numbers. Show that the map $\varphi: X \rightarrow \mathbb{C}$ defined by

$$
\varphi\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right)=x+i y
$$

is a bijection.
(b) Let $A, B \in X$ and let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ be the identity matrix. Show that $\varphi$ has the following properties:
(i) $\varphi(A+B)=\varphi(A)+\varphi(B)$;

[^0](ii) $\varphi(A B)=\varphi(A) \varphi(B)$;
(iii) $\varphi(I)=1$.
(c) Find a matrix $J$ satisfying $J^{2}=-I$ and show that $\varphi(J)=i$.

P3. (a) Let $z \in \mathbb{C}$. Using the principle of mathematical induction, show that the formula holds for all $n \in \mathbb{N}$ :

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

(b) If $\omega_{1}, \ldots, \omega_{n}$ are the distinct $n$-th roots of unity, show that $\sum_{i=1}^{n} \omega_{i}=0$.
(c) Compute the following sum of real numbers:

$$
\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{7 \pi}{7}+\cos \frac{9 \pi}{7}+\cos \frac{11 \pi}{7}+\cos \frac{13 \pi}{7}+\cos \frac{15 \pi}{7}
$$

You must justify your computation.
P4. Let $z, w \in \mathbb{C}$.
(a) Prove the formula

$$
\begin{equation*}
|z+w|^{2}=|z|^{2}+2 \operatorname{Re} z \bar{w}+|w|^{2} \cdot{ }^{3} \tag{1}
\end{equation*}
$$

(b) From (1), deduce the parallelogram law

$$
|z+w|^{2}+|z-w|^{2}=2|z|^{2}+2|w|^{2}
$$

Give a geometric interpretation of this formula.
P5. Let $z_{0} \neq z_{1} \in \mathbb{C}$ and let $\lambda>0$. Show that if $\lambda \neq 1$, then the set of points

$$
\begin{equation*}
\left|z-z_{0}\right|=\lambda\left|z-z_{1}\right| \tag{2}
\end{equation*}
$$

is a circle of radius $R=\frac{\lambda}{\left|1-\lambda^{2}\right|}\left|z_{0}-z_{1}\right|$ centered at $w=\frac{z_{0}-\lambda^{2} z_{1}}{1-\lambda^{2}} \cdot{ }^{4}$ If $\lambda=1$, show that (2) defines a line. ${ }^{5}$
Show that every circle in the complex plane can be written in the form of equation (2) for some $\lambda>0, \lambda \neq 1$ and $z_{0} \neq z_{1} \in \mathbb{C}$.

P6. (a) Find a necessary and sufficient condition on $z \in \mathbb{C}$ such that $|z-i|=|z+i|$.
(b) Repeat with the condition $|z-1|=|z+1|$.

P7. Consider the map $M(z)=\frac{z-3}{1-2 z}, z \in \mathbb{C}$. For which values of $c \in \mathbb{R}$ is the image of the circle $|z-1|=c$ under $M$ a line? What is the equation of the line when considered as a subset of the plane $\mathbb{R}^{2}$ ?

P8. Let $U \subseteq \mathbb{C}$. We say that $U$ is open if it does not contain any of its boundary points. Prove that $U$ is open if and only if every $z \in U$ is an interior point.

P9. Let $\varepsilon>0$. Prove that the open disk $D_{\varepsilon}\left(z_{0}\right) \stackrel{\text { def }}{=}\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\varepsilon\right\}$ is a domain.

[^1]
[^0]:    ${ }^{1}$ Note that the expression $\left(b^{2}-4 a c\right)^{1 / 2}$ has multiple values!
    ${ }^{2}$ Parts (a) and (b) of this problem shows that $X$ and $\mathbb{C}$ are algebraically indistinguishable. In the language of abstract algebra, $\varphi$ is an isomorphism of rings. The subset $\left\{\left(\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right): x \in \mathbb{R}\right\} \subset X$ is algebraically indistinguishable from the real numbers in the same sense.

[^1]:    ${ }^{3}$ Notice that $\operatorname{Re} z \bar{w}=\operatorname{Re} w \bar{z}$.
    ${ }^{4}$ Suggestion: Try to show that $|z-w|^{2}=R^{2}$. Start by squaring both sides of (2) using (1). Manipulate the resulting equation so that $\frac{\lambda^{2}\left|z_{1}\right|^{2}-\left|z_{0}\right|^{2}}{1-\lambda^{2}}$ is isolated on one side. Using (1) again, add something to both sides to complete the square.
    ${ }^{5}$ Hint: When $\lambda=1$, argue geometrically!

