Midterm Exam

MATH 22: Calculus of Several Variables

Summer 2025

Overview: This exam consists of 1 cover page and **5 pages of questions**, for a total of 6 pages. There are **8 questions** worth a total of **55 points**. Each question has multiple parts. Your grade on this exam will be calculated as

(number of points earned)/50.

This exam is worth 15% of your final grade in the course.

Directions:

- Write your NAME and STUDENT ID at the top of each page.
- Solve as many of the following problems as you can. Try to start with problems that you know how to solve right away, and save the others for last.
- Provide justification and show your work whenever possible. This makes it easier to give you partial credit. I want to give you partial credit!
- Write the work and the answer that you want graded in the provided answer box.
- You may use one two-sided 8.5inch by 11inch sheet of notes. No other resources are allowed. You do not need a
 calculator.

Name:		Student ID:
-------	--	-------------

Midterm Exam Problems

1.		pints) Determine whether the following statements are TRUE or FALSE . No justification is request, just guess! Each question is worth 1 point .	iired: if yo	u don't
	(a)	Two planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 are parallel if and only if $\mathbf{n}_1 \cdot \mathbf{n}_2 = 0$.		
	()		Answer:	
	(1.)		L	
	(b)	For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, $ \mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u} $.	, [
			Answer:	
	(c)	If all the level curves of a function $f(x,y)$ are parallel lines, then the graph of $f(x,y)$ is a plane.	_	
			Answer:	
		The slope of the tangent line to the $y = b$ trace of a function $f(x,y)$ at the point (a,b,f) $\lim_{h\to 0} \frac{f(a,b+h)-f(a,b)}{h}$.	(a,b)) is e	qual to
		n n	Answer:	
	()			
	(e)	Any two planes which are perpendicular to the same line are parallel.		
			Answer:	
	(f)	If $\overrightarrow{OP} \cdot (\overrightarrow{OQ} \times \overrightarrow{OR}) = 0$, then the three points $P, Q, R \in \mathbb{R}^3$ are collinear (lie on the same line).		
	(-/		Answer:	
	(g)	If $\mathbf{r}(t)$ is a vector-valued function, the $\frac{d}{dt} \mathbf{r}(t) = \mathbf{r}'(t) $.	_	
			Answer:	
	(h)	If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ satisfy $ \mathbf{u} \times \mathbf{v} = 0$, then either $\mathbf{u} = 0$ or $\mathbf{v} = 0$.		
	(11)		Answer:	
	(i)	If $f_x(x,y)$ and $f_y(x,y)$ are constant functions, then the graph of $f(x,y)$ is a plane.		
	(1)		Answer:	
			_	
2.		pints) Let $P_0 = (x_0, y_0)$ be a point in \mathbb{R}^2 and let $\mathbf{n} = \langle a, b \rangle$ be a vector in \mathbb{R}^2 . Answer the following hich is worth 2 points .	ng question	ns, each
	(a)	What does the collection of points $P=(x,y)$ which satisfy the equation $\mathbf{n} \cdot \overrightarrow{P_0P}=0$ look lip Draw a picture and explain your reasoning. (Hint: we have seen this equation in 3-dimensions		rically?
	(b)	What does the collection of points $P = (x, y)$ which satisfy the inequality $\mathbf{n} \cdot \overrightarrow{P_0P} > 0$ look li	ke geomet	rically?
		How is it related to part (a)? Draw a picture and explain your reasoning.		

Name:	!
-------	---

Student ID:

3. (8 points) Answer the following questions, each of which is worth **2 points**. *Briefly* justify your answer.

(a) Are the vectors $\mathbf{u}=\langle -1,2,-12,-4\rangle$ and $\mathbf{v}=\langle 0,2,1,-2\rangle$ perpendicular?

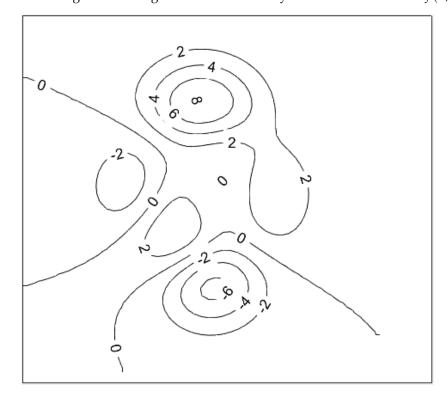
(b) Does the line $\mathbf{r}(t) = \langle 2t - 1, -t + 1, -t - 1 \rangle$ intersect the plane x + y + z = 1?

(c) Do the planes x + 7y + z = 2 and -2x - 2y - 2z = 4 intersect?

(d) Do the vectors $\mathbf{u} = \langle 1, -1, 3 \rangle$, $\mathbf{v} = \langle 1, -1, 1 \rangle$, and $\mathbf{w} = \langle 2, -2, 4 \rangle$ lie in a common plane?

4. (6 points) Consider the function $f(x,y,z) = x \sin(z^2 e^{y+z})$. Complete the following, each of which is worth **2 points**.

(a) Compute $f_x(x, y, z)$.


(b) Compute $f_y(x, y, z)$.

(c) Compute $f_z(x, y, z)$.

Name:		Student ID:				
5. (10 points) lines $\ell_1(t) = \langle t, t, 1+t \rangle$ and $\ell_2(t) = \langle 2-t, t, 3-t \rangle$. Complete the following tasks.						
(a) (3 points) Show that ℓ_1 and ℓ_2 intersect and find the p	(a) (3 points) Show that ℓ_1 and ℓ_2 intersect and find the point of intersection.					
(b) (1 point) Show that ℓ_1 and ℓ_2 are not parallel.						
(c) (1 point) Draw a picture of the situation and use it to	exp	plain why there is a <i>unique</i> plane containing ℓ_1 and ℓ_2 .				
(d) (3 points) Find a vector that is perpendicular to both to	ℓ_1 ar	nd ℓ_2 .				
(e) (2 points) Find a scalar equation for the plane that cor	ntair	ns both lines ℓ_1 and ℓ_2 .				

Name:				Student ID:						
6. (5 points) The position of particle in space at time t is given by $\mathbf{r}(t) = \langle \sin(t), \cos(t), t^2 \rangle$.										
(a)	(a) (1 points) Compute $\mathbf{r}(\pi)$.									
(b)	(2 points) Compute $\mathbf{r}'(\pi)$ ar	nd explain what it	means	in co	ntext.					
(c)	(2 points) Find a vector-valu	ued function that p	parame	trizes	the lin	e that i	s tange	ent to the curve $\mathbf{r}(t)$ when $t = \pi$.		
()								()		
	Dints) The table below gives function of the water temper							ke (in milligrams per liter, mg/L)		
as a	runction of the water temper	ature 1 (iii C) an	ia ine a	ерип	<i>t</i> (111 1116	21615 111	1).			
		T (°C) \ d (m) 5	0 12.8	5 12.6	10 12.5	15 12.4	20 12.3			
		10	11.3	11.1	10.9	10.8	10.6			
		15	10.1	9.8	9.5	9.3	9.1			
		20 25	9.1 8.3	8.7 7.8	8.4 7.4	8.1 7.0	7.8 6.6			
Еол	overnle O(10 E) — 11 1 ma	/I American the fo	Harvin	~ ~	tions					
	example, $O(10,5) = 11.1 \text{ mg}$						1 .1			
(a)	(4 points) Estimate the parti	al derivative $O_T($	15, 10).	Make	sure to	nclud	de the i	ınıts.		
(1-)	(2 mainta) Explain the mann	:	J 1	: 11-			بياني	ant (a) in the content of the much		
(b)	lem. You can answer this pa							part (a) in the context of the probstimate $O_T(15, 10)$.		

8. (6 points) Consider the following contour diagram of a continuously differentiable function f(x,y):

Complete the following, each of which is worth 2 points.

(a) Find a point A where $f_x(A) < 0$ and $f_y(A) < 0$. Mark your point in the diagram with a dot and the letter A.

Explain your reasoning in the box.

(b) Find a point B at which $f_x(B) = 0$ and $f_y(B) > 0$. Mark your point in the diagram with a dot and the letter B.

Explain your reasoning in the box.

(c) Find a point C at which $f_x(C) = 0$ and $f_y(C) = 0$. Mark your point in the diagram with a dot and the letter C.

Explain your reasoning in the box.