Midterm Exam Cover Page

Overview: This exam consists of 1 cover page and **4 pages of questions**, for a total of 5 pages. There are **8 questions** worth a total of **52 points**. Each question has multiple parts. Your grade on this exam will be calculated as

(number of points earned)/50.

This exam is worth 15% of your final grade in the course.

Directions:

- Write your NAME and STUDENT ID at the top of page 2.
- Solve as many of the following problems as you can. Try to start with problems that you know how to solve right away, and save the others for last.
- Provide justification and show your work whenever possible. This makes it easier to give you partial credit. I want to give you partial credit!
- Write the work and the answer that you want graded in the provided answer box.
- You may use one two-sided 8.5 inch by 11inch sheet of notes. No other resources are allowed. You do not need a calculator.

Good luck, and have fun!

1.	. (7 points) Determine whether the following statements are TRUE or FALSE . No justificat don't know, just guess! Each question is worth 1 point.	tion is required: if you
	(a) Two planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 are parallel if and only if $ \mathbf{n}_1 \times \mathbf{n}_2 = 0$.	
		Answer:
	(b) For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, $ \mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u} $.	
		Answer:
	(c) If all the level curves of a function $f(x, y)$ are lines, then the graph of $f(x, y)$ is a plane.	
		Answer:
	(d) The slope of the tangent line to the $y = b$ trace of a function $f(x, y)$ at the point $(a \lim_{h \to 0} \frac{f(a, b+h) - f(a, b)}{h}$.	(a, b, f(a, b)) is equal to
		Answer:
	(e) Any two lines which are perpendicular to the same plane are parallel.	
		Answer:
	(f) Any three points $P, Q, R \in \mathbb{R}^3$ are contained in a <i>unique</i> plane.	
		Answer:
	(g) The cross product of two unit vectors is a unit vector.	
	(6)	Answer:
2.	. (8 points) Answer the following questions, each of which is worth 2 points. Briefly justify yo	ur answer.
	(a) Are the vectors $\mathbf{u} = \langle 1, 2, 0, -4 \rangle$ and $\mathbf{v} = \langle 0, 2, 1, 2 \rangle$ perpendicular?	

Midterm Exam Problems

- (b) Does the line $\mathbf{r}(t) = \langle t, t, -2t \rangle$ intersect the plane x + y + z = 1?
- (c) Are the planes x + y + z = 2 and -2x 2y 2z = 4 parallel?
- (d) Are the vectors $\mathbf{u} = \langle 1, 0, 3 \rangle$, $\mathbf{v} = \langle 1, 1, 1 \rangle$, and $\mathbf{w} = \langle 0, 1, 1 \rangle$ coplanar?

- **3.** (10 points) Consider the lines $\ell_1(t) = \langle t, t, 1+t \rangle$ and $\ell_2(t) = \langle 2-t, t, 3-t \rangle$. Complete the following tasks.
 - (a) (3 points)Show that ℓ_1 and ℓ_2 intersect.
 - (b) (3 points) Show that ℓ_1 and ℓ_2 are not parallel.
 - (c) (2 points) Find a vector that is perpendicular to both ℓ_1 and ℓ_2 .

(d) (2 points) Find a scalar equation for the plane that contains both lines ℓ_1 and ℓ_2 .

- 4. (6 points) Consider the curve defined by $\mathbf{r}(t) = \langle \sin(t), \cos(t), t \rangle$.
 - (a) (2 points) Compute $\mathbf{r}(\pi)$.
 - (b) (2 points) Compute $\mathbf{r}'(\pi)$.

(c) (2 points) Find a vector-valued function that parametrizes the line that is tangent to the curve $\mathbf{r}(t)$ when $t = \pi$.

5. (4 points) Consider the following contour diagram of a function f(x, y):

The black dot in the center is the point (0,0). All of the lines in the contour diagram intersect at (0,0). Compute the limit $\lim_{(x,y)\to(0,0)} f(x,y)$ or explain why it does not exist.

6. (5 points) The table below gives the number F(d, v) of liters (L) of fuel burned by a Ferrari after traveling a distance of d kilometers (km) at an average velocity of v kilometers per hour (km/h).

$\mathbf{d} \setminus \mathbf{v}$	25	50	75	100	125	150
10	25	50	75	100	125	150
20	50	100	150	200	250	300
30	75	150	225	300	375	450
40	100	200	300	400	500	600

For example, F(20, 125) = 250L. Answer the following questions.

(a) (3 points) Estimate the partial derivative $F_v(30,75)$. Make sure to include the units.

(b) (2 point) Explain the meaning of the partial derivative that you computed in part (c).

- 7. (6 points) Consider the function $f(x, y, z) = x^2 \sin(ze^{y+z})$. Complete the following, each of which is worth 2 points.
 - (a) Compute $f_x(x, y, z)$.
 - (b) Compute $f_y(x, y, z)$.
 - (c) Compute $f_z(x, y, z)$.

8. (6 points) Consider the following contour diagram of a continuously differentiable function f(x, y):

Complete the following, each of which is worth **3 points**.

- (a) Find a point B where $f_x(B) > 0$ and $f_y(B) < 0$. Mark your point in the diagram with a dot and the letter B. Explain your reasoning.
- (b) Find a point C at which $f_x(C) < 0$ and $f_y(C) = 0$. Mark your point in the diagram with a dot and the letter B. Explain your reasoning.