Weekly Assignment 3 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 22, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage for due dates, templates, and assignment description. Make sure to justify any claims you make. You may not appeal to any results that we have not discussed in class.

1. Let V be finite-dimensional vector space and W a subspace. Suppose that $\left\{b_{1}, \ldots, b_{k}\right\}$ is a basis for W and extend this to a basis $\left\{b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right\}$ for V using Proposition 1.4.11. Prove that the set of vectors $\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}$ is a basis for the quotient space V / W.

Proof. It suffices to show that $\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}$ is an independent set. Indeed, if it is an independent set, then the vectors are all distinct which implies that

$$
\left|\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}\right|=n-k
$$

But we know that $V \cong W \oplus V / W$ so that

$$
\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W=n-k=\left|\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}\right|
$$

Thus, if $\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}$ is an independent set, then it is automatically a basis.
In order to show that the set is independent, suppose that

$$
\sum_{i=k+1}^{n} \alpha_{i}\left(b_{i}+W\right)=W
$$

Then

$$
\sum_{i=k+1}^{n} \alpha_{i} b_{i} \in W
$$

Hence, there exist $\alpha_{1}, \ldots, \alpha_{k} \in F$ such that

$$
\sum_{i=k+1}^{n} \alpha_{i} b_{i}=\sum_{i=1}^{k} \alpha_{i} b_{i}
$$

But $\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis for V, hence, $\alpha_{i}=0$ for all $i=1, \ldots, n$.

Definition 1. Let V be a vector space and let S be a subset of V. The annihilator S^{0} of S is the set of linear functionals whose kernel contains S, that is,

$$
S^{0}:=\left\{f \in V^{*}: f(v)=0 \text { for all } v \in S\right\} \subset V^{*}
$$

2. Let V be a vector space.
(a) Let S be a subset of V. Prove that S^{0} is a subspace of V^{*}.

Proof.
The zero function annihilates S, so S^{0} is nonempty. If $f, g \in S^{0}, \alpha \in F$, and $v \in S$, then

$$
(\alpha f+g)(v)=\alpha f(v)+g(v)=0+0=0
$$

Hence, $\alpha f+g \in S^{0}$. This proves S^{0} is a subspace.
(b) Let W be a subspace of V. Prove that W^{0} is isomorphic to $(V / W)^{*} .{ }^{1}$

Proof. Define a function $\Phi: W^{0} \rightarrow(V / W)^{*}$ as follows. Every $f \in W^{0}$ annihilates W, so the Unviersal Property of the Quotient can be invoked. Given $f \in W^{0}$, define $\Phi(f): V / W \rightarrow F$ to be the unique linear functional satisfying $\Phi(f) \circ \pi=f$, where $\pi: V \rightarrow V / W$ is the quotient map. This function is actually a linear map. Indeed, let $f, g \in W^{0}$ and $\alpha \in F$. Then for any $v \in V$,

$$
\begin{aligned}
(\Phi(\alpha f+g))(v+W) & =(\Phi(\alpha f+g) \circ \pi)(v) \\
& =(\alpha f+g)(v) \\
& =\alpha f(v)+g(v) \\
& =\alpha(\Phi(f) \circ \pi)(v)+(\Phi(g) \circ \pi)(v) \\
& =\alpha(\Phi(f))(v+W)+(\Phi(g))(v)
\end{aligned}
$$

which proves that $\Phi(\alpha f+g)=\alpha \Phi(f)+\Phi(g)$. Define another function $\Psi:(V / W)^{*} \rightarrow W^{0}$ via $\Phi(\bar{f})=\bar{f} \circ \pi$. Clearly, $\Phi(\bar{f}) \in W^{0}$ since π annihilates W. The Universal Property of the Quotient guarantees that Φ and Ψ are mutually inverse bijections.
(c) Suppose that V is finite-dimensional and let W be a subspace of V. By part (b), $\operatorname{dim}\left(W^{0}\right)=\operatorname{dim} V-\operatorname{dim} W$. Provide another proof of this equation using dual bases. ${ }^{2}$

Proof. Start with a basis $\left\{b_{1}, \ldots, b_{k}\right\}$ for W and extend to a basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for V. Let $B^{*}=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ be the dual basis. I claim that $\left\{\varphi_{k+1}, \ldots, \varphi_{n}\right\}$ is a basis for W^{0}. Let $w \in W$ and $k+1 \leq j \leq n$. Then $w=\sum_{i=1}^{k} \alpha_{i} b_{i}$ for some $\alpha_{1}, \ldots, \alpha_{k} \in F$ and

$$
\varphi_{j}(w)=\sum_{i=1}^{k} \alpha_{i} \varphi_{j}\left(b_{i}\right)=\sum_{i=1}^{k} \alpha_{i} \delta_{j i}=0
$$

since $j>k$. Thus, $\left\{\varphi_{k+1}, \ldots, \varphi_{n}\right\} \subset W^{0}$. By definition of dual basis, they are already independent. Thus, it suffices to show that they span W^{0}. Let $f \in W^{0}$. Since $f \in V$, we can write $f=\sum_{i=1}^{n} \alpha_{i} \varphi_{i}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in F$. Evaluating the equation at b_{j} for $1 \leq j \leq k$ yields

$$
0=f\left(b_{j}\right)=\sum_{i=1}^{n} \alpha_{i} \varphi_{i}\left(b_{j}\right)=\sum_{i=1}^{n} \alpha_{i} \delta_{i j}=\alpha_{j}
$$

since f annihilates W. Thus,

$$
f=\sum_{i=k+1}^{n} \alpha_{i} \varphi_{i}
$$

which proves the claim. Now the dimension formula follows immediately because $\operatorname{dim}\left(W^{0}\right)=$ $n-k=\operatorname{dim}(V)-\operatorname{dim}(W)$.

[^0]Definition 2. Let V be a vector space. A bilinear form $B: V \times V \rightarrow F$ is called reflexive if $B\left(v, v^{\prime}\right)=0$ implies $B\left(v^{\prime}, v\right)=0$ for all $v, v^{\prime} \in V$. The radical of a reflexive bilinear form is the set

$$
\operatorname{rad}(V):=\left\{v \in V: B\left(v, v^{\prime}\right)=0 \text { for all } v^{\prime} \in V\right\}
$$

A reflexive bilinear form is called nondegenerate if $\operatorname{rad}(V)=\{0\}$.
3. Let V be a vector space. Let $B: V \times V \rightarrow F$ be a bilinear form on V.
(a) For any $v \in V$, define a function $\Phi_{B}(v): V \rightarrow F$ by the rule $\left(\Phi_{B}(v)\right)(w)=B(v, w)$. Show that $\Phi_{B}(v)$ is a linear functional and show that the assignment $v \mapsto \Phi_{B}(v)$ defines a linear map $\Phi_{B}: V \rightarrow V^{*}$.

Proof. The function $\Phi_{B}(v)$ is linear because B is linear the second component - easy to check. Thus, Φ_{B} defines a function from V to V^{*}. The function Φ_{B} is linear because B is linear in the first component, but its slightly less obvious because Φ_{B} takes values in V^{*}. Indeed, let $u, v, w \in V$ and $\alpha \in F$. Then

$$
\begin{aligned}
\left(\Phi_{B}(\alpha u+v)\right)(w) & =B(\alpha u+v, w) \\
& =\alpha B(u, w)+B(v, w) \\
& =\alpha\left(\Phi_{B}(u)\right)(w)+\left(\Phi_{B}(v)\right)(w)
\end{aligned}
$$

which shows that $\Phi_{B}(\alpha u+v)=\alpha \Phi_{B}(u)+\Phi_{B}(v)$. This proves the claim.
(b) Suppose that V is finite-dimensional and that B is reflexive and nondegenerate.
(i) Prove that Φ_{B} is an isomorphism.

Proof. Since V and V^{*} are isomorphic, it suffices to prove that Φ_{B} is injective. Suppose that $v \in \operatorname{ker} \Phi_{B}$. Then $\Phi_{B}(v)$ is the zero map. Then for any $w \in V$, we have

$$
0=\left(\Phi_{B}(v)\right)(w)=B(v, w)
$$

This implies that $v \in \operatorname{rad}(W)=\{0\}$. Thus, $v=0$ and Φ_{B} is injective.
Note: the hypothesis that B is reflexive was not used. The only reason to include this hypothesis was to avoid defining left and right radicals. Evidently, this statement is true for an arbitrary bilinear form whose right (left?) radical is the zero space.
(ii) Let W be a subspace of V. Describe the preimage $W^{\perp}:=\Phi_{B}^{-1}\left(W^{0}\right)$ of W^{0} under Φ_{B}. In particular, $W^{0} \cong W^{\perp}$.
Proof. We have

$$
\begin{aligned}
W^{\perp} & =\Phi_{B}^{-1}\left(W^{0}\right)=\left\{v \in V: \varphi_{B}(v) \in W^{0}\right\} \\
& =\left\{v \in V: W \subseteq \operatorname{ker} \Phi_{B}(v)\right\} \\
& =\{v \in V: B(v, w)=0 \text { for all } w \in W\}
\end{aligned}
$$

This should convince you that the notation W^{\perp} is appropriate. For example, if B is the dot product on \mathbb{R}^{n} (an example of a reflexive, nondegenerate bilinear form), then W^{\perp} is just the orthogonal complement of W !
(iii) Suppose that B is nondegenerate when restricted to W, i.e., $\operatorname{rad}(W)=\{0\}$. Prove that $V=W \oplus W^{\perp}$.
Proof. First, observe that $W^{\perp} \cong W^{0} \cong(V / W)^{*} \cong V / W$ by the preceding results. Also, $V \cong W \oplus V / W$. Thus,

$$
\begin{aligned}
\operatorname{dim}\left(W+W^{\perp}\right) & =\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)-\operatorname{dim}\left(W \cap W^{\perp}\right) \\
& =\operatorname{dim}(W)+\operatorname{dim}(V / W)-\operatorname{dim}\left(W \cap W^{\perp}\right) \\
& =\operatorname{dim}(W \oplus V / W)-\operatorname{dim}\left(W \cap W^{\perp}\right) \\
& =\operatorname{dim}(V)-\operatorname{dim}\left(W \cap W^{\perp}\right) .
\end{aligned}
$$

Thus, in order to prove $V=W \oplus W^{\perp}$, it suffices to show that $W \cap W^{\perp}=\{0\}$. But this follows directly from the hypothesis because

$$
\operatorname{rad}(W)=\left\{w \in W: B\left(w, w^{\prime}\right)=0 \text { for all } w^{\prime} \in W\right\}=W \cap W^{\perp}
$$

This completes the proof.
4. (i) Suppose that $L_{1}: V_{1} \rightarrow W_{1}$ and $L_{2}: V_{2} \rightarrow W_{2}$ are linear maps. Prove that there is a unique linear map

$$
L_{1} \otimes L_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}
$$

with the property that $\left(L_{1} \otimes L_{2}\right)\left(v_{1} \otimes v_{2}\right)=L\left(v_{1}\right) \otimes L\left(v_{2}\right)$ for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2} .^{3}$
Proof. Define a map $B: V_{1} \times V_{2} \rightarrow W_{1} \otimes W_{2}$ via $B\left(v_{1}, v_{2}\right)=L\left(v_{1}\right) \otimes L\left(v_{2}\right)$. Then B is bilinear because L_{1}, L_{2} are linear and $-\otimes$ - is bilinear. Details left to the motivated student. Thus, according to the Universal Property of the Tensor Product, there is a unique linear map $L_{1} \otimes L_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}$ with the property that

$$
\left(L_{1} \otimes L_{2}\right)\left(v_{1} \otimes v_{2}\right)=B\left(v_{1}, v_{2}\right)=L\left(v_{1}\right) \otimes L\left(v_{2}\right)
$$

This proves the claim.
(ii) Let $F=\mathbb{Z}_{5}$ and let $V=F^{2}$. Let $L: V \rightarrow V$ be the linear map defined by left multiplication with the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right)$. Let $E=\left(e_{1}, e_{2}\right)$ denote the standard basis for V. Compute the matrix

$$
[L \otimes L]_{B}
$$

for linear map $L \otimes L: V \otimes V \rightarrow V \otimes V$, where B is the basis $\left(e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right)$ for $V \otimes V$.

Solution. Note that $B=E \otimes E$ as we saw in the lecture. One can easily show that $[(a, b) \otimes(c, d)]_{B}=(a c, a d, b c, b d)$ for any $a, b, c, d \in F$, so coordinate vectors are actually easy to compute. We have

$$
\begin{aligned}
& {\left[(L \otimes L)\left(e_{1} \otimes e_{1}\right)\right]_{B}=\left[L\left(e_{1}\right) \otimes L\left(e_{1}\right)\right]_{B}=[(0,4) \otimes(0,4)]_{B}=(0,0,0,1),} \\
& {\left[(L \otimes L)\left(e_{1} \otimes e_{2}\right)\right]_{B}=\left[L\left(e_{1}\right) \otimes L\left(e_{2}\right)\right]_{B}=[(0,4) \otimes(1,2)]_{B}=(0,0,4,3),} \\
& {\left[(L \otimes L)\left(e_{2} \otimes e_{1}\right)\right]_{B}=\left[L\left(e_{2}\right) \otimes L\left(e_{1}\right)\right]_{B}=[(1,2) \otimes(0,4)]_{B}=(0,4,0,3),}
\end{aligned}
$$

and

$$
\left[(L \otimes L)\left(e_{2} \otimes e_{2}\right)\right]_{B}=\left[L\left(e_{2}\right) \otimes L\left(e_{2}\right)\right]_{B}=[(1,2) \otimes(1,2)]_{B}=(1,2,2,4)
$$

Thus,

$$
[L \otimes L]_{B}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 4 & 2 \\
0 & 4 & 0 & 2 \\
1 & 3 & 3 & 4
\end{array}\right)
$$

[^1]
[^0]: ${ }^{1}$ Hint: Universal Property of the Quotient.
 ${ }^{2}$ Hint: Start with a basis for W and extend to a basis for V. Can you use the corresponding dual basis to construct a basis for W^{0} ?

[^1]: ${ }^{3}$ Hint: Universal Property of the Tensor Product.

