Weekly Assignment 3

WRITE YOUR NAME HERE
MATH 117: Advanced Linear Algebra

August 16, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage for due dates, templates, and assignment description. Make sure to justify any claims you make. You may not appeal to any results that we have not discussed in class.

1. Let V be finite-dimensional vector space and W a subspace. Suppose that $\left\{b_{1}, \ldots, b_{k}\right\}$ is a basis for W and extend this to a basis $\left\{b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right\}$ for V using Proposition 1.4.11. Prove that the set of vectors $\left\{b_{k+1}+W, \ldots, b_{n}+W\right\}$ is a basis for the quotient space V / W.

Proof. Write your proof here.

Definition 1. Let V be a vector space and let S be a subset of V. The annihilator S^{0} of S is the set of linear functionals whose kernel contains S, that is,

$$
S^{0}:=\left\{f \in V^{*}: f(v)=0 \text { for all } v \in S\right\} \subset V^{*}
$$

2. Let V be a vector space.
(a) Let S be a subset of V. Prove that S^{0} is a subspace of V^{*}.
(b) Let W be a subspace of V. Prove that W^{0} is isomorphic to $(V / W)^{*} .{ }^{1}$
(c) Suppose that V is finite-dimensional and let W be a subspace of V. By part (b), $\operatorname{dim}\left(W^{0}\right)=\operatorname{dim} V-\operatorname{dim} W$. Provide another proof of this equation using dual bases. ${ }^{2}$

Proof. Write your proof here.

Definition 2. Let V be a vector space. A bilinear form $B: V \times V \rightarrow F$ is called reflexive if $B\left(v, v^{\prime}\right)=0$ implies $B\left(v^{\prime}, v\right)=0$ for all $v, v^{\prime} \in V$. The radical of a reflexive bilinear form is the set

$$
\operatorname{rad}(V):=\left\{v \in V: B\left(v, v^{\prime}\right)=0 \text { for all } v^{\prime} \in V\right\}
$$

A reflexive bilinear form is called nondegenerate if $\operatorname{rad}(V)=\{0\}$.
3. Let V be a vector space. Let $B: V \times V \rightarrow F$ be a bilinear form on V.

[^0](a) For any $v \in V$, define a function $\Phi_{B}(v): V \rightarrow F$ by the rule $\left(\Phi_{B}(v)\right)(w)=B(v, w)$. Show that $\Phi_{B}(v)$ is a linear functional and show that the assignment $v \mapsto \Phi_{B}(v)$ defines a linear map $\Phi_{B}: V \rightarrow V^{*}$.
(b) Suppose that V is finite-dimensional and that B is reflexive and nondegenerate.
(i) Prove that Φ_{B} is an isomorphism.
(ii) Let W be a subspace of V. Describe the preimage $W^{\perp}:=\Phi_{B}^{-1}\left(W^{0}\right)$ of W^{0} under Φ_{B}. In particular, $W^{0} \cong W^{\perp}$.
(iii) Suppose that B is nondegenerate when restricted to W, i.e., $\operatorname{rad}(W)=\{0\}$. Prove that $V=W \oplus W^{\perp}$.

Proof. Write your proof here.
4. (i) Suppose that $L_{1}: V_{1} \rightarrow W_{1}$ and $L_{2}: V_{2} \rightarrow W_{2}$ are linear maps. Prove that there is a unique linear map

$$
L_{1} \otimes L_{2}: V_{1} \otimes V_{2} \rightarrow W_{1} \otimes W_{2}
$$

with the property that $\left(L_{1} \otimes L_{2}\right)\left(v_{1} \otimes v_{2}\right)=L\left(v_{1}\right) \otimes L\left(v_{2}\right)$ for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2} .^{3}$
(ii) Let $F=\mathbb{Z}_{5}$ and let $V=F^{2}$. Let $L: V \rightarrow V$ be the linear map defined by left multiplication with the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 4 & 2\end{array}\right)$. Let $E=\left(e_{1}, e_{2}\right)$ denote the standard basis for V. Compute the matrix

$$
[L \otimes L]_{B}
$$

for linear map $L \otimes L: V \otimes V \rightarrow V \otimes V$, where B is the basis $\left(e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right)$ for $V \otimes V$.

Proof. Write your proof here.

[^1]
[^0]: ${ }^{1}$ Hint: Universal Property of the Quotient.
 ${ }^{2}$ Hint: Start with a basis for W and extend to a basis for V. Can you use the corresponding dual basis to construct a basis for W^{0} ?

[^1]: ${ }^{3}$ Hint: Universal Property of the Tensor Product.

