
Weekly Assignment 2 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 13, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage
for due dates, templates, and assignment description. Make sure to justify any claims you make.
You may not appeal to any results that we have not discussed in class.

1. Prove Proposition 2.1.7: Let V and W be vector spaces over F and let L : V →W be a linear
map. Then

(a) im(L) is a subspace of W ; and

(b) ker(L) is a subspace of V .

Proof. We need to show that each set is nonempty, closed under addition, and closed under
scalar multiplication.

(a) We have 0W ∈ im(L) since L(0V ) = 0W . Let w, z ∈ im(L) and let α ∈ F . Choose
u, v ∈ V such that L(u) = w and L(v) = z. Then

L(αu+ v) = αL(u) + L(v) = αw + z.

This proves that αw+ z ∈ im(L). This proves simultaneously that im(L) is closed under
addition (let α = 1) and scalar multiplication (let v = 0V ).

(b) We have 0V ∈ ker(L) since L(0V ) = 0W . Let u, v ∈ ker(L) and let α ∈ F . Then

L(αu+ v) = αL(u) + L(v) = α · 0W + 0W = 0W .

Thus, αu+ v ∈ ker(L).

This proves that im(L) and ker(L) are subspaces of W and V , respectively.

2. Prove Theorem 2.5.1: Suppose that V,W are vector spaces over F and L,K : V → W are
linear maps. Then αL+ βK is a linear map for all α, β ∈ F .1

Proof. Let u, v ∈ V and γ ∈ F . Then

(αL+ βK)(u+ v) = (αL)(u+ v) + (βK)(u+ v) (Def. of addition in Hom(V,W ))

= αL(u+ v) + βK(u+ v) (Def. of scalar mult. in Hom(V,W ) )

= α(L(u) + L(v)) + β(K(u) +K(v)) (L,K are linear maps)

= αL(u) + βK(u) + αL(v) + βK(v) (vector space properties)

= (αL+ βK)(u) + (αL+ βK)(v). (Def. of Hom(V,W ) again)

1Since the zero map is linear, this implies that Hom(V,W ) is a subspace of WV .
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I tried to make it as clear as possible what I am doing at each step. Your proof might not
explain each step or might combine multiple steps into one - this is fine, as long as its clear
to the reader what is happening. The computation for (αL + βK)(γu) is similar, so I omit
it. You need to use associativity of scalar multiplication in W and also commutativity of
multiplication in F .

3. Let V1, V2 be vector spaces over F . The direct sum V1 ⊕ V2 comes with linear maps

ι1 : V1 → V1 ⊕ V2, v1 7→ (v1, 0) and ι2 : V2 → V1 ⊕ V2, v2 7→ (0, v2).

Let Z be any other vector space and let L1 : V1 → Z and L2 : V2 → Z be any other linear
maps. Prove that there is a unique linear map L : V1 ⊕ V2 → Z with the property that
L ◦ ι1 = L1 and L ◦ ι2 = L2. See Remark 1.

Proof. Define L : V1 ⊕ V2 → Z via the rule L(v1, v2) = L1(v1) + L2(v2). It is easy to verify
that L is linear using the fact that both L1 and L2 are linear. Let v1 ∈ V1. Then

(L ◦ ι1)(v1) = L((v1, 0)) = L1(v1) + L2(0) = L1(v1)

which shows that L◦ι1 = L1. By a symmetric argument, we can also conclude that L◦ι2 = L2.
Thus, L : V1 ⊕ V2 → Z is a linear map with the desired property. This proves existence.
Suppose K : V1 ⊕ V2 → Z is another linear map satisfying the same property. Then for any
(v1, v2) ∈ V1 ⊕ V2, we have

K(v1, v2) = K(ι1(v1) + ι2(v2)) = (K ◦ ι1)(v1) + (K ◦ ι2)(v2) = L1(v1) + L2(v2) = L(v1, v2).

Thus, K = L which proves that the map L is unique.

4. Let V1, V2,W1,W2 be vector spaces over F and let L1 : V1 → W1 and L2 : V2 → W2 be linear
maps.

(a) Use the Universal Property of the Direct Sum (see Remark 1) to show that there is a
unique linear map

L1 ⊕ L2 : V1 ⊕ V2 →W1 ⊕W2

satisfying (L1 ⊕ L2)(v1, v2) = (L1(v1), L2(v2)).

(b) Suppose additionally that V1, V2,W1,W2 are finite-dimensional with ordered bases B1 =
(a1, . . . , ak), B2 = (b1, . . . , bl), C1 = (c1, . . . , cm), and C2 = (d1, . . . , dn), respectively.

(i) Prove that B := ((a1, 0), . . . , (ak, 0), (0, b1), . . . , (0, bl)) is a basis for V1⊕V2. Similarly,
C := ((c1, 0), . . . , (cl, 0), (0, d1), . . . , (0, dn)) is a basis for W1 ⊕W2.

(ii) Prove that the matrix for L1 ⊕ L2 with respect to B and C has the following block
diagonal form:

[L1 ⊕ L2]CB =

(
[L1]C1

B1
0

0 [L2]C2

B2

)
.

Proof. (a) Denote the inclusions maps for each direct sum by

ιVi : Vi → V1 ⊕ V2 and ιWi : Wi →W1 ⊕W2

where i ∈ {1, 2}. Then we have linear maps ιWi
◦ Li : Vi → W1 ⊕W2 for i ∈ {1, 2}.

According the the Universal Property of the Direct Sum, there is a unique linear map

L1 ⊕ L2 : V1 ⊕ V2 →W1 ⊕W2
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satisfying
(L1 ⊕ L2) ◦ ιV1 = ιW1 ◦ L1 and (L1 ⊕ L2) ◦ ιV2 = ιW2 ◦ L2.

We just need to show that (L1⊕L2)(v1, v2) = (L1(v1), L2(v2)). For any (v1, v2) ∈ V1⊕V2,
we have

(L1 ⊕ L2)(v1, v2) = (L1 ⊕ L2)(ιV1
(v1) + ιV2

(v2))

= (L1 ⊕ L2)(ιV1
(v1)) + (L1 ⊕ L2)(ιV2

(v2))

= (ιW1
◦ L1)(v1) + (ιW1

◦ L1)(v2)

= (L1(v1), L2(v2)).

This proves the claim.

(b) (i) To prove (i), it suffices to show that B is spanning (or equivalently independent)
because |B| = k + l = dimV1 + dimV2 = dimV1 ⊕ V2. Either of these claims are
straightforward to show.

(ii) To prove (ii), you could work directly from the definitions to show that the matrices
have the same columns. A more elegant solution would be to use the uniqueness
property of the matrix [L1 ⊕ L2]CB - it is the unique matrix satisfying

[L1 ⊕ L2]CB [(v1, v2)]B = [(L1 ⊕ L2)(v1, v2)]C

for all v1 ∈ V1 and v2 ∈ V2. Let v1 ∈ V1 and v2 ∈ V2. Then [(v1, v2)]B =
(

[v1]B1

[v2]B2

)
.

Hence, (
[L1]C1

B1
0

0 [L2]C2

B2

)
[(v1, v2)]B =

(
[L1]C1

B1
0

0 [L2]C2

B2

)(
[v1]B1

[v2]B2

)
=

(
[L1]C1

B1
[v1]B1

[L2]C2

B2
[v2]B2

)
=

(
[L1(v1)]C1

[L2(v2)]C2

)
= [(L1(v1), L2(v2))]C

= [(L1 ⊕ L2)(v1, v2)]C .

By uniqueness, we conclude that [L1 ⊕ L2]CB =

(
[L1]

C1
B1

0

0 [L2]
C2
B2

)
.

Remark 1. In other words, L is the unique linear map making the following diagram commute

V1

V1 ⊕ V2 Z

V2

ι1

ι2

L1

L1

∃!L

The property described in Problem 1 is usually called the Universal Property of the Direct Product.
It provides a precise answer to the question “How do I define a linear map out of the direct sum of
two vector spaces?”. One simply defines linear maps L1 and L2 as in the statement. Your proof will
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provide the recipe for constructing the desired linear map L. Moreover, it establishes a bijection of
sets

HomF (V1 ⊕ V2, Z) HomF (V1, Z)⊕HomF (V2, Z)

L (L ◦ ι1, L ◦ ι2)

However, notice that the domain and codomain are actually vector spaces. It can be shown that this
bijection is a linear map, i.e., a vector space isomorphism. Note that all of this readily generalizes
to the direct sum of finitely many vector spaces. Compare all of this with the discussion on the
Universal Property of the Quotient Space from the lecture.
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