Weekly Assignment 2 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 13, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage for due dates, templates, and assignment description. Make sure to justify any claims you make. You may not appeal to any results that we have not discussed in class.

1. Prove Proposition 2.1.7: Let V and W be vector spaces over F and let $L: V \rightarrow W$ be a linear map. Then
(a) $\operatorname{im}(L)$ is a subspace of W; and
(b) $\operatorname{ker}(L)$ is a subspace of V.

Proof. We need to show that each set is nonempty, closed under addition, and closed under scalar multiplication.
(a) We have $0_{W} \in \operatorname{im}(L)$ since $L\left(0_{V}\right)=0_{W}$. Let $w, z \in \operatorname{im}(L)$ and let $\alpha \in F$. Choose $u, v \in V$ such that $L(u)=w$ and $L(v)=z$. Then

$$
L(\alpha u+v)=\alpha L(u)+L(v)=\alpha w+z .
$$

This proves that $\alpha w+z \in \operatorname{im}(L)$. This proves simultaneously that $\operatorname{im}(L)$ is closed under addition (let $\alpha=1$) and scalar multiplication (let $v=0_{V}$).
(b) We have $0_{V} \in \operatorname{ker}(L)$ since $L\left(0_{V}\right)=0_{W}$. Let $u, v \in \operatorname{ker}(L)$ and let $\alpha \in F$. Then

$$
L(\alpha u+v)=\alpha L(u)+L(v)=\alpha \cdot 0_{W}+0_{W}=0_{W}
$$

Thus, $\alpha u+v \in \operatorname{ker}(L)$.
This proves that $\operatorname{im}(L)$ and $\operatorname{ker}(L)$ are subspaces of W and V, respectively.
2. Prove Theorem 2.5.1: Suppose that V, W are vector spaces over F and $L, K: V \rightarrow W$ are linear maps. Then $\alpha L+\beta K$ is a linear map for all $\alpha, \beta \in F .{ }^{1}$

Proof. Let $u, v \in V$ and $\gamma \in F$. Then

$$
\begin{array}{rlr}
(\alpha L+\beta K)(u+v) & =(\alpha L)(u+v)+(\beta K)(u+v) & (\text { Def. of addition in } \operatorname{Hom}(V, W)) \\
& =\alpha L(u+v)+\beta K(u+v) & \text { (Def. of scalar mult. in } \operatorname{Hom}(V, W)) \\
& =\alpha(L(u)+L(v))+\beta(K(u)+K(v)) & (L, K \text { are linear maps) } \\
& =\alpha L(u)+\beta K(u)+\alpha L(v)+\beta K(v) & \text { (vector space properties) } \\
& =(\alpha L+\beta K)(u)+(\alpha L+\beta K)(v) . & \text { (Def. of } \operatorname{Hom}(V, W) \text { again) }
\end{array}
$$

[^0]I tried to make it as clear as possible what I am doing at each step. Your proof might not explain each step or might combine multiple steps into one - this is fine, as long as its clear to the reader what is happening. The computation for $(\alpha L+\beta K)(\gamma u)$ is similar, so I omit it. You need to use associativity of scalar multiplication in W and also commutativity of multiplication in F.
3. Let V_{1}, V_{2} be vector spaces over F. The direct sum $V_{1} \oplus V_{2}$ comes with linear maps

$$
\iota_{1}: V_{1} \rightarrow V_{1} \oplus V_{2}, v_{1} \mapsto\left(v_{1}, 0\right) \quad \text { and } \quad \iota_{2}: V_{2} \rightarrow V_{1} \oplus V_{2}, v_{2} \mapsto\left(0, v_{2}\right)
$$

Let Z be any other vector space and let $L_{1}: V_{1} \rightarrow Z$ and $L_{2}: V_{2} \rightarrow Z$ be any other linear maps. Prove that there is a unique linear map $L: V_{1} \oplus V_{2} \rightarrow Z$ with the property that $L \circ \iota_{1}=L_{1}$ and $L \circ \iota_{2}=L_{2}$. See Remark 1 .

Proof. Define $L: V_{1} \oplus V_{2} \rightarrow Z$ via the rule $L\left(v_{1}, v_{2}\right)=L_{1}\left(v_{1}\right)+L_{2}\left(v_{2}\right)$. It is easy to verify that L is linear using the fact that both L_{1} and L_{2} are linear. Let $v_{1} \in V_{1}$. Then

$$
\left(L \circ \iota_{1}\right)\left(v_{1}\right)=L\left(\left(v_{1}, 0\right)\right)=L_{1}\left(v_{1}\right)+L_{2}(0)=L_{1}\left(v_{1}\right)
$$

which shows that $L \circ \iota_{1}=L_{1}$. By a symmetric argument, we can also conclude that $L \circ \iota_{2}=L_{2}$. Thus, $L: V_{1} \oplus V_{2} \rightarrow Z$ is a linear map with the desired property. This proves existence. Suppose $K: V_{1} \oplus V_{2} \rightarrow Z$ is another linear map satisfying the same property. Then for any $\left(v_{1}, v_{2}\right) \in V_{1} \oplus V_{2}$, we have

$$
K\left(v_{1}, v_{2}\right)=K\left(\iota_{1}\left(v_{1}\right)+\iota_{2}\left(v_{2}\right)\right)=\left(K \circ \iota_{1}\right)\left(v_{1}\right)+\left(K \circ \iota_{2}\right)\left(v_{2}\right)=L_{1}\left(v_{1}\right)+L_{2}\left(v_{2}\right)=L\left(v_{1}, v_{2}\right)
$$

Thus, $K=L$ which proves that the map L is unique.
4. Let $V_{1}, V_{2}, W_{1}, W_{2}$ be vector spaces over F and let $L_{1}: V_{1} \rightarrow W_{1}$ and $L_{2}: V_{2} \rightarrow W_{2}$ be linear maps.
(a) Use the Universal Property of the Direct Sum (see Remark 1) to show that there is a unique linear map

$$
L_{1} \oplus L_{2}: V_{1} \oplus V_{2} \rightarrow W_{1} \oplus W_{2}
$$

satisfying $\left(L_{1} \oplus L_{2}\right)\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)$.
(b) Suppose additionally that $V_{1}, V_{2}, W_{1}, W_{2}$ are finite-dimensional with ordered bases $B_{1}=$ $\left(a_{1}, \ldots, a_{k}\right), B_{2}=\left(b_{1}, \ldots, b_{l}\right), C_{1}=\left(c_{1}, \ldots, c_{m}\right)$, and $C_{2}=\left(d_{1}, \ldots, d_{n}\right)$, respectively.
(i) Prove that $B:=\left(\left(a_{1}, 0\right), \ldots,\left(a_{k}, 0\right),\left(0, b_{1}\right), \ldots,\left(0, b_{l}\right)\right)$ is a basis for $V_{1} \oplus V_{2}$. Similarly, $C:=\left(\left(c_{1}, 0\right), \ldots,\left(c_{l}, 0\right),\left(0, d_{1}\right), \ldots,\left(0, d_{n}\right)\right)$ is a basis for $W_{1} \oplus W_{2}$.
(ii) Prove that the matrix for $L_{1} \oplus L_{2}$ with respect to B and C has the following block diagonal form:

$$
\left[L_{1} \oplus L_{2}\right]_{B}^{C}=\left(\begin{array}{cc}
{\left[L_{1}\right]_{B_{1}}^{C_{1}}} & 0 \\
0 & {\left[L_{2}\right]_{B_{2}}^{C_{2}}}
\end{array}\right)
$$

Proof. (a) Denote the inclusions maps for each direct sum by

$$
\iota_{V_{i}}: V_{i} \rightarrow V_{1} \oplus V_{2} \text { and } \iota_{W_{i}}: W_{i} \rightarrow W_{1} \oplus W_{2}
$$

where $i \in\{1,2\}$. Then we have linear maps $\iota_{W_{i}} \circ L_{i}: V_{i} \rightarrow W_{1} \oplus W_{2}$ for $i \in\{1,2\}$. According the the Universal Property of the Direct Sum, there is a unique linear map

$$
L_{1} \oplus L_{2}: V_{1} \oplus V_{2} \rightarrow W_{1} \oplus W_{2}
$$

satisfying

$$
\left(L_{1} \oplus L_{2}\right) \circ \iota_{V_{1}}=\iota_{W_{1}} \circ L_{1} \text { and }\left(L_{1} \oplus L_{2}\right) \circ \iota_{V_{2}}=\iota_{W_{2}} \circ L_{2}
$$

We just need to show that $\left(L_{1} \oplus L_{2}\right)\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)$. For any $\left(v_{1}, v_{2}\right) \in V_{1} \oplus V_{2}$, we have

$$
\begin{aligned}
\left(L_{1} \oplus L_{2}\right)\left(v_{1}, v_{2}\right) & =\left(L_{1} \oplus L_{2}\right)\left(\iota_{V_{1}}\left(v_{1}\right)+\iota_{V_{2}}\left(v_{2}\right)\right) \\
& =\left(L_{1} \oplus L_{2}\right)\left(\iota_{V_{1}}\left(v_{1}\right)\right)+\left(L_{1} \oplus L_{2}\right)\left(\iota_{V_{2}}\left(v_{2}\right)\right) \\
& =\left(\iota_{W_{1}} \circ L_{1}\right)\left(v_{1}\right)+\left(\iota_{W_{1}} \circ L_{1}\right)\left(v_{2}\right) \\
& =\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right) .
\end{aligned}
$$

This proves the claim.
(b) (i) To prove (i), it suffices to show that B is spanning (or equivalently independent) because $|B|=k+l=\operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim} V_{1} \oplus V_{2}$. Either of these claims are straightforward to show.
(ii) To prove (ii), you could work directly from the definitions to show that the matrices have the same columns. A more elegant solution would be to use the uniqueness property of the matrix $\left[L_{1} \oplus L_{2}\right]_{B}^{C}$ - it is the unique matrix satisfying

$$
\left[L_{1} \oplus L_{2}\right]_{B}^{C}\left[\left(v_{1}, v_{2}\right)\right]_{B}=\left[\left(L_{1} \oplus L_{2}\right)\left(v_{1}, v_{2}\right)\right]_{C}
$$

for all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. Let $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. Then $\left[\left(v_{1}, v_{2}\right)\right]_{B}=\binom{\left[v_{1}\right]_{B_{1}}}{\left[v_{2}\right]_{B_{2}}}$. Hence,

$$
\begin{aligned}
\left(\begin{array}{cc}
{\left[L_{1}\right]_{B_{1}}^{C_{1}}} & 0 \\
0 & {\left[L_{2}\right]_{B_{2}}^{C_{2}}}
\end{array}\right)\left[\left(v_{1}, v_{2}\right)\right]_{B} & =\left(\begin{array}{cc}
{\left[L_{1}\right]_{B_{1}}^{C_{1}}} & 0 \\
0 & {\left[L_{2}\right]_{B_{2}}^{C_{2}}}
\end{array}\right)\binom{\left[v_{1}\right]_{B_{1}}}{\left[v_{2}\right]_{B_{2}}} \\
& =\binom{\left[L_{1}\right]_{B_{1}}^{C_{1}}\left[v_{1}\right]_{B_{1}}}{\left[L_{2}\right]_{B_{2}}^{C_{2}}\left[v_{2}\right]_{B_{2}}} \\
& =\binom{\left[L_{1}\left(v_{1}\right)\right]_{C_{1}}}{\left[L_{2}\left(v_{2}\right)\right]_{C_{2}}} \\
& =\left[\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)\right]_{C} \\
& =\left[\left(L_{1} \oplus L_{2}\right)\left(v_{1}, v_{2}\right)\right]_{C} .
\end{aligned}
$$

By uniqueness, we conclude that $\left[L_{1} \oplus L_{2}\right]_{B}^{C}=\left(\begin{array}{cc}{\left[L_{1}\right]_{B_{1}}^{C_{1}}} & 0 \\ 0 & {\left[L_{2}\right]_{B_{2}}^{C_{2}}}\end{array}\right)$.

Remark 1. In other words, L is the unique linear map making the following diagram commute

The property described in Problem 1 is usually called the Universal Property of the Direct Product. It provides a precise answer to the question "How do I define a linear map out of the direct sum of two vector spaces?". One simply defines linear maps L_{1} and L_{2} as in the statement. Your proof will
provide the recipe for constructing the desired linear map L. Moreover, it establishes a bijection of sets

$$
\begin{gathered}
\operatorname{Hom}_{F}\left(V_{1} \oplus V_{2}, Z\right) \longleftrightarrow \operatorname{Hom}_{F}\left(V_{1}, Z\right) \oplus \operatorname{Hom}_{F}\left(V_{2}, Z\right) \\
L \longmapsto\left(L \circ \iota_{1}, L \circ \iota_{2}\right)
\end{gathered}
$$

However, notice that the domain and codomain are actually vector spaces. It can be shown that this bijection is a linear map, i.e., a vector space isomorphism. Note that all of this readily generalizes to the direct sum of finitely many vector spaces. Compare all of this with the discussion on the Universal Property of the Quotient Space from the lecture.

[^0]: ${ }^{1}$ Since the zero map is linear, this implies that $\operatorname{Hom}(V, W)$ is a subspace of W^{V}.

