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Some hints for this assignment are written in the footnotes. See the weekly assignment webpage
for due dates, templates, and assignment description.

1. Let F be a field and let V = F . Denote the additive and multiplicative identities of F by 0F
and 1F , respectively. For u, v ∈ V and α ∈ F , define vector addition by u ⊕ v := u + v − 1F
and scalar multiplication by α�u := αu−α+ 1F . Prove that (V,⊕,�) is an F -vector space.1

Proof. In this proof, I will freely use the fact that F is a field without explicitly mentioning
which property I used.

The additive identity with respect to ⊕ is given by 0V := 1F . Indeed, let v ∈ F . Then
1F ⊕ v = 1F + v − 1F = v = v + 1F − 1F = v ⊕ 1F . The additive inverse of v ∈ V is given by
	v := 1F + 1F − v2 because

v ⊕ (1F + 1F − v) = v + (1F + 1F − v)− 1F

= 1F

= (1F + 1F − v) + v − 1F

= (1F + 1F − v)⊕ v.

The binary operation ⊕ is clearly associative and commutative because they are defined in
terms of the binary operations on F , which are associative and commutative. Thus, (V,⊕) is
an abelian group.

It remains to check conditions V1-V3 from Definition 1.2.1. Let v, w ∈ V and α, β ∈ F . Then
1F � v = 1F · v − 1F + 1F = 1F · v = v, which verifies V 1. Further,

(αβ)� v = (αβ)v − αβ + 1F

= α(βv)− αβ + α− α+ 1F

= α(βv − β + 1F )− α+ 1F

= α� (βv − β + 1F )

= α� (β � v).

1You need to specify a zero vector 0V and the additive inverse 	u of u ∈ F , and then verify the several defining
conditions of a vector space.

2You could just write 2 instead of 1F + 1F , I am just trying to be as clear as possible.
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This verifies V2. Finally,

α� (v ⊕ w) = α� (v + w − 1F )

= α(v + w − 1F )− α+ 1F

= (αv − α+ 1F ) + (αw − α+ 1F )− 1F

= (αv − α+ 1F )⊕ (αw − α+ 1F )

= (α� v)⊕ (α� w).

The final equality (α+ β)� v = (α� v)⊕ (β � v) in V3 can also be easily verified.

2. Suppose that W1, . . . ,Wn are subspaces of a vector space V over a field F . Prove that

n∑
i=1

Wi =

{
n∑

i=1

wi : wi ∈Wi for all i = 1, . . . , n

}
.

Proof. The proof is by induction on n. By definition,
∑n

i=1Wi = span (
⋃n

i=1Wi). If n = 1,
this is just equal to W1, since the span of a subspace is the subspace itself. Clearly, W1 =
{w1 : w1 ∈W}, so the claim is true.

We will need the case n = 2 as well. If n = 2, then we need to prove that W1 +W2 = W where
W := {w1 + w2 : w1 ∈ W1, w2 ∈ W2}. Notice that W is a subspace of V which contains W1

and W2. By definition, W1 + W2 is the smallest subspace of V containing W1 and W2. This
implies that W1 + W2 ⊆ W . On the other hand, let w ∈ W . Then w = w1 + w2 for some
w1 ∈W1 and some w2 ∈W2. Hence,

w = w1 + w2 ∈ span({w1, w2}) ⊆ span(W1 ∪W2) = W1 +W2.

Thus W = W1 +W2. We will also need to use that fact that span(S∪T ) = span(S)+span(T ).
Now, assume that the equality of sets is true for any collection of n subspaces. Consider a
collection W1, . . . ,Wn,Wn+1 of n+ 1 subspaces. Then

n∑
i=1

Wi = span

(
n⋃

i=1

Wi ∪Wn+1

)

= span

(
n⋃

i=1

Wi

)
+ span(Wn+1)

=

n∑
i=1

Wi +Wn+1

=

{
n∑

i=1

wi : wi ∈Wi for all i = 1, . . . , n

}
+Wn+1 (Inductive hypothesis)

=

{
n∑

i=1

wi + wn+1 : wi ∈Wi, i = 1, . . . , n+ 1

}
(n = 2 case)

=

{
n+1∑
i=1

wi : wi ∈Wi for all i = 1, . . . , n+ 1

}
.

This completes the proof.
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3. Prove Proposition 1.4.8: a subset B of a vector space V is a basis if and only if B is a minimal3

spanning set.

Proof. Suppose that B ⊆ V is a basis. Then B is a spanning set. To prove it is minimal,
suppose C is another spanning set for V such that C ( B. Let b ∈ B \ C. Since C spans V
there is a finite collection of vectors c1, . . . , cn ∈ B and scalars a1, . . . , an ∈ F such that

b = a1c1 + · · ·+ ancn.

But then
a1c1 + · · ·+ ancn + (−1)b = 0

is a nontrivial linear combination of vectors in B (since b /∈ C). This is a contradiction to the
fact that B is independent.

Conversely, suppose that B is a minimal spanning set and suppose to the contrary that B
is not a basis. Then B is dependent. Using Proposition 1.4.3, choose v ∈ B such that
v ∈ span(B \ {v}). Then V = span(B) = span(B \ {v}), contradicting the fact that B is a
minimal spanning set.

4. Let M and N be finite-dimensional subspaces of a (not necessarily finite dimensional) vector
space V . Prove the following equation:

dim(M) + dim(N) = dim(M +N) + dim(M ∩N).

Proof. Let u1 . . . , un be a basis for M ∩ N . Since M ∩ N ⊆ M and M is finite dimensional,
we can extend this to a basis u1 . . . , un, v1, . . . , vk for M . Similarly, we can extend to a basis
u1 . . . , un, w1, . . . , wl for N . It suffices to show that the vectors

u1 . . . , un, v1, . . . , vk, w1, . . . , wl

are a basis for M +N , because then

dim(M) + dim(N) = (n+ k) + (n+ l) = (n+ k + l) + n = dim(M +N) + dim(M ∩N).

Clearly, they span M +N , because every every vector in M +N is a sum of a vector from M
and a vector from N . So it suffices to show that they are independent. Set x :=

∑n
i=1 aiui,

y :=
∑k

i=1 bivi and z :=
∑l

i=1 ciwi and suppose that x + y + z = 0. Notice that x + y ∈ M
while z ∈ N . Since z = −(x+ y), it follows that z ∈M ∩N . Thus, there are scalars d1, . . . , dn
such that

∑l
i=1 ciwi = z =

∑n
i=1 diui. Since u1, . . . , un, w1, . . . , wl form a basis for N , this

implies that c1 = · · · = cl = 0 = d1 = · · · = dn. In particular, this implies that z = 0. Thus,∑n
i=1 aiui +

∑k
i=1 bivi = x + y = 0. The independence of u1, . . . , un, v1, . . . , vk now implies

that a1 = · · · = an = 0 = b1 = · · · = bk. This proves the claim.

3A minimal spanning set is a spanning set that does not properly contain any other spanning set.
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