Weekly Assignment 1 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 10, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage
for due dates, templates, and assignment description.

1. Let F be a field and let V' = F. Denote the additive and multiplicative identities of F' by Og
and 1p, respectively. For u,v € V and a € F, define vector addition by u v :=u+v — 1p
and scalar multiplication by a ®u := au — a+ 1. Prove that (V,®,®) is an F-vector space.’

Proof. In this proof, I will freely use the fact that F' is a field without explicitly mentioning
which property I used.

The additive identity with respect to & is given by Oy := 1p. Indeed, let v € F. Then
lp@v=1p+tv—1lp=v=v+1p—1p =v P 1lp. The additive inverse of v € V is given by
ov:=1p + 1p — v? because

U@(1F+1F7’U):U+(1F+1F7U)71F
:1F
:(1F+1F—U)+’U—1F

= (1F+1F—'U)EBU.
The binary operation & is clearly associative and commutative because they are defined in

terms of the binary operations on F', which are associative and commutative. Thus, (V,®) is
an abelian group.

It remains to check conditions V1-V3 from Definition 1.2.1. Let v,w € V and «, 8 € F. Then
lpOv=1p-v—1p+ 1p = 1p - v = v, which verifies V1. Further,

(af) ©v=(aB)v—af +1F
=a(fv)—af+a—a+lp
=afv—B+1p)—a+1p
=a0(fv—L+1F)
=a0 (o).

1You need to specify a zero vector Oy and the additive inverse Su of v € F, and then verify the several defining
conditions of a vector space.
2You could just write 2 instead of 1z + 1, I am just trying to be as clear as possible.
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This verifies V2. Finally,

a®Wdw)=ad (v+w-—1p)

=alvt+w—1p) —a+1p
(av—a+1p)+(aw—a+1p)—1F
=(awv—a+1p)®(aw—a+1F)
— (@) ® (@ow).

The final equality (a + 8) @ v = (@@ v) ® (8 ®v) in V3 can also be easily verified. O

. Suppose that W1,..., W, are subspaces of a vector space V over a field F'. Prove that

iWi: {iwi:wiEWi forallizl,...m}.
i=1

i=1

—_

Proof. The proof is by induction on n. By definition, Y ;| W; = span (UJ_, W;). If n =
this is just equal to W7, since the span of a subspace is the subspace itself. Clearly, W; =
{w; : wy; € W}, so the claim is true.

We will need the case n = 2 as well. If n = 2, then we need to prove that W7, 4+ W5, = W where
W = {wy + we : wy € Wy, wy € Wa}. Notice that W is a subspace of V' which contains W
and Ws. By definition, W7 + W5 is the smallest subspace of V' containing W; and W5. This
implies that Wy + Wy C W. On the other hand, let w € W. Then w = w; + ws for some
wy € Wp and some wy € Ws. Hence,

w = w1 + we € span({wy,ws}) C span(W; U W) = W, + Wh.

Thus W = W + W,. We will also need to use that fact that span(SUT) = span(.S) +span(T).
Now, assume that the equality of sets is true for any collection of n subspaces. Consider a
collection W1y, ..., W,, W, 41 of n+ 1 subspaces. Then

; = span (U W; U Wn+1>

i=1

span (U WZ) + span(Wy,11)

i=1

Ny
=
I

Z Wi+ Wit
i=1

= {Z w; cw; € Wi foralli=1,... ,n} + Wi (Inductive hypothesis)

:{Zw,—i—wnH leWl,izl,...,n—i—l} (n =2 case)
n+1
—{Zwi w; € W foralli =1,. n+1}.
This completes the proof. O



3. Prove Proposition 1.4.8: a subset B of a vector space V is a basis if and only if B is a minimal®
spanning set.

Proof. Suppose that B C V is a basis. Then B is a spanning set. To prove it is minimal,
suppose C' is another spanning set for V such that C' C B. Let b € B\ C. Since C spans V
there is a finite collection of vectors cy,...,c, € B and scalars ay,...,a, € F such that

b=aic1 + -+ ancy.
But then
a1+t ape, +(=1)b=0

is a nontrivial linear combination of vectors in B (since b ¢ C). This is a contradiction to the
fact that B is independent.

Conversely, suppose that B is a minimal spanning set and suppose to the contrary that B
is not a basis. Then B is dependent. Using Proposition 1.4.3, choose v € B such that
v € span(B \ {v}). Then V = span(B) = span(B \ {v}), contradicting the fact that B is a
minimal spanning set. O

4. Let M and N be finite-dimensional subspaces of a (not necessarily finite dimensional) vector
space V. Prove the following equation:

dim(M) + dim(N) = dim(M + N) + dim(M N N).

Proof. Let uy ..., u, be a basis for M N N. Since M NN C M and M is finite dimensional,

we can extend this to a basis uy ..., up,v1,...,v; for M. Similarly, we can extend to a basis
UL .y Uy, W1, - .., w; for N. It suffices to show that the vectors
Up ... yUnyVlyeewy Vg, W1y ..., Wy

are a basis for M + N, because then
dim(M)+dim(N)=(n+k)+(n+)=n+k+1)+n=dim(M + N) + dim(M N N).

Clearly, they span M + N, because every every vector in M + N is a sum of a vector from M
and a vector from N. So it suffices to show that they are independent. Set z := Y"1 | a;u;,
Y= Zle bjv; and z := 22:1 c;w; and suppose that  +y + z = 0. Notice that z +y € M
while z € N. Since z = —(z +y), it follows that z € M N N. Thus, there are scalars dy, ..., d,

such that 22:1 cw; =z = Yy diu;. Since ug, ..., Up,w,...,w; form a basis for N, this
implies that ¢y = --- = ¢ =0 =dy = --- = d,,. In particular, this implies that z = 0. Thus,
S au; + Zle bjv; = v +y = 0. The independence of uy,...,uy,,v1,...,v; now implies
that ay =---=a, =0=0b; = --- = b,. This proves the claim.

O]

3A minimal spanning set is a spanning set that does not properly contain any other spanning set.



