Weekly Assignment 1 Solutions

Jadyn V. Breland
MATH 117: Advanced Linear Algebra

August 10, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage for due dates, templates, and assignment description.

1. Let F be a field and let $V=F$. Denote the additive and multiplicative identities of F by 0_{F} and 1_{F}, respectively. For $u, v \in V$ and $\alpha \in F$, define vector addition by $u \oplus v:=u+v-1_{F}$ and scalar multiplication by $\alpha \odot u:=\alpha u-\alpha+1_{F}$. Prove that (V, \oplus, \odot) is an F-vector space. ${ }^{1}$

Proof. In this proof, I will freely use the fact that F is a field without explicitly mentioning which property I used.
The additive identity with respect to \oplus is given by $0_{V}:=1_{F}$. Indeed, let $v \in F$. Then $1_{F} \oplus v=1_{F}+v-1_{F}=v=v+1_{F}-1_{F}=v \oplus 1_{F}$. The additive inverse of $v \in V$ is given by $\ominus v:=1_{F}+1_{F}-v^{2}$ because

$$
\begin{aligned}
v \oplus\left(1_{F}+1_{F}-v\right) & =v+\left(1_{F}+1_{F}-v\right)-1_{F} \\
& =1_{F} \\
& =\left(1_{F}+1_{F}-v\right)+v-1_{F} \\
& =\left(1_{F}+1_{F}-v\right) \oplus v
\end{aligned}
$$

The binary operation \oplus is clearly associative and commutative because they are defined in terms of the binary operations on F, which are associative and commutative. Thus, (V, \oplus) is an abelian group.
It remains to check conditions V1-V3 from Definition 1.2.1. Let $v, w \in V$ and $\alpha, \beta \in F$. Then $1_{F} \odot v=1_{F} \cdot v-1_{F}+1_{F}=1_{F} \cdot v=v$, which verifies $V 1$. Further,

$$
\begin{aligned}
(\alpha \beta) \odot v & =(\alpha \beta) v-\alpha \beta+1_{F} \\
& =\alpha(\beta v)-\alpha \beta+\alpha-\alpha+1_{F} \\
& =\alpha\left(\beta v-\beta+1_{F}\right)-\alpha+1_{F} \\
& =\alpha \odot\left(\beta v-\beta+1_{F}\right) \\
& =\alpha \odot(\beta \odot v) .
\end{aligned}
$$

[^0]This verifies V2. Finally,

$$
\begin{aligned}
\alpha \odot(v \oplus w) & =\alpha \odot\left(v+w-1_{F}\right) \\
& =\alpha\left(v+w-1_{F}\right)-\alpha+1_{F} \\
& =\left(\alpha v-\alpha+1_{F}\right)+\left(\alpha w-\alpha+1_{F}\right)-1_{F} \\
& =\left(\alpha v-\alpha+1_{F}\right) \oplus\left(\alpha w-\alpha+1_{F}\right) \\
& =(\alpha \odot v) \oplus(\alpha \odot w) .
\end{aligned}
$$

The final equality $(\alpha+\beta) \odot v=(\alpha \odot v) \oplus(\beta \odot v)$ in V3 can also be easily verified.
2. Suppose that W_{1}, \ldots, W_{n} are subspaces of a vector space V over a field F. Prove that

$$
\sum_{i=1}^{n} W_{i}=\left\{\sum_{i=1}^{n} w_{i}: w_{i} \in W_{i} \text { for all } i=1, \ldots, n\right\}
$$

Proof. The proof is by induction on n. By definition, $\sum_{i=1}^{n} W_{i}=\operatorname{span}\left(\bigcup_{i=1}^{n} W_{i}\right)$. If $n=1$, this is just equal to W_{1}, since the span of a subspace is the subspace itself. Clearly, $W_{1}=$ $\left\{w_{1}: w_{1} \in W\right\}$, so the claim is true.
We will need the case $n=2$ as well. If $n=2$, then we need to prove that $W_{1}+W_{2}=W$ where $W:=\left\{w_{1}+w_{2}: w_{1} \in W_{1}, w_{2} \in W_{2}\right\}$. Notice that W is a subspace of V which contains W_{1} and W_{2}. By definition, $W_{1}+W_{2}$ is the smallest subspace of V containing W_{1} and W_{2}. This implies that $W_{1}+W_{2} \subseteq W$. On the other hand, let $w \in W$. Then $w=w_{1}+w_{2}$ for some $w_{1} \in W_{1}$ and some $w_{2} \in W_{2}$. Hence,

$$
w=w_{1}+w_{2} \in \operatorname{span}\left(\left\{w_{1}, w_{2}\right\}\right) \subseteq \operatorname{span}\left(W_{1} \cup W_{2}\right)=W_{1}+W_{2}
$$

Thus $W=W_{1}+W_{2}$. We will also need to use that fact that $\operatorname{span}(S \cup T)=\operatorname{span}(S)+\operatorname{span}(T)$. Now, assume that the equality of sets is true for any collection of n subspaces. Consider a collection $W_{1}, \ldots, W_{n}, W_{n+1}$ of $n+1$ subspaces. Then

$$
\begin{aligned}
\sum_{i=1}^{n} W_{i} & =\operatorname{span}\left(\bigcup_{i=1}^{n} W_{i} \cup W_{n+1}\right) \\
& =\operatorname{span}\left(\bigcup_{i=1}^{n} W_{i}\right)+\operatorname{span}\left(W_{n+1}\right) \\
& =\sum_{i=1}^{n} W_{i}+W_{n+1} \\
& =\left\{\sum_{i=1}^{n} w_{i}: w_{i} \in W_{i} \text { for all } i=1, \ldots, n\right\}+W_{n+1} \quad \text { (Inductive hypothesis) } \\
& =\left\{\sum_{i=1}^{n} w_{i}+w_{n+1}: w_{i} \in W_{i}, i=1, \ldots, n+1\right\} \\
& =\left\{\sum_{i=1}^{n+1} w_{i}: w_{i} \in W_{i} \text { for all } i=1, \ldots, n+1\right\}
\end{aligned}
$$

This completes the proof.
3. Prove Proposition 1.4.8: a subset B of a vector space V is a basis if and only if B is a minimal ${ }^{3}$ spanning set.

Proof. Suppose that $B \subseteq V$ is a basis. Then B is a spanning set. To prove it is minimal, suppose C is another spanning set for V such that $C \subsetneq B$. Let $b \in B \backslash C$. Since C spans V there is a finite collection of vectors $c_{1}, \ldots, c_{n} \in B$ and scalars $a_{1}, \ldots, a_{n} \in F$ such that

$$
b=a_{1} c_{1}+\cdots+a_{n} c_{n}
$$

But then

$$
a_{1} c_{1}+\cdots+a_{n} c_{n}+(-1) b=0
$$

is a nontrivial linear combination of vectors in B (since $b \notin C)$. This is a contradiction to the fact that B is independent.
Conversely, suppose that B is a minimal spanning set and suppose to the contrary that B is not a basis. Then B is dependent. Using Proposition 1.4.3, choose $v \in B$ such that $v \in \operatorname{span}(B \backslash\{v\})$. Then $V=\operatorname{span}(B)=\operatorname{span}(B \backslash\{v\})$, contradicting the fact that B is a minimal spanning set.
4. Let M and N be finite-dimensional subspaces of a (not necessarily finite dimensional) vector space V. Prove the following equation:

$$
\operatorname{dim}(M)+\operatorname{dim}(N)=\operatorname{dim}(M+N)+\operatorname{dim}(M \cap N)
$$

Proof. Let $u_{1} \ldots, u_{n}$ be a basis for $M \cap N$. Since $M \cap N \subseteq M$ and M is finite dimensional, we can extend this to a basis $u_{1} \ldots, u_{n}, v_{1}, \ldots, v_{k}$ for M. Similarly, we can extend to a basis $u_{1} \ldots, u_{n}, w_{1}, \ldots, w_{l}$ for N. It suffices to show that the vectors

$$
u_{1} \ldots, u_{n}, v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{l}
$$

are a basis for $M+N$, because then

$$
\operatorname{dim}(M)+\operatorname{dim}(N)=(n+k)+(n+l)=(n+k+l)+n=\operatorname{dim}(M+N)+\operatorname{dim}(M \cap N) .
$$

Clearly, they span $M+N$, because every every vector in $M+N$ is a sum of a vector from M and a vector from N. So it suffices to show that they are independent. Set $x:=\sum_{i=1}^{n} a_{i} u_{i}$, $y:=\sum_{i=1}^{k} b_{i} v_{i}$ and $z:=\sum_{i=1}^{l} c_{i} w_{i}$ and suppose that $x+y+z=0$. Notice that $x+y \in M$ while $z \in N$. Since $z=-(x+y)$, it follows that $z \in M \cap N$. Thus, there are scalars d_{1}, \ldots, d_{n} such that $\sum_{i=1}^{l} c_{i} w_{i}=z=\sum_{i=1}^{n} d_{i} u_{i}$. Since $u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{l}$ form a basis for N, this implies that $c_{1}=\cdots=c_{l}=0=d_{1}=\cdots=d_{n}$. In particular, this implies that $z=0$. Thus, $\sum_{i=1}^{n} a_{i} u_{i}+\sum_{i=1}^{k} b_{i} v_{i}=x+y=0$. The independence of $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{k}$ now implies that $a_{1}=\cdots=a_{n}=0=b_{1}=\cdots=b_{k}$. This proves the claim.

[^1]
[^0]: ${ }^{1}$ You need to specify a zero vector 0_{V} and the additive inverse $\ominus u$ of $u \in F$, and then verify the several defining conditions of a vector space.
 ${ }^{2}$ You could just write 2 instead of $1_{F}+1_{F}$, I am just trying to be as clear as possible.

[^1]: ${ }^{3}$ A minimal spanning set is a spanning set that does not properly contain any other spanning set.

