Weekly Assignment 1

Carl Friedrich Gauss MATH 117: Advanced Linear Algebra

August 3, 2023

Some hints for this assignment are written in the footnotes. See the weekly assignment webpage for due dates, templates, and assignment description.

1. Let *F* be a field and let V = F. Denote the additive and multiplicative identities of *F* by 0_F and 1_F , respectively. For $u, v \in V$ and $\alpha \in F$, define vector addition by $u \oplus v := u + v - 1_F$ and scalar multiplication by $\alpha \odot u := \alpha u - \alpha + 1_F$. Prove that (V, \oplus, \odot) is an *F*-vector space.¹

Proof. Write your proof here.

2. Suppose that W_1, \ldots, W_n are subspaces of a vector space V over a field F. Prove that

$$\sum_{i=1}^{n} W_i = \left\{ \sum_{i=1}^{n} w_i : w_i \in W_i \text{ for all } i = 1, \dots, n \right\}.$$

Proof. Write your proof here.

3. Prove Proposition 1.4.8: a subset B of a vector space V is a basis if and only if B is a minimal² spanning set.

Proof. Write your proof here.

4. Let M and N be finite-dimensional subspaces of a (not necessarily finite dimensional) vector space V. Prove the following equation:

$$\dim(M) + \dim(N) = \dim(M+N) + \dim(M \cap N).$$

Proof. Write your proof here.

¹You need to specify a zero vector 0_V and the additive inverse $\ominus u$ of $u \in F$, and then verify the several defining conditions of a vector space.

 $^{^{2}}$ A minimal spanning set is a spanning set that does not properly contain any other spanning set.