
MATH 117: Daily Assignment 3 Solutions

Carl Friedrich Gauss

August 9, 2023

Some hints for this assignment are written in the footnotes. See the daily assignment webpage
for due dates, templates, and assignment description.

1. Compute rank(L) and nullity(L) for each of the following linear maps. You must justify your
reasoning.

(a) L : F2[x]→ F2[x], L(a+ bx+ cx2) = b+ 2cx where F is any field.1

(b) L : F 2×2 → F , L(A) = tr(A) where F is any field. Here, tr(A) denotes the trace of the
matrix A, i.e., the sum of the element on the main diagonal.

Solution. We need to find a basis for the image and the kernel of each map.

(a) Suppose p(x) = a+ bx+ cx2 ∈ ker(L). Then b+ 2cx = L(p(x)) = 0. If ch(F ) 6= 2, then 2
is invertible and the equation implies b = c = 0. Thus, ker(L) = {a ∈ F [x] : a ∈ F}. A
basis for this space is {1} and nullity(L) = 1. If ch(L) = 2, then 2 = 0 so the equation
only implies that b = 0. In that case, ker(L) = {a+ cx2 : a, c ∈ F}. A basis for this space
is {1, x2} and nullity(L) = 2. Similarly, if ch(F ) 6= 2, then im(L) = {b + 2cx : b, c ∈ F}.
A basis is {1, x} and rank(L) = 2. If ch(F ) = 2, then im(L) = {b ∈ F [x] : b ∈ F}, a basis
is {1}, and rank(L) = 1.

(a) The image of L is nonzero for any field F . Since im(L) is a subspace of F , im(L) = F .
Thus, rank(L) = 1. Suppose A =

(
a b
c d

)
∈ ker(L). Then a+ d = 0. Thus,

A =
(
a b
c d

)
=
(
a b
c −a

)
= a

(
1 0
0 −1

)
+ b ( 0 1

0 0 ) + c ( 0 0
1 0 ) .

The independence of the vectors in the set{(
1 0
0 −1

)
, ( 0 1

0 0 ) , ( 0 0
1 0 )

}
is easily verified. Thus, nullity(L) = 3.

Notice that in all three cases, the rank plus the nullity is equal to the dimension of the domain
of the map. This is the rank-nullity theorem, which we will prove later in the course.

2. For each part, you are given a finite-dimensional F -vector space V with ordered basis B and
a vector v ∈ V . Compute [v]B .

(a) V = R3, F = R, B = ((1, 1, 2), (2, 3, 2), (1, 0, 1)), v = (−2, 1, 4).

(b) V = F2[x], F is any field with chF 6= 22, B = (1+x, 1+x2, x+x2), v = v(x) = a+bx+cx2

where a, b, c ∈ F .

1Hint: the answer depends on the characteristic of the field! Handle the case chF = 2 separately.
2This condition is required for the vectors in B to be independent.
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(c) V = C, F = R, B = (i, 1− i), v = x+ iy. Here i denotes the imaginary unit in C.

Solution. (a) By definition, [(−2, 1, 4)]B = (a, b, c) where a, b, c ∈ R are the unique numbers
satisfying a(1, 1, 2) + b(2, 3, 2) + c(1, 0, 1) = (−2, 1, 4). This is a system of equations
represented by the matrix 1 2 1 −2

1 3 0 1
2 2 1 4


Row-reducing via WolframAlpha yields1 0 0 6

0 1 0 − 5
3

0 0 1 − 14
3


Thus, [(−2, 1, 4)]B =

(
6,− 5

3 ,−
14
3

)
.

(b) By definition, [a + bx + cx2]B = (α, β, γ) where α, β, γ ∈ F are the unique coefficients
satisfying α(1 +x) +β(1 +x2) + γ(x+x2) = a+ bx+ cx2. Comparing coefficients of each
power of x yields α + β = a, α + γ = b, and β + γ = c. The matrix for this system of
equations is 1 1 0 a

1 0 1 b
0 1 1 c

 .

We can row-reduce as usual as long as we never multiply a row by zero. We have1 1 0 a
1 0 1 b
0 1 1 c

 R2−R1 7→R2→

1 1 0 a
0 −1 1 b− a
0 1 1 c


R2+R3 7→R3→

1 1 0 a
0 −1 1 b− a
0 0 2 c+ b− a


R1+R2 7→R1→

1 0 1 b
0 −1 1 b− a
0 0 2 c+ b− a


1
2R3 7→R3→

1 0 1 b
0 −1 1 b− a
0 0 1 c+b−a

2


−R2 7→R2→

1 0 1 b
0 1 −1 a− b
0 0 1 c+b−a

2


R1−R3→R1→

1 0 0 a+b−c
2

0 1 −1 a− b
0 0 1 c+b−a

2


R2+R3 7→R2→

1 0 0 a+b−c
2

0 1 0 a−b+c
2

0 0 1 c+b−a
2


Notice that I had to divide by two - it wasn’t a problem because ch(F ) 6= 2. Thus, we
conclude that [a + bx + cx2] =

(
a+b−c

2 , a−b+c
2 , c+b−a

2

)
. Notice that since a, b, c ∈ F were

arbitrary, we can define a linear map F2[x]→ F 3, a+ bx+ cx2 7→
(
a+b−c

2 , a−b+c
2 , c+b−a

2

)
which is an isomorphism of F -vector spaces.
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(c) Since x + yi = (x + y)i + x(1 − i), we can conclude that [x + yi]B = (x − y, x). Notice
that since x, y ∈ R were arbitrary, we can define a linear map C→ R2, x+yi 7→ (x+y, x)
which is an isomorphism of R-vector spaces.

3. (a) Construct a linear map L : R3 → R3 which maps the plane W1 = {(x, y, z) ∈ R3 : z = 0}
bijectively onto the plane W2{(x, y, z) ∈ R3 : 3x+ 2y + z = 0}.3

(b) Construct a linear map L : R3 → R3 which maps the plane W3{(x, y, z) ∈ R3 : x−y−z =
0} bijectively onto the plane W4 = {(x, y, z) ∈ R3 : x− 3z = 0}.

Solution. (a) One possible linear map is given by L(a, b, c) = (a, b,−3a− 2b+ c). Here’s how
I found it. Construct a basis for R3 which contains a basis for W1, such as

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

According to Theorem 2.3.1., any linear map L : R3 → R3 is uniquely determined by
its image on a basis. If I want W1 to be bijectively mapped onto W2, then I need
to ensure that my map sends a basis for W1 to a basis for W2. A basis for W2 is
given by {(1, 0,−3), (0, 1,−2)}. Now, define a linear map L : R3 → R3 via L(1, 0, 0) =
(1, 0,−3), L(0, 1, 0) = (0, 1,−2), and L(0, 0, 1) = (0, 0, 1). Extending by linearity, the
image on an arbitrary vector is L(a, b, c) = (a, b,−3a− 2b+ c).

(b) One possible linear map is given by L(a, b, c) = (3b, a − b, a − c). A basis for R3 which
contains a basis for W3 is {(1, 1, 0), (1, 0, 1), (0, 0, 1)}. Notice that L(1, 1, 0) = (3, 0, 1) and
L(1, 0, 1) = (0, 1, 0). Since {(3, 0, 1), (0, 1, 0)} is a basis for W2, we can conclude that L
maps W3 bijectively onto W4.

Notice that in each case I forced L to be an isomorphism by sending the basis vector not in
the first subspace to a vector not in the second subspace.

3Theorem 2.3.1 my be useful here.
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