MATH 117: Daily Assignment 3 Solutions

Carl Friedrich Gauss

August 9, 2023

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

- 1. Compute $\operatorname{rank}(L)$ and $\operatorname{nullity}(L)$ for each of the following linear maps. You must justify your reasoning.
 - (a) $L: F_2[x] \to F_2[x], L(a+bx+cx^2) = b+2cx$ where F is any field.¹
 - (b) $L: F^{2\times 2} \to F$, L(A) = tr(A) where F is any field. Here, tr(A) denotes the *trace* of the matrix A, i.e., the sum of the element on the main diagonal.

Solution. We need to find a basis for the image and the kernel of each map.

- (a) Suppose $p(x) = a + bx + cx^2 \in \ker(L)$. Then b + 2cx = L(p(x)) = 0. If $ch(F) \neq 2$, then 2 is invertible and the equation implies b = c = 0. Thus, $\ker(L) = \{a \in F[x] : a \in F\}$. A basis for this space is $\{1\}$ and $\operatorname{nullity}(L) = 1$. If ch(L) = 2, then 2 = 0 so the equation only implies that b = 0. In that case, $\ker(L) = \{a + cx^2 : a, c \in F\}$. A basis for this space is $\{1, x^2\}$ and $\operatorname{nullity}(L) = 2$. Similarly, if $ch(F) \neq 2$, then $\operatorname{im}(L) = \{b + 2cx : b, c \in F\}$. A basis is $\{1, x\}$ and $\operatorname{rank}(L) = 2$. If ch(F) = 2, then $\operatorname{im}(L) = \{b \in F[x] : b \in F\}$, a basis is $\{1\}$, and $\operatorname{rank}(L) = 1$.
- (a) The image of L is nonzero for any field F. Since $\operatorname{im}(L)$ is a subspace of F, $\operatorname{im}(L) = F$. Thus, $\operatorname{rank}(L) = 1$. Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \ker(L)$. Then a + d = 0. Thus,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

The independence of the vectors in the set

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

is easily verified. Thus, $\operatorname{nullity}(L) = 3$.

Notice that in all three cases, the rank plus the nullity is equal to the dimension of the domain of the map. This is the rank-nullity theorem, which we will prove later in the course. \Box

- **2.** For each part, you are given a finite-dimensional *F*-vector space *V* with ordered basis *B* and a vector $v \in V$. Compute $[v]_B$.
 - (a) $V = \mathbb{R}^3$, $F = \mathbb{R}$, B = ((1, 1, 2), (2, 3, 2), (1, 0, 1)), v = (-2, 1, 4).
 - (b) $V = F_2[x]$, F is any field with ch $F \neq 2^2$, $B = (1+x, 1+x^2, x+x^2)$, $v = v(x) = a+bx+cx^2$ where $a, b, c \in F$.

¹Hint: the answer depends on the characteristic of the field! Handle the case ch F = 2 separately.

²This condition is required for the vectors in B to be independent.

(c) $V = \mathbb{C}$, $F = \mathbb{R}$, B = (i, 1 - i), v = x + iy. Here *i* denotes the imaginary unit in \mathbb{C} .

Solution. (a) By definition, $[(-2,1,4)]_B = (a,b,c)$ where $a,b,c \in \mathbb{R}$ are the unique numbers satisfying a(1,1,2) + b(2,3,2) + c(1,0,1) = (-2,1,4). This is a system of equations represented by the matrix

$$\begin{pmatrix} 1 & 2 & 1 & -2 \\ 1 & 3 & 0 & 1 \\ 2 & 2 & 1 & 4 \end{pmatrix}$$

Row-reducing via WolframAlpha yields

$$\begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -\frac{5}{3} \\ 0 & 0 & 1 & -\frac{14}{3} \end{pmatrix}$$

Thus, $[(-2, 1, 4)]_B = (6, -\frac{5}{3}, -\frac{14}{3}).$

 $\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$

(b) By definition, $[a + bx + cx^2]_B = (\alpha, \beta, \gamma)$ where $\alpha, \beta, \gamma \in F$ are the unique coefficients satisfying $\alpha(1+x) + \beta(1+x^2) + \gamma(x+x^2) = a + bx + cx^2$. Comparing coefficients of each power of x yields $\alpha + \beta = a$, $\alpha + \gamma = b$, and $\beta + \gamma = c$. The matrix for this system of equations is

$$\begin{pmatrix} 1 & 1 & 0 & a \\ 1 & 0 & 1 & b \\ 0 & 1 & 1 & c \end{pmatrix}$$

We can row-reduce as usual as long as we never multiply a row by zero. We have

Notice that I had to divide by two - it wasn't a problem because $ch(F) \neq 2$. Thus, we conclude that $[a + bx + cx^2] = \left(\frac{a+b-c}{2}, \frac{a-b+c}{2}, \frac{c+b-a}{2}\right)$. Notice that since $a, b, c \in F$ were arbitrary, we can define a linear map $F_2[x] \to F^3$, $a + bx + cx^2 \mapsto \left(\frac{a+b-c}{2}, \frac{a-b+c}{2}, \frac{c+b-a}{2}\right)$ which is an isomorphism of *F*-vector spaces.

(c) Since x + yi = (x + y)i + x(1 - i), we can conclude that $[x + yi]_B = (x - y, x)$. Notice that since $x, y \in \mathbb{R}$ were arbitrary, we can define a linear map $\mathbb{C} \to \mathbb{R}^2, x + yi \mapsto (x + y, x)$ which is an isomorphism of \mathbb{R} -vector spaces.

- **3.** (a) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $W_1 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ bijectively onto the plane $W_2\{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}$.³
 - (b) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $W_3\{(x, y, z) \in \mathbb{R}^3 : x y z = 0\}$ bijectively onto the plane $W_4 = \{(x, y, z) \in \mathbb{R}^3 : x 3z = 0\}.$
 - Solution. (a) One possible linear map is given by L(a, b, c) = (a, b, -3a 2b + c). Here's how I found it. Construct a basis for \mathbb{R}^3 which contains a basis for W_1 , such as

$$\{(1,0,0), (0,1,0), (0,0,1)\}.$$

According to Theorem 2.3.1., any linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ is uniquely determined by its image on a basis. If I want W_1 to be bijectively mapped onto W_2 , then I need to ensure that my map sends a basis for W_1 to a basis for W_2 . A basis for W_2 is given by $\{(1,0,-3), (0,1,-2)\}$. Now, define a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ via L(1,0,0) =(1,0,-3), L(0,1,0) = (0,1,-2), and L(0,0,1) = (0,0,1). Extending by linearity, the image on an arbitrary vector is L(a,b,c) = (a,b,-3a-2b+c).

(b) One possible linear map is given by L(a, b, c) = (3b, a - b, a - c). A basis for \mathbb{R}^3 which contains a basis for W_3 is $\{(1, 1, 0), (1, 0, 1), (0, 0, 1)\}$. Notice that L(1, 1, 0) = (3, 0, 1) and L(1, 0, 1) = (0, 1, 0). Since $\{(3, 0, 1), (0, 1, 0)\}$ is a basis for W_2 , we can conclude that L maps W_3 bijectively onto W_4 .

Notice that in each case I forced L to be an isomorphism by sending the basis vector not in the first subspace to a vector not in the second subspace.

³Theorem 2.3.1 my be useful here.