MATH 117: Daily Assignment 3

Carl Friedrich Gauss

August 4, 2023

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

- 1. Compute $\operatorname{rank}(L)$ and $\operatorname{nullity}(L)$ for each of the following linear maps. You must justify your reasoning.
 - (a) $L: F_2[x] \to F_2[x], L(a+bx+cx^2) = b+2cx$ where F is any field.¹
 - (b) $L: F^{2\times 2} \to F, L(A) = tr(A)$ where F is any field. Here, tr(A) denotes the *trace* of the matrix A, i.e., the sum of the element on the main diagonal.

Solution. Your solution can go here.

- **2.** For each part, you are given a finite-dimensional F-vector space V with ordered basis B and a vector $v \in V$. Compute $[v]_B$.
 - (a) $V = \mathbb{R}^3$, $F = \mathbb{R}$, B = ((1, 1, 2), (2, 3, 2), (1, 0, 1)), v = (-2, 1, 4).
 - (b) $V = F_2[x]$, F is any field with ch $F \neq 2^2$, $B = (1+x, 1+x^2, x+x^2)$, $v = v(x) = a+bx+cx^2$ where $a, b, c \in F$.
 - (c) $V = \mathbb{C}, F = \mathbb{R}, B = (i, 1 i), v = x + iy$. Here *i* denotes the imaginary unit in \mathbb{C} .

Solution. Your solution can go here.

- (a) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ bijectively onto the plane $\{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}$.³ 3.
 - (b) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x, y, z) \in \mathbb{R}^3 : x y z = 0\}$ bijectively onto the plane $\{(x, y, z) \in \mathbb{R}^3 : x 3z = 0\}$.

Solution. Your solution can go here.

4. (optional) Try to construct a choice function on $\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\}$, the set of all nonempty subsets of the real numbers. Then give an informal argument (not a proof) for why it is not possible.

Solution. Your solution can go here.

 \square

¹Hint: the answer depends on the characteristic of the field! Handle the case ch F = 2 separately.

²This condition is required for the vectors in B to be independent.

³Theorem 2.3.1 my be useful here.