MATH 117: Daily Assignment 3

Carl Friedrich Gauss

August 4, 2023

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

1. Compute $\operatorname{rank}(L)$ and nullity (L) for each of the following linear maps. You must justify your reasoning.
(a) $L: F_{2}[x] \rightarrow F_{2}[x], L\left(a+b x+c x^{2}\right)=b+2 c x$ where F is any field. ${ }^{1}$
(b) $L: F^{2 \times 2} \rightarrow F, L(A)=\operatorname{tr}(A)$ where F is any field. Here, $\operatorname{tr}(A)$ denotes the trace of the $\operatorname{matrix} A$, i.e., the sum of the element on the main diagonal.

Solution. Your solution can go here.
2. For each part, you are given a finite-dimensional F-vector space V with ordered basis B and a vector $v \in V$. Compute $[v]_{B}$.
(a) $V=\mathbb{R}^{3}, F=\mathbb{R}, B=((1,1,2),(2,3,2),(1,0,1)), v=(-2,1,4)$.
(b) $V=F_{2}[x], F$ is any field with $\operatorname{ch} F \neq 2^{2}, B=\left(1+x, 1+x^{2}, x+x^{2}\right), v=v(x)=a+b x+c x^{2}$ where $a, b, c \in F$.
(c) $V=\mathbb{C}, F=\mathbb{R}, B=(i, 1-i)$, $v=x+i y$. Here i denotes the imaginary unit in \mathbb{C}.

Solution. Your solution can go here.
3. (a) Construct a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which maps the plane $\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right\}$ bijectively onto the plane $\left\{(x, y, z) \in \mathbb{R}^{3}: 3 x+2 y+z=0\right\} .^{3}$
(b) Construct a linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which maps the plane $\left\{(x, y, z) \in \mathbb{R}^{3}: x-y-z=0\right\}$ bijectively onto the plane $\left\{(x, y, z) \in \mathbb{R}^{3}: x-3 z=0\right\}$.

Solution. Your solution can go here.
4. (optional) Try to construct a choice function on $\mathcal{P}(\mathbb{R}) \backslash\{\emptyset\}$, the set of all nonempty subsets of the real numbers. Then give an informal argument (not a proof) for why it is not possible.

Solution. Your solution can go here.

[^0]
[^0]: ${ }^{1}$ Hint: the answer depends on the characteristic of the field! Handle the case ch $F=2$ separately.
 ${ }^{2}$ This condition is required for the vectors in B to be independent.
 ${ }^{3}$ Theorem 2.3.1 my be useful here.

