MATH 117: Daily Assignment 2

Carl Friedrich Gauss

August 2, 2023

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

1. Let F be any field. A Fibonacci sequence in F is a function $f: \mathbb{N} \rightarrow F$ defined recursively by letting $f(0), f(1)$ be elements of F and then setting $f(n+2)=f(n+1)+f(n)$ for all $n \in \mathbb{N}$. Show that the set \mathcal{F} of all Fibonacci sequences in F is a subspace of $F^{\mathbb{N}}$. Then compute the dimension of this space.

Solution. Your solution can go here.
2. For each part, determine whether the set of vectors S is a spanning set for the vector space V over the field F. If S is a spanning set, determine whether or not it is a basis ${ }^{1}$. Justify your answers.
(a) $F=\mathbb{Q}, V=\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \in \mathbb{R}: a, b \in \mathbb{Q}\}, S=\{1-\sqrt{2}, 4\}$.
(b) $F=\mathbb{Z}_{2}, V=\left\{\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in F^{2 \times 2}: a_{11}+a_{22}=0\right\}, S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\right\}$
(c) $F=\mathbb{Z}_{2}, V=F_{2}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{0}, a_{1}, a_{2} \in F\right\}, S=\left\{1+x, 1+x^{2}\right\}$

Solution. Your solution can go here.
3. Let $M:=\operatorname{Mag}_{3}(\mathbb{R})$ denote the set of 3×3 magic squares with entries from \mathbb{R}.
(a) Show that M is a subspace of $\mathbb{R}^{3 \times 3}$.
(b) Find a basis for $M .^{2}$
(c) What is the dimension of M ?

Solution. Your solution can go here.
4. (optional) Let $M:=\operatorname{Mag}_{3}(F)$ denote the set of 3×3 magic squares with entries from a field F.
(a) Convince yourself that the set M_{0} of magic square with magic sum 0 is a subspace of M.
(b) Find a basis for M_{0} when $F=\mathbb{Z}_{p}$, the field with p-elements. Does your answer depend on p ?
(c) What is the dimension of M_{0} ?

Solution. Your solution can go here.

[^0]
[^0]: ${ }^{1}$ Hint: use a Proposition from Section 1.4!
 ${ }^{2}$ You will need to solve a large system of equations - you may use a computer algebra system (CAS) to do this part of the computations.

