MATH 117: Daily Assignment 3

Carl Friedrich Gauss

July 30, 2022

Some hints for this assignment are written in the footnotes. See the [daily assignment webpage](https://people.ucsc.edu/~jbreland/teaching/SM22_MATH117/daily_assignments.html) for due dates, templates, and assignment description.

- 1. Compute $rank(L)$ and nullity(L) for each of the following linear maps. You must justify your reasoning.
	- (a) $L: F_2[x] \to F_2[x]$, $L(a + bx + cx^2) = b + 2cx$ where F is any field.^{[1](#page-0-0)}
	- (b) $L: F^{2\times 2} \to F$, $L(A) = \text{tr}(A)$ where F is any field. Here, $\text{tr}(A)$ denotes the trace of the matrix A, i.e., the sum of the element on the main diagonal.
	- (c) $L: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}, L(a + b\sqrt{2}) = a + b$. Here, we view $\mathbb{Q}(\sqrt{2})$ and \mathbb{Q} as vector spaces over Q.
	- (d) $L: F^3 \to F^3$, $L(a, b, c) = (0, b, c)$ where F is any field.

Solution. Your solution can go here.

- 2. For each part, you are given a finite-dimensional F -vector space V with ordered basis B and a vector $v \in V$. Compute $[v]_B$.
	- (a) $V = \mathbb{R}^3$, $F = \mathbb{R}$, $B = ((1, 1, 2), (2, 3, 2), (1, 0, 1)), v = (-2, 1, 4).$
	- (b) $V = F_2[x]$ $V = F_2[x]$ $V = F_2[x]$, F is any field with ch $F \neq 2^2$, $B = (1 + x, 1 + x^2, x + x^2)$, $p(x) = a + bx + cx^2$ where $a, b, c \in F$.
	- (c) $V = \mathbb{C}, F = \mathbb{R}, B = (i, 1 i), v = x + iy$. Here i denotes the imaginary unit in \mathbb{C} .
	- (d) $V = \text{Mag}_3(\mathbb{R})$ (see Daily 1.3), $F = \mathbb{R}$, $B = \left\{ \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right\}$, $v =$ $\left(\begin{smallmatrix} 2 & 7 & 6 \\ 9 & 5 & 1 \\ 4 & 3 & 8 \end{smallmatrix}\right).$

Solution. Your solution can go here.

- **3.** (a) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ bijectively onto the plane $\{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}$ $\{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}$ $\{(x, y, z) \in \mathbb{R}^3 : 3x + 2y + z = 0\}$.
	- (b) Construct a linear map $L : \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x, y, z) \in \mathbb{R}^3 : x y z = 0\}$ bijectively onto the plane $\{(x, y, z) \in \mathbb{R}^3 : x - 3z = 0\}.$

Solution. Your solution can go here.

 \Box

 \Box

 \Box

¹Hint: the answer depends on the characteristic of the field! Handle the case ch $F = 2$ separately.

²This condition is required for the vectors in B to be independent.

³Theorem 2.3.1 my be useful here.