MATH 117: Daily Assignment 3

Carl Friedrich Gauss

July 30, 2022

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

- 1. Compute rank(L) and nullity(L) for each of the following linear maps. You must justify your reasoning.
 - (a) $L: F_2[x] \to F_2[x], L(a+bx+cx^2) = b+2cx$ where F is any field.¹
 - (b) $L: F^{2\times 2} \to F$, $L(A) = \operatorname{tr}(A)$ where F is any field. Here, $\operatorname{tr}(A)$ denotes the trace of the matrix A, i.e., the sum of the element on the main diagonal.
 - (c) $L: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}$, $L(a+b\sqrt{2})=a+b$. Here, we view $\mathbb{Q}(\sqrt{2})$ and \mathbb{Q} as vector spaces over \mathbb{Q} .

(d) $L: F^3 \to F^3$, L(a,b,c) = (0,b,c) where F is any field.

Solution. Your solution can go here.

- **2.** For each part, you are given a finite-dimensional F-vector space V with ordered basis B and a vector $v \in V$. Compute $[v]_B$.
 - (a) $V = \mathbb{R}^3$, $F = \mathbb{R}$, B = ((1, 1, 2), (2, 3, 2), (1, 0, 1)), v = (-2, 1, 4).
 - (b) $V = F_2[x]$, F is any field with $ch F \neq 2^2$, $B = (1 + x, 1 + x^2, x + x^2)$, $p(x) = a + bx + cx^2$ where $a, b, c \in F$.
 - (c) $V = \mathbb{C}$, $F = \mathbb{R}$, B = (i, 1 i), v = x + iy. Here i denotes the imaginary unit in \mathbb{C} .
 - (d) $V = \text{Mag}_3(\mathbb{R})$ (see Daily 1.3), $F = \mathbb{R}$, $B = \left\{ \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right\}$, $v = \begin{pmatrix} 2 & 7 & 6 \\ 9 & 5 & 1 \\ 3 & 8 \end{pmatrix}$.

Solution. Your solution can go here.

- **3.** (a) Construct a linear map $L: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x,y,z) \in \mathbb{R}^3 : z=0\}$ bijectively onto the plane $\{(x,y,z) \in \mathbb{R}^3 : 3x+2y+z=0\}$.
 - (b) Construct a linear map $L: \mathbb{R}^3 \to \mathbb{R}^3$ which maps the plane $\{(x,y,z) \in \mathbb{R}^3 : x-y-z=0\}$ bijectively onto the plane $\{(x,y,z) \in \mathbb{R}^3 : x-3z=0\}$.

Solution. Your solution can go here.

¹Hint: the answer depends on the characteristic of the field! Handle the case ch F=2 separately.

 $^{^{2}}$ This condition is required for the vectors in B to be independent.

³Theorem 2.3.1 my be useful here.