MATH 117: Daily Assignment 2

Carl Friedrich Gauss

July 27, 2022

Some hints for this assignment are written in the footnotes. See the daily assignment webpage for due dates, templates, and assignment description.

- **1.** Let *F* be any field. A *Fibonacci sequence* in *F* is a function $f : \mathbb{N} \to F$ defined recursively by letting f(0), f(1) be elements of *F* and then setting f(n+2) = f(n+1) + f(n) for all $n \in \mathbb{N}$. Show that the set \mathcal{F} of all Fibonacci sequences in *F* is a subspace of $F^{\mathbb{N}}$. Then compute the dimension of this space.
- 2. For each part, determine whether the set of vectors S is a spanning set for the vector space V over the field F. If S is a spanning set, determine whether or not it is a basis¹. Justify your answers.

(a)
$$F = \mathbb{Q}, V = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}, S = \{1 - \sqrt{2}, 4\}.$$

(b) $F = \mathbb{Z}_2, V = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in F^{2 \times 2} : a_{11} + a_{22} = 0 \right\}, S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\}$
(c) $F = \mathbb{Z}_2, V = F_2[x] = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in F\}, S = \{1 + x, 1 + x^2\}$

3. Let $M := \operatorname{Mag}_3(\mathbb{R})$ denote the set of 3×3 magic squares with entries from \mathbb{R} .

- (a) Show that M is a subspace of $\mathbb{R}^{3\times 3}$.
- (b) Find a basis for $M.^2$
- (c) What is the dimension of M?

¹Hint: use a Proposition from Section 1.4!

 $^{^{2}}$ You will need to solve a large system of equations - you may use a computer algebra system (CAS) to do this part of the computations.