## 111B Section Week 3

Overview: Work on the following problems one at a time, either by yourself or in small-groups. After a sufficient amount of time has passed, we will discuss the solutions as a class. Attending section counts toward your participation grade.

1. Denote by $M_{2}(\mathbb{Z})$ the set of all $2 \times 2$ matrices with entries in $\mathbb{Z}$. It is a ring with the usual operations of matrix addition and matrix multiplication. Determine which of the following subsets of $M_{2}(\mathbb{Z})$ are subrings of $M_{2}(\mathbb{Z})$. Which subrings have a multiplicative identity?
(a) $A=\left\{\left(\begin{array}{ll}0 & r \\ 0 & 0\end{array}\right): r \in \mathbb{Z}\right\}$
(b) $B=\left\{\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right): r \in \mathbb{Z}\right\}$
(c) $C=\left\{\left(\begin{array}{cc}s & r \\ 0 & t\end{array}\right): r, s, t \in \mathbb{Z}\right\}$
(d) $D=\left\{\left(\begin{array}{ll}0 & 0 \\ r & 0\end{array}\right): r \in \mathbb{Z}\right\}$
(e) $E=\left\{\left(\begin{array}{c}r \\ 0 \\ 0\end{array}\right): r, s \in \mathbb{Z}\right\}$
2. Let $R$ be a ring and suppose $\left\{S_{i}: i \in I\right\}$ is a nonempty collection of subrings of $R$.
(a) Prove that $\bigcap_{i \in I} S_{i}$ is a subring of $R$. In particular, this proves that the subring of $R$ generated by a subset $X$ of $R$ is actually a subring.
(b) Prove or disprove: $\bigcup_{i \in I} S_{i}$ is a subring of $R$.
3. Consider the ring $\mathbb{R}$ under the usual operations of addition and multipication. Define the set $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Using only the definitions, show that $\mathbb{Z}[\sqrt{2}]$ is the subring of $\mathbb{R}$ generated by $\mathbb{Z} \cup\{\sqrt{2}\}$.
4. Let $R$ be a ring. An idempotent $e$ in $R$ is called central if $e \in Z(R)$. Show that the set $R e:=\{r e: r \in R\}$ is a subring of $R$. Does Re have a multiplicative identity?
5. Suppose that $R$ is a division ring. Show that the center $Z(R)$ of $R$ is a field.
