111B Section Week 3

Overview: Work on the following problems one at a time, either by yourself or in small-groups. After a sufficient amount of time has passed, we will discuss the solutions as a class. Attending section counts toward your participation grade.

- 1. Denote by $M_2(\mathbb{Z})$ the set of all 2×2 matrices with entries in \mathbb{Z} . It is a ring with the usual operations of matrix addition and matrix multiplication. Determine which of the following subsets of $M_2(\mathbb{Z})$ are subrings of $M_2(\mathbb{Z})$. Which subrings have a multiplicative identity?
 - (a) $A = \{ \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix} : r \in \mathbb{Z} \}$
 - (b) $B = \{ \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} : r \in \mathbb{Z} \}$
 - (c) $C = \{ \begin{pmatrix} s & r \\ 0 & t \end{pmatrix} : r, s, t \in \mathbb{Z} \}$
 - (d) $D = \{ \begin{pmatrix} 0 & 0 \\ r & 0 \end{pmatrix} : r \in \mathbb{Z} \}$
 - (e) $E = \left\{ \begin{pmatrix} r & r-s \\ 0 & s \end{pmatrix} : r, s \in \mathbb{Z} \right\}$
- 2. Let R be a ring and suppose $\{S_i : i \in I\}$ is a nonempty collection of subrings of R.
 - (a) Prove that $\bigcap_{i \in I} S_i$ is a subring of R. In particular, this proves that the subring of R generated by a subset X of R is actually a subring.
 - (b) Prove or disprove: $\bigcup_{i \in I} S_i$ is a subring of R.
- 3. Consider the ring \mathbb{R} under the usual operations of addition and multiplication. Define the set $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Using only the definitions, show that $\mathbb{Z}[\sqrt{2}]$ is the subring of \mathbb{R} generated by $\mathbb{Z} \cup \{\sqrt{2}\}$.
- 4. Let R be a ring. An idempotent e in R is called *central* if $e \in Z(R)$. Show that the set $Re := \{re : r \in R\}$ is a subring of R. Does Re have a multiplicative identity?
- 5. Suppose that R is a division ring. Show that the center Z(R) of R is a field.