111B Section Week 8

Overview: Work on the following problems one at a time, either by yourself or in small-groups. After a sufficient amount of time has passed, we will discuss the solutions as a class. Attending section counts toward your participation grade.

1. Let \(I = (2, x) \) be the ideal of \(\mathbb{Z}[x] \) generated by 2 and \(x \).

 (a) Show that a polynomial \(\sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x] \) belongs to \(I \) if and only if \(a_0 \) is even.

 (b) Show that \(I \) is a maximal ideal of \(\mathbb{Z}[x] \).

2. Let \(R \) be a ring and \(M \) an ideal.

 (a) Prove that if \(R/M \) is a field, then \(M \) is a maximal ideal.

 (b) Use 2(a) and the First Isomorphism Theorem to give an alternative proof of 1(b).