Paths and Curves

$$\frac{Def}{Paths} A path is a map $C: I \rightarrow \mathbb{R}^{n}$ where $I \leq \mathbb{R}$ is
an interval of real numbers.

$$\frac{Ex}{C(t)} = (recost, R sin t)$$

$$(2) Cylindrical Helix: a helix Lying on the cylindre $x^{2} + y^{2} = \mathbb{R}^{2}$
 $H: Control + R^{2}, C(t) = (R cost, R sin t, t)$

$$(3) Control + Helix: a helix Lying on the surface of $x^{2} + y^{2} = \mathbb{R}^{2}$
 $C(t) = (r(t) cost, r(t) sint, t)$

$$I = C liop on $x^{2} + y^{2} = 2^{2}, then r^{2}(t) = t^{2} = r(t) = t$

$$(1) Intersection of two surfaces: $x^{2} + y^{2} = 4$ and $Z = sin(SX)$
 $I = (r(t) = (x(t), y(t), Z(t))$ dives in the cylinder,$$$$$$$$$$

$$\frac{du}{2(t)} = 2\cos t \quad y = 2\sin t. Then$$

$$\frac{2(t)}{2} = -\sin(5\cdot 2\cos t).$$

Greenetry of Space curves (paths in
$$\mathbb{R}^{3}$$
)
Lemma Suppose $T: I \rightarrow \mathbb{R}^{n}$ satisfies $||T(t)|| = K$ for all teR.
Then $T(t), T'(t) = 0$ for all teR.
Proof $0 = \frac{1}{2t} K^{2} = \frac{1}{2t} ||T(t)||^{2}$
 $= \frac{1}{2t} r(t) \cdot r(t)$
 $= 2r(t) \cdot r'(t) \cdot r(t)$
 $= 2r(t) \cdot r'(t) \cdot r(t)$
 $= 2r(t) \cdot r'(t) \cdot r(t)$
Det Let $T: I \rightarrow \mathbb{R}^{3}$ be a path. For each teI, define
(i) (Unit Tangent Vector)
 $T(t) = \frac{r'(t)}{||r'(t)||}$
This is a unit vector tangent to $r(t)$.
(z) (Unit Normal Vector)
 $N(t) = \frac{T'(t)}{||T'(t)||}$ is non zero.
Note that $||T(t)|| = 1$ for all tEI. By the Lemma
 $N(t)$ unit vector that is perpiredicular to $T(t)$.
(3) (Unit BinorMal Vector)
 $B(t) = T(t) \times N(t)$

 R^3 Y T(t) N(t) $B(t) = T \times N$ j At each point on the curve, the vectors T, N, B form a non-inertial frame of reference.

Chapter 12 Normal Plane / Osculating Plane Det Let r: I -> R³ be a Summory: r: I -> R³ a curve curve and $p=r(t_0)$ a point on the curve. $T(t) = \frac{r'(t)}{\|r'(t)\|} N(t) = \frac{T'(t)}{\|T'(t)\|} B(t) = T(t) \times N(t)$ Normal Plane: the plane containing p and perpindicular to T(t.) Osculating Plane: the plane containing p and perpindicular to B(to) P r et EX: Osculating plane for the helix h(t) = (cost, sint, t) when $t = \frac{\pi}{2}$. $\frac{\text{Solution}}{T(t) = \frac{h!(t)}{||h!(t)||}} = \frac{(-sint_1 \cos t_1)}{\sqrt{sin^2t + (os^2t + 1)}} = \frac{1}{\sqrt{s}}(-sint_1 \cos t_1)$ $\frac{|V(t)|^{2}}{|T(t)||} = \frac{1}{\sqrt{2}} \frac{(-\cos t_{1} - \sin t_{1} \circ)}{(\cos^{2}t + \sin^{2}t + \sigma^{2})} = (-\cos t_{1} - \sin t_{1} \circ)$ $\sqrt{2}$ $(\pi/2) = \sqrt{2} \left[\frac{\pi}{2} \right] \times N(\pi/2) = \begin{bmatrix} i & j & k \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ = (1, 0, 1)This is our normal vector for the osculating plane.

$$(1, 0, 1) \cdot (1x, y, z) - (0, 1, T/z) = 0$$

$$\Rightarrow (x + z = T/z)$$
The oscilution plane "neasures" how close a small section at a curve is to being plane. In our picture, points near $(0, 1)$ T/z $)$ are very close to the plane $x + z + T/z$.

Curvature

Def Let r: I -> R3 be a path. The curvature of r(t) is the guantity $K(t) = ||T'(t)|| = \frac{||r'(t)xr''(t)||}{||r'(t)||^{3}}$ The curvature K describes how far away a curve is from being straight (locally) Ex The helix has constant curvature (h(t)=(2:0st, 2 sint, t)) Solution h'(t) = (-2sint, 2cost, 1) $||h'(t)||^3 = (-4sin^2t + 4cos^2t + 1)^2$ $= \sqrt{5}^{3} = 5^{3/2}$ $h'(t) = (-2 \cos t_{1} - 2 \sin t_{1} \circ)$ $h'(t) \times h''(t) = (-2 \sin t_{1} - 2 \sin t_{2} \cos t_{1})$ $-2 \cos t_{1} - 2 \sin t_{2} \cos t_{1}$ = $K(4sih^{2}t+4cos^{2}t) - 1(it-2siht)-i(-2cost))$ $= (2 \sin t_{3} - 2 \cos t_{3} + 1)$ $|| h'(t) \times h''(t) || = \sqrt{4 \sin^{2} t 4 \cos^{2} t_{3} + 16} = \sqrt{20} = 2\sqrt{5}$ $So \quad K(t) = \frac{2\sqrt{5}}{5^{3/2}} = \frac{2}{5} \quad \text{A The curvature of a}$ $helix (a \cos t_{3} a \sin t_{3} b t)$ $is \quad K = \frac{a}{a^{2} + b^{2}}.$ Ex Currenture of the parabola p(t) = (t, t2, 0) at t=0. $p'(t) = (1, 2t, 0) \implies ||p'(0)||^{3} = ||(1, 0, 0)|| = 1$ $p''(t) = (0, 2, 0) \qquad \hat{c} \qquad \times 2j = 2(i \times j) - 2K$ $\implies p'(0) \times p''(0) = (1, 0, 0) \times (0, 2, 0) = (0, 0, 2)$ \implies $||_{q'(v)} \times q^{"}(v)|| = 2 \implies K(v) = \frac{2}{r} = r$

Fact The curvature defines the "best approximating circle at a point on a curve. This is the circle that has radius $r = \frac{1}{K}$, lies tangent to the curve, and that has radius $r = \frac{1}{K}$, is contained in the osculuting plane. $r = \frac{1}{K_{10}} = \frac{1}{2}$ W