Equation of a line

- Let a be any point on the line
- Let \vec{v} be any vector parallel to l.

Then eq. of the line determined by a and v is

$$
l(t)=\vec{a}+t \vec{v}
$$

Comparing line Given $\quad r(t)=a+t v$ and $s(t)=b+t w$, how can youdetermine if they represent the same line?
A: Only if a lies on $s(t)\left(s\left(t_{0}\right)=a\right)$ and v and w should be parallel $(v=c w$ for some $c \in \mathbb{R})$.

Ex Consider $r(t)=\underbrace{(0,-2,-3)}+t(-2,-4,-6)$ and $s(t)=(1,0,0)+t(1,2,3)$.

Note that $-2(1,2,3)=(-2,-4,-6)$ so the lines have the same direction. Also, $S(-1)=(0,-2,-3)>0(0,-2,-3)$ lies on 3 .

So the lines are the same.
Note: There are infinitely many ways to parameterize the same line.

Problem 1
Are the points $(2,1,3),(2,3,4)$, and $(2,-3,1)$ collinear?

Solution
(1) Find the equation of the line containing $(2,1,3)$ and $(2,3,4)$.

A vector parallel to the line is $v=(2,1,3)-(2,3,4)$

$$
=(0,-2,-1)
$$

Then the equation of the lina is

$$
\begin{aligned}
l(t) & =(2,1,3)+t(0,-2,-1) \\
& =(2,1-2 t, 3-t)
\end{aligned}
$$

(2) Check if $(2,-3,1)$ lies on $l(t)$. We solve the equation

$$
\left\{\begin{array}{l}
2=2 \\
-3=1-2 t \Rightarrow t=2 \\
1=3-t \Rightarrow t=2
\end{array} \text { so } \quad l(2)=(2,-3,1)\right.
$$

which means the collinear!

Problem 2
Find a line that lies inside the surface defined by the equation:

$$
x^{2}+y^{2}-z^{2}=1
$$

Solution
(1) Choose a nice point in the surface like $a=(0,1,0)$.

$$
x^{2}+y^{2}-z^{2}=1 \text { is }
$$

called a hyperboloid of ore-sheet

(2) Let $v=(a, b, c)$ and consider the line $l(t)=a+t v$

$$
=(\underbrace{t a}_{x(t)}, \underbrace{1+t b}_{y(t)}, \underbrace{t c}_{z(t)})
$$

The line $\ell(t)$ lies in the surface if:

$$
(x(t))^{2}+(y(t))^{2}-(z(t))^{2}=1
$$

for all $t \in \mathbb{R}$. That is

$$
(t a)^{2}+(1+t b)^{2}-(t c)^{2}=1
$$

Set $a=c$, then the equation becomes

$$
(1+t b)^{2}-1
$$

If $b=0$, then the equation holds for all $t \in \mathbb{R}$. So

$$
V=(a, 0, a) \text { for sore } a \in \mathbb{R}
$$

So an equation of a line lying in the surface is

$$
\begin{aligned}
l(t) & =(0,1,0)+t(a, 0, a) \\
& =(a t, 1, a t)
\end{aligned}
$$

Dot product
Def The dot product of tu vectors $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), b=\left(b_{1}, b_{2}, b_{3}\right)$ is the real number

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \in \mathbb{R} .
$$

Q: What does the dot product tell us about a and b.
A: The dot product is a measure of the angle between a and b.
(More generally, inner products are used to defile angles) claim: $a \cdot b=\|a\| \cdot\|b\| \cos \theta, \theta=$ angle between $n a$ and b.

By Law of Cosines, $\|b-a\|^{2}=\|b\|^{2}+\|a\|^{2}-2\|a\|\|b\| \cos \theta$.
Using the identity $\|v\|^{2}=v \cdot v$, we get

$$
\|b-a\|^{2}=(b-a) \cdot(b-a)=b \cdot b-2 a \cdot b+a \cdot a
$$

Then the equation becomes

$$
\begin{aligned}
& b \cdot b-2 a \cdot b+a / a=b / b+a / a-2\|a\|\|b\| \cos \theta \\
& \Rightarrow \quad-2 a \cdot b=-2\|a\|\|b\| \cos \theta .
\end{aligned}
$$

So the identity $a \cdot b=\|a\|\|b\| \cos \theta$ is the law of cosines in disguise.
The $a \cdot b=0$ if and only if $a \perp b$
Proof $a \cdot b=0 \Longleftrightarrow \cos \theta=0,0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
& \Leftrightarrow \theta=\pi / 2,3 \pi / 2 \\
& \Leftrightarrow \quad a \perp b \\
& \xrightarrow{\hat{h}^{\pi / 2}} \\
& \frac{3 \pi}{2} \leftrightarrows
\end{aligned}
$$

$\Leftrightarrow a \perp b$

$\frac{\sin }{2} q$

Problem 3
Find a line through $(3,1,-2)$ that intersects and is perpindicular to the line $r(t)=(t-1, t-2, t-1)$.

Solution

- A point on l is $(3,1,-2)$
- Consider the vector $v(t)=(t-4, t-3, t+1)$. The direction of r is the vector $(1,1,1) . v(t)$ and r are perpindicular if and only it

$$
\begin{aligned}
0 & =v(t) \cdot(1,1,1) \\
& =t-4+t-3+t+1 \\
& =3 t-6
\end{aligned}
$$

So $t=2$. That is, $v=v(2)=(-2,-1,3)$. Then

$$
l(t)=(3,1,-2)+t(-2,-1,3)
$$

