Equation of " line
Picture:

want to find an equation foo l.
inlet \vec{a} be any point on the line
(2) Let i be a vector parallel to the live

Then the equation of a line is

$$
l(t)=\vec{a}+t \vec{v}
$$

Problem 1
Are the points $(2,1,3),(2,3,4)$, and $(2,-3,1)$ collinear?

Do the points lie on the same line?
Solution
Find eq of like between 2 points and check to see iftle third point sutistion the equation

Step 1 Eq of line between $(2,1,3),(2,3,4)$ (1) A point on the line is $(2,1,3)$.

(2) A vector par allel to the line is $(2,1,3)-(2,3,-1)=(0,-2,-1)$ then the eq of the line is

$$
\begin{aligned}
l(t) & =(2,1,3)+t(0,-2,-1) \\
& =(2,1-2 t, 3-t)
\end{aligned}
$$

Step 2 Does $(2,-3,1) l$ ie on l ?
Set $\quad(2,-3,1)=(2,1-2 t, 3-t)$

$$
-3=1-2 t \quad \Rightarrow \quad t=2
$$

So $l(2)=(2,-3,1)$ So the points are collinear.

Note There are infinitely many ways to parameterize the same line.

Two lines $r(t)=a+t v$

$$
s(t)=b+t w
$$

are the same if a lies on S and V and w are parallel: $V=c w$ for some $c \in \mathbb{R}$.

Find a line that lies inside the surface defined by the equation:

$$
x^{2}+y^{2}-z^{2}=1
$$

The surface defined by $x^{2}+y^{2}-z^{2}=1$ is a hyperboloid of one-sheet

Solution
11) Choose a nice point that lies on the surface say $a=(1,0,0)$
(2) Let $l(t)=a+t v \quad(v=(a, b, c))$

$$
\begin{aligned}
& =(1,0,0)+t(a, b, c) \\
& =(\underbrace{1+a t}_{x(t)}, \underbrace{b t}_{y(t)}, \underbrace{c t}_{z(t)})
\end{aligned}
$$

If $l(t)$ lies in the surface, then for all $t \in \mathbb{R}$

$$
\begin{aligned}
& \Rightarrow \quad(1+a t)^{2}+\underbrace{(b t)^{2}-(c t)^{2}+y(t)^{2}}_{\operatorname{set}}-z(t)^{2}=1 \\
& \Rightarrow(1+a t)^{2}=1 \quad \text { set } a=0 .
\end{aligned}
$$

So $\quad v=(0, b, b)$ for any $b \in \mathbb{R}$
So a line lying in the surface is

$$
\ell(t)=(1,0,0)+t(0,1,1) \quad\left(\begin{array}{l}
\text { but any } \\
b \in \mathbb{R} \text { will } \\
\text { work }
\end{array}\right)
$$

The Dot Product
Def The dot product of $a=\left(a_{1}, a_{2}, a_{3}\right) b=\left(b_{1}, b_{2}, b_{3}\right)$ is

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \in \mathbb{R}
$$

Note $\cdot\|a\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$

$$
=\sqrt{a \cdot a}
$$

- The distance between a and b is $\|b-a\|^{\prime b}=\|a-b\|$.

Q: What does the dot product measure?
A-: The angle between the vectors a and b.
Claim: $a \cdot b=\|a\|\|b\| \cos \theta_{\vec{a}}, \quad \theta=$ angle between them
Proof: Picture

By the Law ot cosines:

$$
\|b-a\|^{2}=\|a\|^{2}+\|b\|^{2}-2\|a\|\|b\| \cos \theta
$$

But $\quad\|b-a\|^{2}=(b-a) \cdot(b-a)=b \cdot b-2 a \cdot b+a \cdot a$

$$
\begin{aligned}
& \|a\|^{2}=a \cdot a \quad\|b\|^{2}=b \cdot b \\
\Rightarrow & b \cdot b \cdot 2 a \cdot b+a \cdot a=a / a+b / b-2\|a\|\|b\| \cos \theta \\
\Rightarrow & -2 a \cdot b=-2\|a\|\|b\| \cos \theta \\
\Rightarrow & a \cdot b=\|a\|\|b\| \cos \theta
\end{aligned}
$$

Thy $a \cdot b=0$ if and only if $a \perp b$.
Proof If $a \cdot b=0$, then $\cos \theta=0 \Rightarrow \theta=\pi / 2$ or $3 \pi / 2$ If $a \perp b$, then $\theta=3 \pi / 2$ or $\pi / 2 \Rightarrow \cos \theta=0$ $\rightarrow \pi \cdot L=0$

$$
\text { If } a \perp b, \text { then } \theta=3 \pi / 2 \text { or } \pi / 2 \Rightarrow 1200120 \cos \theta=0
$$

Problem 3
Find a line through $(3,1,-2)$ that intersects and is perpindicular to the line $r(t)=(t-1, t-2, t-1)$.

Solution

Want: to find l. A point that lies on l is $a=(3,1,-2)$
Need to find v, a vector perpindiculur to r. We can find $t \in \mathbb{R}$ so that $r(t)-(3,1,-2)$ is perpirdiculer to r. The direction of $r(t)$ is $(1,1,1)$. The vectors are perpindiculor if:

$$
\begin{aligned}
0 & =(1,1,1) \cdot(r(t)-(3,1,-2)) \\
& =(1,1,1)(t-4, t-3, t+1) \\
& =t-4+t-3+t+1 \\
& =3 t-6
\end{aligned}
$$

So $t=2$. So $r(2)-(3,1,-2)=(-2,-1,3)$ is perpindicular to r, but parallel to l. So the of of l is

$$
\ell(t)=(3,1,-2)+t(-2,-1,3)
$$

(*)

$$
\begin{aligned}
r(t)-(3,1,-2) & =(t-1, t-2, t-1)-(3,1,-2) \\
& =(t-4, t-3, t+1)
\end{aligned}
$$

Problem 4
Find the shortest distance from $v=(1,1,1)$ to the line $r(t)=(t, 2 t,-t)$
\square

