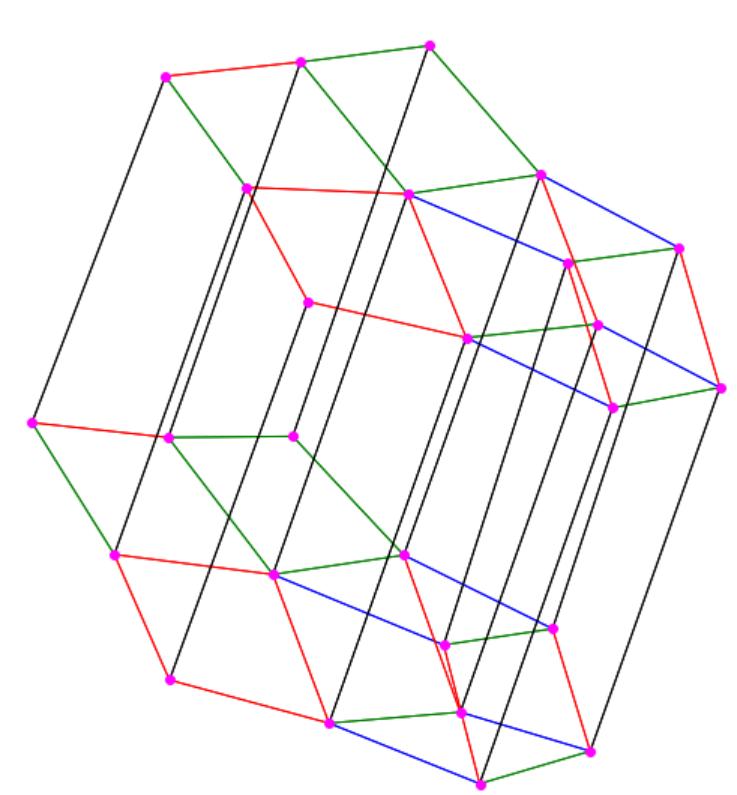


Taxonomy of Braid Graphs

Fadi Awik, Jadyn Breland, & Quentin Cadman



Coxeter Systems of Type A

A Coxeter system of type A_n ($n \geq 1$) is a pair consisting of a Coxeter group $W(A_n)$ and a finite set $S = \{s_1, s_2, \dots, s_n\}$ of generating involutions subject to the relations:

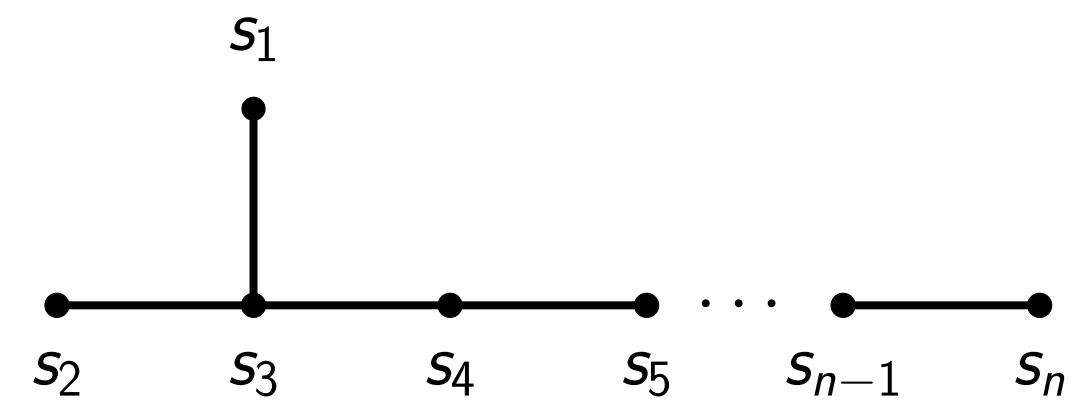
- $s_i s_i = e$ for all i ;
- $s_i s_j = s_j s_i$ when $|i - j| > 1$; (commutation relation)
- $s_i s_j s_i = s_j s_i s_j$ when $|i - j| = 1$. (braid relation)

The relations can be encoded into a graph called a **Coxeter graph**.



Coxeter Systems of Type D

The Coxeter system of type D_n has defining relations determined by the following Coxeter graph.



The Coxeter group $W(D_n)$ can be thought of as the group that acts on n coins by rearranging and flipping over evenly many.

Reduced Expressions

If a word $\bar{w} = s_{x_1} s_{x_2} \dots s_{x_m} \in S^*$ is equal to w when considered as an element of W , we say that \bar{w} is an **expression** for $w \in W$. If m is minimal among all expressions for w , then \bar{w} is called a **reduced expression**.

Example 1

Consider the expression $\bar{w} = 4234354$ for $w \in W(A_5)$. We see that

$$4234354 = 4243454 = 2443454 = 23454.$$

Then \bar{w} is not reduced, but the expression on the right is.

Matsumoto's Theorem

Any two reduced expressions for w differ by a sequence of commutation and braid moves.

Braid Equivalence

If \bar{w}_1 and \bar{w}_2 are reduced expressions for $w \in W$, then \bar{w}_1 and \bar{w}_2 are **braid equivalent** if and only if we can obtain \bar{w}_2 from \bar{w}_1 via a sequence of braid moves. Equivalence classes are **braid classes**, denoted $[\bar{w}]$.

Example 2

Consider the reduced expressions $\bar{w}_1 = 3134323$ and $\bar{w}_2 = 1314232$ for $w \in W(D_4)$:

$$3134323 = 1314323 = 1314232$$

Applying all possible braid moves yields the braid class:

$$[\bar{w}_1] = \{1314232, 3134232, 3134323, 1314323, 3143423\}$$

Braid Links

Loosely speaking, a **braid link** is a reduced expression with the property that we can "slide" a braid across the whole expression.

Example 3

Consider the reduced expression below for $w \in W(A_6)$:

$$3435465 \quad 4345465 \quad 4354565 \quad 4354656 \quad 435465767$$

Then each reduced expression above is a braid link. The corresponding braid class is called a **braid chain**.

Example 4

Let $\bar{w} = 12132676$ be a reduced expression for $w \in W(A_7)$. Then \bar{w} is not a **link** since we cannot slide a braid across the entire expression.

$$12132 \mid 676$$

However, we can see that \bar{w} is a product of braid links.

Braid Link Factorizations

For a reduced expression \bar{w} , a consecutive subword is called a **maximal braid link** if it is a braid link that is not contained (with respect to position) in any other braid link in that word. A factorization into maximal braid links is called a **braid link factorization**.

Example 5

Consider reduced expressions $\bar{w}_1 = 12143465676$ and $\bar{w}_2 = 21234365767$ for some $w \in W(A_9)$:

$$\begin{aligned} \bar{w}_1 &= 121 \mid 434 \mid 65676 \\ &\quad \downarrow \quad \downarrow \quad \downarrow \\ \bar{w}_2 &= 212 \mid 343 \mid 65767 \end{aligned}$$

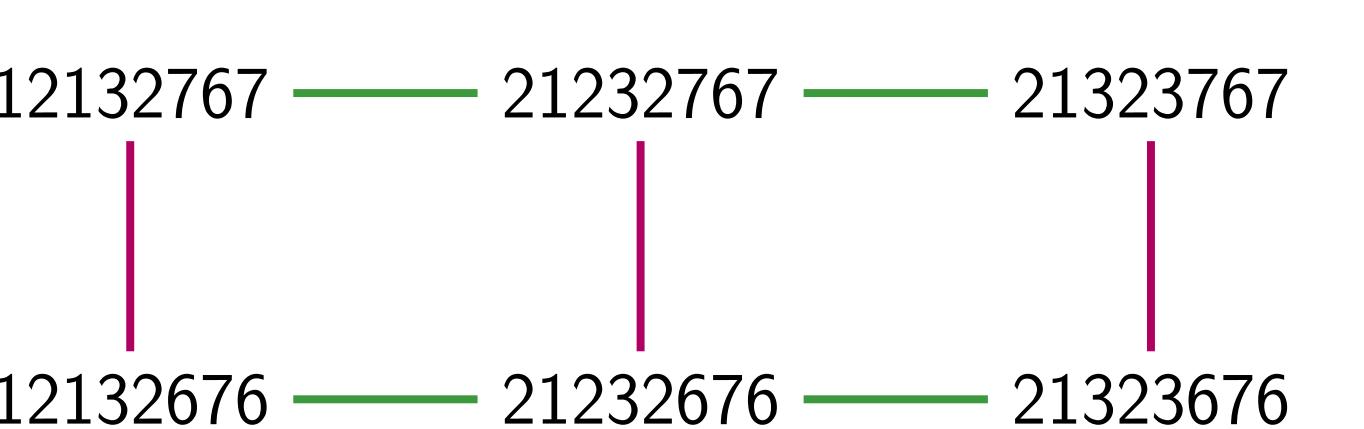
Braid Graphs

For a reduced expression \bar{w} of $w \in W(A_n)$ or $w \in W(D_n)$ define the **braid graph** $B(\bar{w})$ via:

- Vertices: reduced expressions in $[\bar{w}]$.
- Edges: \bar{w}_1 and \bar{w}_2 are connected by an edge if and only if \bar{w}_1 and \bar{w}_2 are related via a single braid move.

Example 6

Consider \bar{w} from Example 4. Then $B(\bar{w})$ is as follows:



Theorem for Braid Graphs in Type A

If \bar{w} is a reduced expression for $w \in W(A_n)$ having braid link factorization $b_1 \mid b_2 \mid \dots \mid b_m$ such that each factor has $2k_i - 1$ generators, then

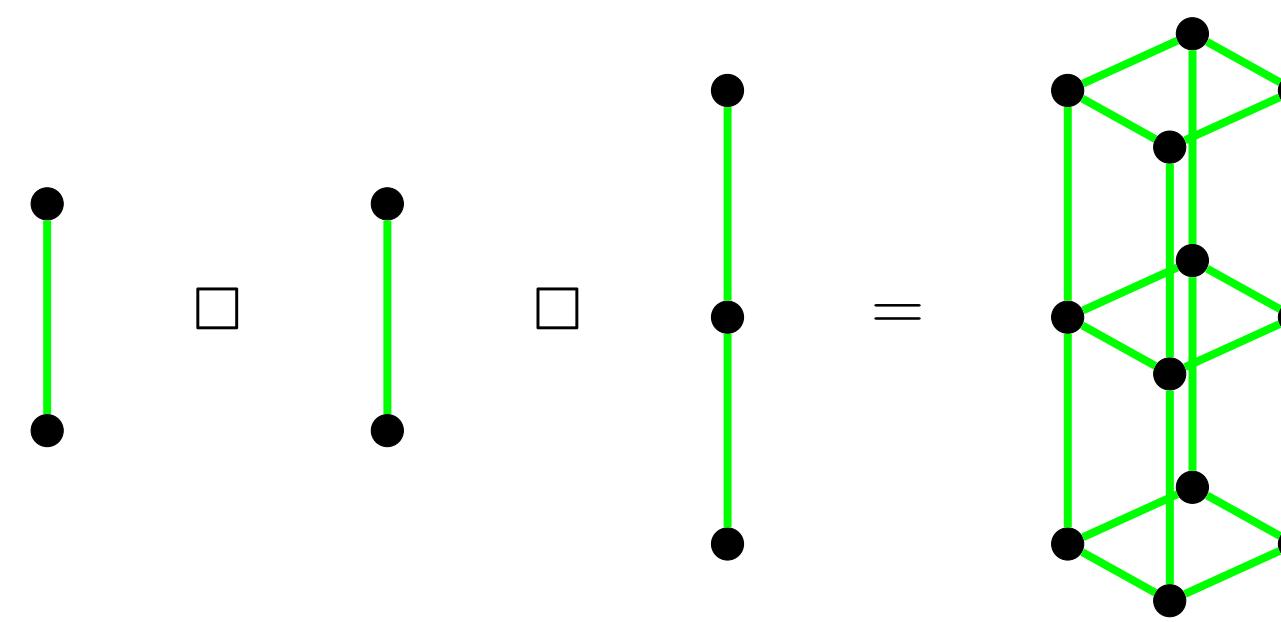
$$B(\bar{w}) = \left\{ \begin{array}{c} \vdots \\ \bullet \\ \vdots \\ \bullet \end{array} \right\} k_1 \square \left\{ \begin{array}{c} \vdots \\ \bullet \\ \vdots \\ \bullet \end{array} \right\} k_2 \square \dots \square \left\{ \begin{array}{c} \vdots \\ \bullet \\ \vdots \\ \bullet \end{array} \right\} k_m$$

Example 7

Consider the reduced expression $\bar{w} = 12143465676$ for $w \in W(A_7)$, which has braid link factorization

$$121 \mid 434 \mid 65676.$$

The resulting braid graph for \bar{w} is shown below:

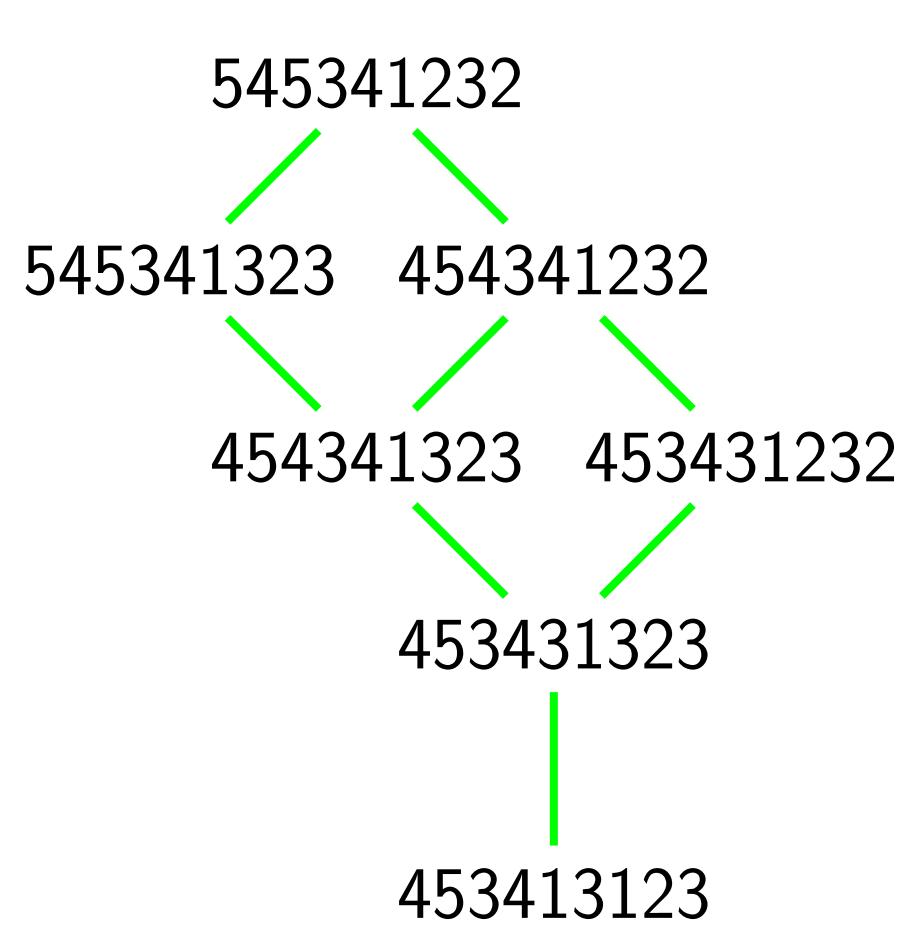


Type A Extensions

It turns out that we can extend lollipops, gloms, and flapper boxes on the left or on the right with appropriate links in type A.

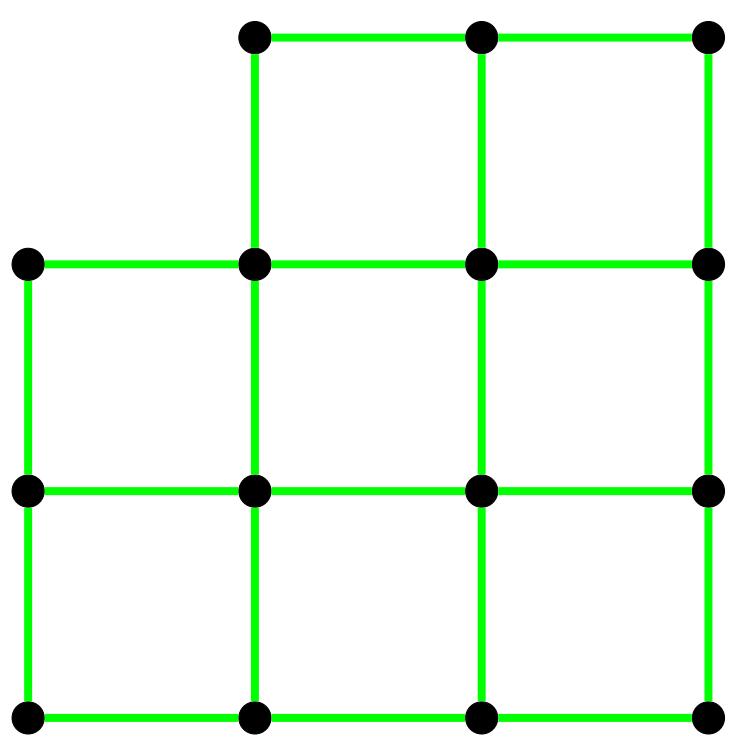
Extension of a Lollipop

Below is an example of a type A extension of a lollipop corresponding to 453431323, a reduced expression for $w \in W(D_5)$.



Extension of a Glom

Below is an example of a type A extension of a glom corresponding to 4534313234354, a reduced expression for $w \in W(D_5)$.



Conjecture for Braid Graphs in Type D

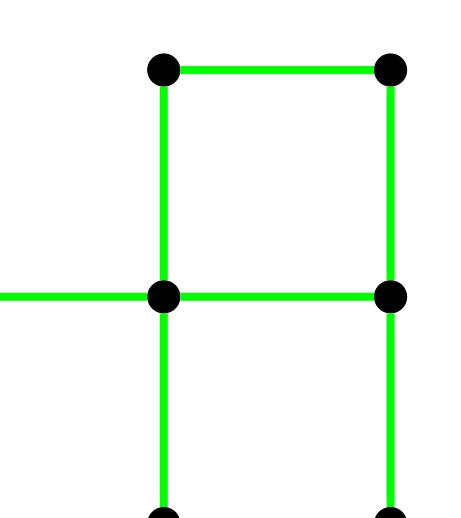
In type D, braid graphs are products of type A extensions of paths, lollipops, gloms, and flapper boxes corresponding to braid link factorizations.

Example 8

Consider the reduced expression $\bar{w} = 3234313767$ for $w \in W(D_7)$, which has a braid link factorization

$$3234313 \mid 767$$

The resulting braid graph for \bar{w} is shown below:



Future Work

- Prove our conjecture about braid graphs in type D.
- Study the architecture of braid graphs in types A and D.
- Generalize to other Coxeter systems.