

Architecture of braid classes in simply-laced Coxeter groups

Southwestern Undergraduate Mathematics Research Conference

Joint work between Fadi Awik, **Jadyn Breland**, Quentin Cadman, and Dana Ernst **(ABCE)**

Northern Arizona University

Definition

A **simply-laced Coxeter system** is a pair (W, S) consisting of a finite set S of generators and a group W , called a **Coxeter group**, with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle,$$

with $m(s, t) \in \{2, 3\}$ for $s \neq t$.

Remark

The relations can be rewritten as follows.

$$m(s, t) = 2 \implies (st)^2 = e \implies st = ts \quad \} \quad \text{commutation relation}$$

$$m(s, t) = 3 \implies (st)^3 = e \implies sts = tst \quad \} \quad \text{braid relation}$$

Definition

Let (W, S) be a simply-laced Coxeter system. A **Coxeter graph** is a graph Γ with

- ① vertex set S , and;
- ② edges $\{s, t\}$ if and only if $m(s, t) = 3$.

Remark

Equivalently, $\{s, t\}$ is an edge if and only if s, t satisfy the **braid relation** $sts = tst$.

Definition

A word $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n} \in S^*$ is called an **expression** for w if it is equal to w when considered as an element of W . If n is minimal among all possible expressions for w , we say that \overline{w} is a **reduced expression** for w .

Remark

- ① *Each element $w \in W$ may have multiple reduced expressions that represent it.*
- ② *The set of reduced expressions for $w \in W$ is denoted by $\mathcal{R}(w)$.*

Definition

Let (W, S) be a simply-laced Coxeter system and $s, t \in S$.

- ① If $m(s, t) = 2$, then $st = ts$. The replacement $st \mapsto ts$ is called a *commutation*.
- ② If $m(s, t) = 3$, then $sts = tst$. The replacement $sts \mapsto tst$ is called a *braid move*.

Theorem (Matsumoto)

Let (W, S) be a simply-laced Coxeter system. Any two reduced expressions for the same group element $w \in W$ are related by a sequence of commutations and braid moves.

Reducing an expression

Example

The simply-laced Coxeter system of type A_3 is determined by the following graph.

Consider the expression 13212. This expression is not reduced. Let's reduce it.

$$13\mathbf{2}12 = 13121 = 3\mathbf{1}121 = 321$$

The resulting expression 321 is reduced.

Definition

Let $\overline{w}_1, \overline{w}_2 \in \mathcal{R}(w)$. We say that \overline{w}_1 and \overline{w}_2 are **braid equivalent** if we can obtain \overline{w}_2 from \overline{w}_1 via a sequence of braid moves.

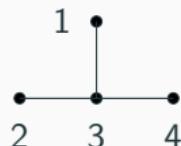
Remark

*Braid equivalence is an equivalence relation on $\mathcal{R}(w)$. The corresponding equivalence classes are called **braid classes** and are denoted by $[\overline{w}]$.*

Braid equivalent reduced expressions

Example

The simply-laced Coxeter system of type D_4 is determined by the following graph.



Consider the reduced expressions $\overline{w}_1 = 3134323$ and $\overline{w}_2 = 1314232$. **Claim:** \overline{w}_1 and \overline{w}_2 are braid equivalent.

$$\underbrace{3134323}_{\overline{w}_1} = \underbrace{1314\color{red}{3}23}_{\overline{w}_2} = \underbrace{1314232}_{\overline{w}_2}$$

Applying all possible braid moves yields the braid class:

$$[\overline{w}_1] = \{1314232, 3134232, 3134323, 1314323, 3143423\}$$

Definition

Let $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for $w \in W$. Then the interval $[i, i+2] \subset \mathbb{N}$ is a **braid shadow** if and only if $s_{x_i} = s_{x_{i+2}}$ and $m(s_{x_i}, s_{x_{i+1}}) = 3$.

Remark

- ① The set of braid shadows for a particular reduced expression \overline{w} is denoted $\mathcal{S}(\overline{w})$.
- ② The set of braid shadows for the entire braid class $[\overline{w}]$ is the set

$$\mathcal{S}([\overline{w}]) := \bigcup_{[\overline{w}]} \mathcal{S}(\overline{w}).$$

Example

The simply-laced Coxeter system of type D_6 is determined by the following graph.

Consider the reduced expression $\overline{w} = 1314232565$ for some $w \in W(D_6)$.

$$\mathcal{S}(\overline{w}) = \{[1, 3], [5, 7], [8, 10]\}$$

The set of braid shadows for $[\overline{w}]$ is the set: $\mathcal{S}([\overline{w}]) = \{[1, 3], [3, 5], [5, 7], [8, 10]\}$.

Definition

Let $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for $w \in W$. We say that \overline{w} is a **link** if and only if the following hold:

- ① $[1, 3]$ and $[n - 2, n]$ are braid shadows that each intersect another braid shadow in $\mathcal{S}([\overline{w}])$ and;
- ② all other braid shadows in $\mathcal{S}([\overline{w}])$ intersect two other braid shadows in $\mathcal{S}([\overline{w}])$.

We say that the braid class $[\overline{w}]$ is a **braid chain** if and only if \overline{w} is a link.

Example

The word $\overline{w} = 3134323$ is a reduced expression for some $w \in W(D_4)$. Then we have

$$\mathcal{S}([\overline{w}]) = \{[1, 3], [3, 5], [5, 7]\}.$$

According to the definition, \overline{w} is a link and $[\overline{w}]$ is a braid chain.

Definition

Let $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for $w \in W$. We define the **support** as follows.

- ① The support of \overline{w} on the interval $[i, j] \subseteq \mathbb{N}$ is the set $\text{supp}_{[i, j]}(\overline{w}) := \{s_{x_k} : i \leq k \leq j\}$.
- ② The support of the braid class $[\overline{w}]$ on the interval $[i, j] \subseteq \mathbb{N}$ is the set

$$\text{supp}_{[i, j]}([\overline{w}]) := \bigcup_{[\overline{w}]} \text{supp}_{[i, j]}(\overline{w}).$$

Remark

The degenerate interval $[i, i] = \{i\}$ will be written i for simplicity.

Theorem (ABCE)

Assume that (W, S) is a simply-laced Coxeter system. Let $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for some $w \in W$. If $[i, i + 2] \in \mathcal{S}([\overline{w}])$, then $[i + 1, i + 3] \notin \mathcal{S}([\overline{w}])$.

Characterization of braid chains

Corollary

Let (W, S) be a simply-laced Coxeter system and let $\overline{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for $w \in W$. Then $[\overline{w}]$ is a braid chain if and only if:

- ① n is odd and;
- ② $S([\overline{w}]) = \{[1, 3], [3, 5], \dots, [n-4, n-2], [n-2, n]\}$.

Example

The Coxeter system of type A_4 is determined by the following graph.

The word 1213243 is reduced. Let's apply all possible braid moves:

$$\underbrace{1213243}_{\overline{w}} = 2123243 = 2132343 = 2132434.$$

So $S([\overline{w}]) = \{[1, 3], [3, 5], [5, 7]\}$. By the above result, $[\overline{w}]$ is a braid chain.

Theorem (ABCE)

Assume that (W, S) is a simply-laced Coxeter system such that the Coxeter graph has no three-cycles. If $\overline{w}_1 = s_{x_1} s_{x_2} \cdots s_{x_n}$ and $\overline{w}_2 = s_{y_1} s_{y_2} \cdots s_{y_n}$ are two braid equivalent reduced expressions for the same group element $w \in W$, then

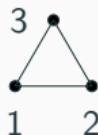
$$supp_{[i, i+2]}(\overline{w}_1) = supp_{[i, i+2]}(\overline{w}_2)$$

whenever $[i, i+2] \in \mathcal{S}(\overline{w}_1) \cap \mathcal{S}(\overline{w}_2)$.

Counter-example in \tilde{A}_2

Example

The simply-laced Coxeter system \tilde{A}_2 is determined by the following graph.



The expressions $\overline{w}_1 = 12\mathbf{1}3\mathbf{1}21$ and $\overline{w}_2 = 21\mathbf{2}3\mathbf{2}12$ are reduced. Moreover,

- \overline{w}_1 and \overline{w}_2 are braid equivalent and;
- $[3, 5] \in \mathcal{S}(\overline{w}_1) \cap \mathcal{S}(\overline{w}_2)$.

Yet,

$$\text{supp}_{[3,5]}(\overline{w}_1) = \{1, 3\} \neq \{2, 3\} = \text{supp}_{[3,5]}(\overline{w}_2).$$

This shows that the previous result is **false** when the Coxeter graph has three-cycles.

Theorem (ABCE)

Let (W, S) be a simply-laced Coxeter system whose Coxeter graph has no three-cycles. Let $\bar{w} = s_{x_1} s_{x_2} \cdots s_{x_n}$ be a reduced expression for $w \in W$. If $[i, i+2] \in \mathcal{S}(\bar{w})$ such that $\text{supp}_{[i, i+2]}(\bar{w}) = \{s, t\}$, then $\text{supp}_{i+1}([\bar{w}]) = \{s, t\}$.

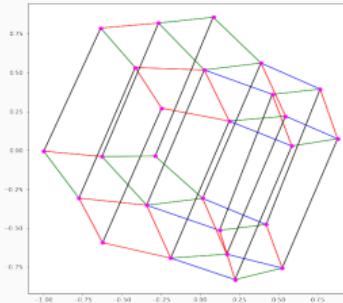
Example

The word $\bar{w} = 3431323$ is a reduced expression for some $w \in W(D_4)$. By applying all possible braid moves, we have $[\bar{w}] = \{3431323, 4341323, 3431232, 4341232, 3413123\}$. Note that $[1, 3] \in \mathcal{S}(\bar{w})$.

$$\text{supp}_{[1,3]}(\bar{w}) = \{3, 4\} \implies \text{supp}_2([\bar{w}]) = \{3, 4\}$$

Future Work

- Generalize theory and results to arbitrary Coxeter systems.
- Investigate similar results in Coxeter systems whose Coxeter graphs have three-cycles.
- Find an elegant characterization of braid chains and links.
- Use current results to describe the structure of **braid graphs** in simply-laced Coxeter systems.



Acknowledgements

Thank you to:

- The University of Arizona for hosting us.
- Our advisor, Dana C. Ernst
- The Department of Mathematics **and** Statistics at NAU.

The End.