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Simply-laced Coxeter systems

Definition
A simply-laced Coxeter system is a pair (W, S) consisting of a finite set S of generators and a
group W, called a Coxeter group, with presentation

W= (5]|s?=e,(st)") = e),

with m(s, t) € {2,3} for s # t.

Remark

The relations can be rewritten as follows.

m(s,t) =2 = (st)’=e = st=ts } commutation relation

m(s,t) =3 = (st))=e = sts=tst } braid relation
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Coxeter graphs

Definition
Let (W, S) be a simply-laced Coxeter system. A Coxeter graph is a graph I' with

@ vertex set S, and;
@® edges {s, t} if and only if m(s,t) = 3.

Remark

Equivalently, {s,t} is an edge if and only if s, t satisfy the braid relation sts = tst.
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Reduced Expressions

Definition
A word W = s, Sy, - - Sy, € S* is called an expression for w if it is equal to w when considered
as an element of W. If n is minimal among all possible expressions for w, we say that w is a
reduced expression for w.
Remark

@ Each element w € W may have multiple reduced expressions that represent it.

@® The set of reduced expressions for w € W is denoted by R(w).
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Matsumoto’s Theorem for simply-laced Coxeter systems

Definition
Let (W, S) be a simply-laced Coxeter system and s,t € S.

@ If m(s,t) =2, then st = ts. The replacement st — ts is called a commutation.

@® If m(s,t) =3, then sts = tst. The replacement sts — tst is called a braid move.

Theorem (Matsumoto)
Let (W, S) be a simply-laced Coxeter system. Any two reduced expressions for the same group
element w € W are related by a sequence of commutations and braid moves.
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Reducing an expression

Example
The simply-laced Coxeter system of type A3 is determined by the following graph.

o—o— 9o

1 2 3

Consider the expression 13212. This expression is not reduced. Let's reduce it.
13212 = 13121 = 31121 = 321

The resulting expression 321 is reduced.
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Braid equivalence

Definition
Let wy, Wy € R(w). We say that wy and Wy are braid equivalent if we can obtain wy from w;

via a sequence of braid moves.

Remark
Braid equivalence is an equivalence relation on R(w). The corresponding equivalence classes
are called braid classes and are denoted by [W)].
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Braid equivalent reduced expressions

Example
The simply-laced Coxeter system of type D, is determined by the following graph.

1
2 3 4

Consider the reduced expressions w; = 3134323 and w, = 1314232. Claim: w; and w, are
braid equivalent.

3134323 = 1314323 = 1314232
— —

w1 w2

Applying all possible braid moves yields the braid class:

[wi] = {1314232,3134232,3134323, 1314323, 3143423}
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Braid shadows

Definition

Let W = s,, S, - - - Sx, be a reduced expression for w € W. Then the interval [i,/i+2] C Nis a
braid shadow if and only if s, = s, and m(s,;, s,,,) = 3.

Remark

@ The set of braid shadows for a particular reduced expression W is denoted S(w).

@® The set of braid shadows for the entire braid class [w] is the set

S(w]) = Js(w)

(w]
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Braid shadows

Example
The simply-laced Coxeter system of type Dg is determined by the following graph.

b—ll—o—o—q
2 3 4 5 6
Consider the reduced expression w = 1314232565 for some w € W(Ds).

S(W) - {[1 3]7 [53 7]5 [8 10]}

The set of braid shadows for [w] is the set: S([w]) = {[1, 3], [3, 5], [5,7], [8, 10]}.
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Definition
Let W = s,,S,, - - - Sk, be a reduced expression for w € W. We say that w is a link if and only if
the following hold:

@ [1,3] and [n — 2, n] are braid shadows that each intersect another braid shadow in S([w])
and;

@ all other braid shadows in S([w]) intersect two other braid shadows in S([w]).
We say that the braid class [w] is a braid chain if and only if w is a link.

Example
The word w = 3134323 is a reduced expression for some w € W(D,). Then we have

S(wl) = A{[L,3], 3,51, [5, 71}-

According to the definition, W is a link and [w] is a braid chain.
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Definition
Let W = s,,S,, - - - S, be a reduced expression for w € W. We define the support as follows.
@ The support of w on the interval [/,j] C N is the set suppy; j(W) := {sy, : i < k <j}.
@® The support of the braid class [w] on the interval [/, ] C N is the set
SUppy; ] (w]) : USUPP[, JW
W]

Remark

The degenerate interval [i,i] = {i} will be written i for simplicity.
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Structure of S([w])

Theorem (ABCE)
Assume that (W, S) is a simply-laced Coxeter system. Let W = s, s, - - - Sy, be a reduced
expression for some w € W. If[i,i+ 2] € S([w]), then [i + 1,i + 3] & S([w]).
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Characterization of braid chains

Corollary
Let (W,S) be a simply-laced Coxeter system and let W = s,;s,, - - - sx, be a reduced expression
forw € W. Then [w] is a braid chain if and only if:

® n is odd and;
® S([w]) ={[1,3],[3,5],...,[n—4,n—2],[n—2,n]}.

Example
The Coxeter system of type A, is determined by the following graph.

o —o— 9

1 2 3 4
The word 1213243 is reduced. Let's apply all possible braid moves:

1213243 = 2123243 = 2132343 = 2132434.
™~

w

So S([w]) = {[1,3],[3,5],[5,7]}. By the above result, [w] is a braid chain.
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Static support for braid shadows

Theorem (ABCE)

Assume that (W, S) is a simply-laced Coxeter system such that the Coxeter graph has no
three-cycles. If Wi = s, Sy, -+ S, and Wa = 5,5, ... 5,

. are two braid equivalent reduced
expressions for the same group element w € W, then

suppy 2 (W1) = suppyj 42 (W2)

whenever [i, i + 2] € S(w1) N S(W2).
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Counter-example in A

Example

The simply-laced Coxeter system A, is determined by the following graph.
JAN
1 2

The expressions wy; = 1213121 and w, = 2123212 are reduced. Moreover,

e w1 and w, are braid equivalent and;

e [3,5] € S(wy1) NS(Wy).

Yet,
suppys 5 (W1) = {1,3} # {2,3} = suppy3 5 (W2).

This shows that the previous result is false when the Coxeter graph has three-cycles.
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Static support for [w]

Theorem (ABCE)
Let (W, S) be a simply-laced Coxeter system whose Coxeter graph has no three-cycles. Let

W = Sy, Sx, - * - Sx, be a reduced expression for w € W. If [i,i + 2] € S(W) such that
suppyj,iy2)(W) = {s, t}, then supp; ;([w]) = {s, t}.

Example

The word w = 3431323 is a reduced expression for some w € W(D,). By applying all possible
braid moves, we have [w] = {3431323,4341323,3431232,4341232,3413123}. Note that

[1,3] € S(w).

supppig)(W) = {3,4} = suppy([W]) = {3,4}
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Future Work
e Generalize theory and results to arbitrary Coxeter systems.
e Investigate similar results in Coxeter systems whose Coxeter graphs have three-cycles.
e Find an elegant characterization of braid chains and links.

e Use current results to describe the structure of braid graphs in simply-laced Coxeter
systems.
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The End.
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