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Simply-laced Coxeter systems

Definition

A simply-laced Coxeter system is a pair (W , S) consisting of a finite set S of generators and a

group W , called a Coxeter group, with presentation

W = ⟨S | s2 = e, (st)m(s,t) = e⟩,

with m(s, t) ∈ {2, 3} for s ̸= t.

Remark

The relations can be rewritten as follows.

m(s, t) = 2 =⇒ (st)2 = e =⇒ st = ts
}

commutation relation

m(s, t) = 3 =⇒ (st)3 = e =⇒ sts = tst
}

braid relation
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Coxeter graphs

Definition

Let (W ,S) be a simply-laced Coxeter system. A Coxeter graph is a graph Γ with

1 vertex set S , and;

2 edges {s, t} if and only if m(s, t) = 3.

Remark

Equivalently, {s, t} is an edge if and only if s, t satisfy the braid relation sts = tst.
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Reduced Expressions

Definition

A word w = sx1sx2 · · · sxn ∈ S∗ is called an expression for w if it is equal to w when considered

as an element of W . If n is minimal among all possible expressions for w , we say that w is a

reduced expression for w .

Remark

1 Each element w ∈ W may have multiple reduced expressions that represent it.

2 The set of reduced expressions for w ∈ W is denoted by R(w).
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Matsumoto’s Theorem for simply-laced Coxeter systems

Definition

Let (W ,S) be a simply-laced Coxeter system and s, t ∈ S .

1 If m(s, t) = 2, then st = ts. The replacement st 7→ ts is called a commutation.

2 If m(s, t) = 3, then sts = tst. The replacement sts 7→ tst is called a braid move.

Theorem (Matsumoto)

Let (W ,S) be a simply-laced Coxeter system. Any two reduced expressions for the same group

element w ∈ W are related by a sequence of commutations and braid moves.
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Reducing an expression

Example

The simply-laced Coxeter system of type A3 is determined by the following graph.

1 2 3

Consider the expression 13212. This expression is not reduced. Let’s reduce it.

13212 = 13121 = 31121 = 321

The resulting expression 321 is reduced.
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Braid equivalence

Definition

Let w1,w2 ∈ R(w). We say that w1 and w2 are braid equivalent if we can obtain w2 from w1

via a sequence of braid moves.

Remark

Braid equivalence is an equivalence relation on R(w). The corresponding equivalence classes

are called braid classes and are denoted by [w ].
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Braid equivalent reduced expressions

Example

The simply-laced Coxeter system of type D4 is determined by the following graph.

1

2 3 4

Consider the reduced expressions w1 = 3134323 and w2 = 1314232. Claim: w1 and w2 are

braid equivalent.

3134323︸ ︷︷ ︸
w1

= 1314323 = 1314232︸ ︷︷ ︸
w2

Applying all possible braid moves yields the braid class:

[w1] = {1314232, 3134232, 3134323, 1314323, 3143423}
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Braid shadows

Definition

Let w = sx1sx2 · · · sxn be a reduced expression for w ∈ W . Then the interval [i , i + 2] ⊂ N is a

braid shadow if and only if sxi = sxi+2 and m(sxi , sxi+1) = 3.

Remark

1 The set of braid shadows for a particular reduced expression w is denoted S(w).

2 The set of braid shadows for the entire braid class [w ] is the set

S([w ]) :=
⋃
[w ]

S(w).
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Braid shadows

Example

The simply-laced Coxeter system of type D6 is determined by the following graph.
1

2 3 4 5 6

Consider the reduced expression w = 1314232565 for some w ∈ W (D6).

S(w) = {[1, 3], [5, 7], [8, 10]}

The set of braid shadows for [w ] is the set: S([w ]) = {[1, 3], [3, 5], [5, 7], [8, 10]}.
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Braid chains

Definition

Let w = sx1sx2 · · · sxn be a reduced expression for w ∈ W . We say that w is a link if and only if

the following hold:

1 [1, 3] and [n − 2, n] are braid shadows that each intersect another braid shadow in S([w ])

and;

2 all other braid shadows in S([w ]) intersect two other braid shadows in S([w ]).

We say that the braid class [w ] is a braid chain if and only if w is a link.

Example

The word w = 3134323 is a reduced expression for some w ∈ W (D4). Then we have

S([w ]) = {[1, 3], [3, 5], [5, 7]}.

According to the definition, w is a link and [w ] is a braid chain.
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Support

Definition

Let w = sx1sx2 · · · sxn be a reduced expression for w ∈ W . We define the support as follows.

1 The support of w on the interval [i , j ] ⊆ N is the set supp[i,j](w) := {sxk : i ≤ k ≤ j}.
2 The support of the braid class [w ] on the interval [i , j ] ⊆ N is the set

supp[i,j]([w ]) :=
⋃
[w ]

supp[i,j](w).

Remark

The degenerate interval [i , i ] = {i} will be written i for simplicity.
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Structure of S([w ])

Theorem (ABCE)

Assume that (W , S) is a simply-laced Coxeter system. Let w = sx1sx2 · · · sxn be a reduced

expression for some w ∈ W. If [i , i + 2] ∈ S([w ]), then [i + 1, i + 3] ̸∈ S([w ]).
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Characterization of braid chains

Corollary

Let (W ,S) be a simply-laced Coxeter system and let w = sx1sx2 · · · sxn be a reduced expression

for w ∈ W. Then [w ] is a braid chain if and only if:

1 n is odd and;

2 S([w ]) = {[1, 3], [3, 5], . . . , [n − 4, n − 2], [n − 2, n]}.

Example
The Coxeter system of type A4 is determined by the following graph.

4

1 2 3 4
The word 1213243 is reduced. Let’s apply all possible braid moves:

1213243︸ ︷︷ ︸
w

= 2123243 = 2132343 = 2132434.

So S([w ]) = {[1, 3], [3, 5], [5, 7]}. By the above result, [w ] is a braid chain.
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Static support for braid shadows

Theorem (ABCE)

Assume that (W , S) is a simply-laced Coxeter system such that the Coxeter graph has no

three-cycles. If w1 = sx1sx2 · · · sxn and w2 = sy1sy2 . . . syn are two braid equivalent reduced

expressions for the same group element w ∈ W, then

supp[i,i+2](w1) = supp[i,i+2](w2)

whenever [i , i + 2] ∈ S(w1) ∩ S(w2).
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Counter-example in Ã2

Example

The simply-laced Coxeter system Ã2 is determined by the following graph.

1 2

3

The expressions w1 = 1213121 and w2 = 2123212 are reduced. Moreover,

� w1 and w2 are braid equivalent and;

� [3, 5] ∈ S(w1) ∩ S(w2).

Yet,

supp[3,5](w1) = {1, 3} ̸= {2, 3} = supp[3,5](w2).

This shows that the previous result is false when the Coxeter graph has three-cycles.
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Static support for [w ]

Theorem (ABCE)
Let (W ,S) be a simply-laced Coxeter system whose Coxeter graph has no three-cycles. Let

w = sx1sx2 · · · sxn be a reduced expression for w ∈ W. If [i , i + 2] ∈ S(w) such that

supp[i,i+2](w) = {s, t}, then suppi+1([w ]) = {s, t}.

Example
The word w = 3431323 is a reduced expression for some w ∈ W (D4). By applying all possible

braid moves, we have [w ] = {3431323, 4341323, 3431232, 4341232, 3413123}. Note that

[1, 3] ∈ S(w).

supp[1,3](w) = {3, 4} =⇒ supp2([w ]) = {3, 4}
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Future work

Future Work

� Generalize theory and results to arbitrary Coxeter systems.

� Investigate similar results in Coxeter systems whose Coxeter graphs have three-cycles.

� Find an elegant characterization of braid chains and links.

� Use current results to describe the structure of braid graphs in simply-laced Coxeter

systems.
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The End.
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