

# Braid shadows in simply-laced Coxeter systems

JMM 2020: Interactions between Combinatorics, Representation Theory, and Coding Theory

---

**Jadyn Breland**

Graduate Student

University of California, Santa Cruz

Collaborators: F. Awik, Q. Cadman, D. Ernst

## Definition

A **simply-laced Coxeter system** is a pair  $(W, S)$  consisting of a finite set  $S$  of generators and a group  $W$ , called a **Coxeter group**, given by the presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle,$$

where  $m : S \times S \rightarrow \{1, 2, 3\}$ .

## Remark

*In a simply-laced Coxeter system, we have the following relations*

$$m(s, t) = 2 \implies (st)^2 = e \implies st = ts \quad \} \quad \text{commutation relation}$$

$$m(s, t) = 3 \implies (st)^3 = e \implies sts = tst \quad \} \quad \text{braid relation}$$

## Definition

Let  $(W, S)$  be a simply-laced Coxeter system. A [Coxeter graph](#) has

- ➊ vertex set  $S$ , and;
- ➋ edges  $\{s, t\}$  if and only if  $sts = tst$ .

We say that  $(W, S)$  is [triangle-free](#) if the corresponding Coxeter graph has no three-cycles.

## Definition

Let  $(W, S)$  be a Coxeter system and  $w \in W$ . A word  $s_{x_1} s_{x_2} \cdots s_{x_n} \in S^*$  is called an **expression** for  $w$  if it is equal to  $w$  when considered as a group element of  $W$ . If  $n$  is minimal among all expressions for  $w$ , then the expression is **reduced**.

## Theorem (Matsumoto)

Let  $(W, S)$  be a simply-laced Coxeter system. Any two reduced expressions for the same group element  $w \in W$  are related by a sequence of commutation ( $st \mapsto ts$ ) and braid moves ( $sts \mapsto tst$ ).

## Definition

Let  $\alpha$  and  $\beta$  be two reduced expressions for the same group element. We say that  $\alpha$  and  $\beta$  are **braid equivalent** if we can obtain  $\alpha$  from  $\beta$  via a sequence of braid moves.

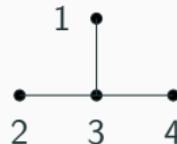
## Remark

*Braid equivalence is an equivalence relation on the set of reduced expressions for a fixed group element. The corresponding equivalence classes are called **braid classes** and are denoted by  $[\alpha]$ .*

## Braid moves

### Example

The simply-laced Coxeter system of type  $D_4$  is determined by the following graph.



The word  $\zeta = 3134323$  is a reduced expression. There are many possible braid moves:

$$3134323 \mapsto 3143423$$

$$3134323 \mapsto 1314323$$

$$3134323 \mapsto 3134232$$

Applying all possible braid moves yields the braid class:

$$[\zeta] = \{1314232, 3134232, 3134323, 1314323, 3143423\}$$

## Definition

Let  $\alpha = s_{x_1} s_{x_2} \cdots s_{x_n}$  be a reduced expression for  $w \in W$ . Write  $[i, i+2] := \{i, i+1, i+2\}$ .

- ① The set of braid shadows for  $\alpha$  is the set

$$\mathcal{S}(\alpha) := \{[i, i+2] : s_{x_i} = s_{x_{i+2}} \text{ and } m(s_{x_i}, s_{x_{i+1}}) = 3\}$$

- ② The set of braid shadows for the entire braid class  $[\alpha]$  is the set

$$\mathcal{S}([\alpha]) := \bigcup_{\beta \in [\alpha]} \mathcal{S}(\beta).$$

E.g.  $\zeta = \underline{31} \underline{34} \underline{32} 3$  we have  $\mathcal{S}(\zeta) = \{[1, 3], [3, 5], [5, 7]\}$ .

## Theorem (ABCE)

Assume that  $(W, S)$  is a simply-laced Coxeter system. Let  $\alpha = s_{x_1} \dots s_{x_n}$  be a reduced expression for some  $w \in W$ . If  $[i, i+2] \in S([\alpha])$ , then  $[i+1, i+3] \notin S([\alpha])$ .

## Remark

If you followed Dana's talk: we can now say  $\alpha = s_{x_1} \dots s_{x_n}$  is a *link* if and only if:

- $n$  is odd;
- $S([\alpha]) = \{[1, 3], [3, 5], \dots, [n-4, n-2], [n-2, n]\}$ .

We know that every reduced expression factors uniquely into a product of links.

## Definition

Let  $\alpha = s_{x_1} s_{x_2} \cdots s_{x_n}$  be a reduced expression for  $w \in W$ . We define the **support** on an interval  $[i, j] \subset \mathbb{N}$  as follows.

- ① The support for  $\alpha$  is the set  $\text{supp}_{[i, j]}(\alpha) := \{s_{x_k} : i \leq k \leq j\}$ .
- ② The support for  $[\alpha]$  is the set

$$\text{supp}_{[i, j]}([\alpha]) := \bigcup_{\beta \in [\alpha]} \text{supp}_{[i, j]}(\beta).$$

## Remark

If  $i = j$ , then we write  $i$  for  $[i, i]$ .

## Theorem (ABCE)

Assume that  $(W, S)$  is a simply-laced triangle-free Coxeter system. Consider the set

$$R(i) = \{\beta \in [\alpha] : [i, i+2] \in \mathcal{S}(\beta)\}.$$

Then  $\text{supp}_{[i, i+2]}(\beta) = \text{supp}_{[i, i+2]}(\gamma)$  for all  $\beta, \gamma \in R(i)$ .

# Why do we need triangle-free?

## Example

The simply-laced Coxeter system  $\tilde{A}_2$  is determined by the following graph.



The reduced expressions  $\alpha = 12\cancel{13}121$  and  $\beta = 21\cancel{23}212$  are braid equivalent:

$$\alpha = \underline{1213}121 \mapsto \underline{2123}\overline{121} \mapsto 2123\overline{212} = \beta$$

Notice  $[3, 5] \in \mathcal{S}(\alpha) \cap \mathcal{S}(\beta)$  while

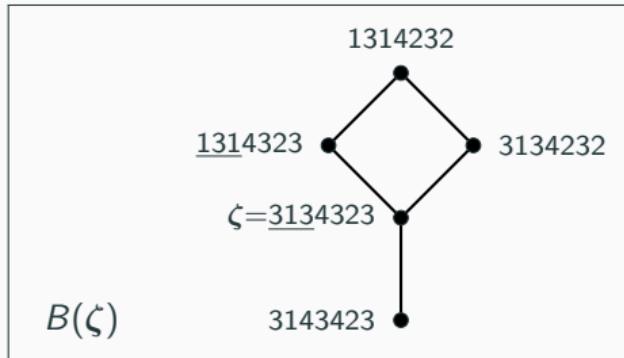
$$\text{supp}_{[3,5]}(\alpha) = \{1, 3\} \neq \{2, 3\} = \text{supp}_{[3,5]}(\beta).$$

This shows that the previous result is **false** when the Coxeter graph has three-cycles.

## Theorem (ABCE)

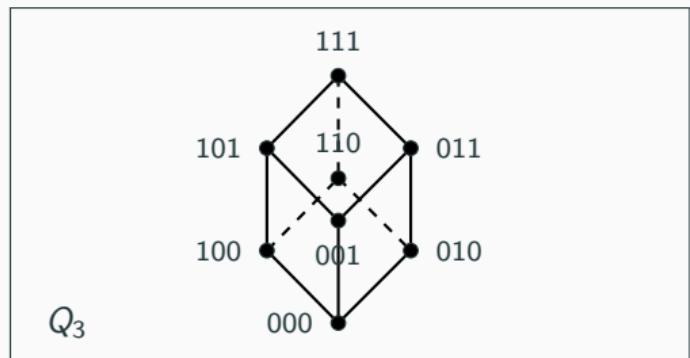
Let  $(W, S)$  be a simply-laced triangle-free Coxeter system. Let  $\alpha = s_{x_1} s_{x_2} \cdots s_{x_n}$  be a reduced expression for  $w \in W$ . If  $[i, i+2] \in \mathcal{S}(\alpha)$  such that  $\text{supp}_{[i, i+2]}(\alpha) = \{s, t\}$ , then  $\text{supp}_{i+1}([\alpha]) = \{s, t\}$ .

## Application of results: braid graphs



Braid graph  $B(\alpha)$

- ① Vertices :  $[\alpha]$
- ② Edges: single braid moves



$m$ -dimensional hypercube graph  $Q_m$

- ① Vertices:  $\{0, 1\}^m$  set of  $m$ -bit binary strings
- ② Edges: differ by single digit

## Definition

Let  $\alpha = s_{x_1} s_{x_2} \cdots s_{x_n}$ . Assume  $n$  is odd &  $\mathcal{S}([\alpha]) = \{[1, 3], [3, 5], \dots, [n-4, n-2], [n-2, n]\}$ , i.e.,  $\alpha$  is a link. Define  $m := |\mathcal{S}([\alpha])|$ .

Assume that  $\text{supp}_{2k}([\alpha]) = \{s_{2k}, t_{2k}\}$  where  $m(s_{2k}, t_{2k}) = 3$  for each  $k = 1, 2, \dots, m$ .

Define a map  $\Phi_{\alpha, m} : [\alpha] \rightarrow \{0, 1\}^m$ ,  $\beta \mapsto d_1 d_2 \cdots d_m$  where

$$d_k = \begin{cases} 0, & \text{if } \text{supp}_{2k}(\beta) = \{s_{2k}\} \\ 1, & \text{if } \text{supp}_{2k}(\beta) = \{t_{2k}\}, \end{cases} \quad \text{for } k = 1, 2, \dots, m.$$

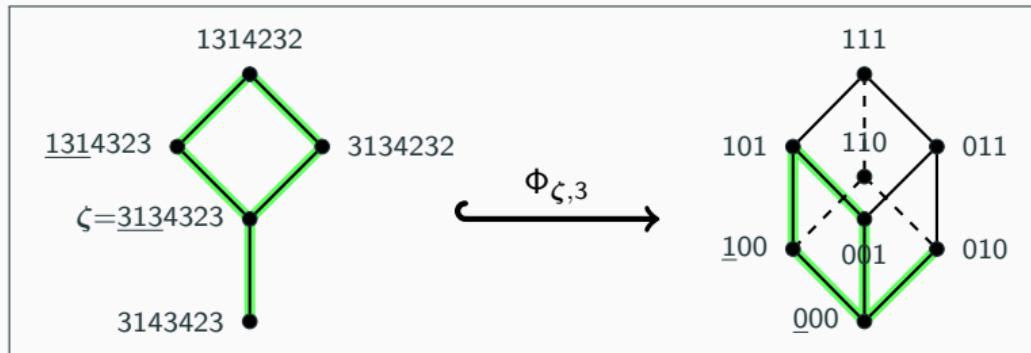
# Embedding of braid graph for $\zeta$ into $Q_3$

## Theorem (ABCE)

The map  $\Phi_{\alpha,m}$  is a graph embedding of  $B(\alpha)$  into  $Q_m$ , i.e., an edge-preserving injection.

## Example

The reduced expression  $\zeta = \underline{313} \overline{43} 23$  is a link:  $\mathcal{S}([\zeta]) = \{[1, 3], [3, 5], [5, 7]\}$ .



**The End.**