Problem 1
Determine the maximum value of
$$f(x,y) = x^2 + xy + y^2$$
 on the unit disk
 $D = \{(x') \in \mathbb{R}^n : x^2 + y^n \in I\}$.
Solution Since f is continuous and D is closed and bounded,
i hos max/min in D.
(DFind critical points that satisfy $x^2 + y^2 \in I$)
so set
 $0 = 5x = 2x + y$ $= 7 - 4y + y = 0$
 $0^{-5} y = 2x + x \Rightarrow y^{-2} = 7$
 $0^{-5} y = 2x + x \Rightarrow y^{-2} = 0$
Only critical points that satisfy $(y, y) = 0$
Only critical points that satisfy $(y, y) = 0$
Only critical points that satisfy $(y, y) = 0$
Only critical points that satisfy $(y, y) = 0$
Only critical points that satisfy $(y, y) = 0$
Only critical points for which $x^2 + y^2 = I$
By Lagrange: $\exists \lambda \in \mathbb{R}$ such that $\forall f = \lambda \forall y$ where $y = x^2 + y^2$
 $(2xry, 2yrh) = \forall f = \lambda \forall y = (2x, 2y)$
 $\Rightarrow 2x + y = 2\lambda x$
 $2yrh x = 2\lambda y$
 (axc) If $x = 0$, then $y = 0$. Also, if $y = 0$, then $x = 0$.
 (axc) Assume $x, y \neq 0$ so we can divide that
 $2 + \frac{x}{2} = 2xry - 2\lambda = 2yrh x = 2 + \frac{x}{2}$
 $\Rightarrow \frac{y}{x} = \frac{x}{y} \Rightarrow y^2 = x^2$
By constraint $x^2 + y^2 = 1$ we see that $x = \pm \frac{\pi}{2}$, $y = \pm \frac{\pi}{2}$
Evaluate $f(x, s)$ at all critical pist to
 $see that max(s) = 0$

roblem 2 ind the at (+ y + 2 =	solute max	imum/minimum of f(x, y, z) = 2x+y subject to the	Chapter 14.4 constraint
		that Xtytz=1 is closed but unba	
175	nst u	maranteel that max min exists. Solve f	for y:
५= ।	- X- 7	so that	
		f(x,y,z) = 2x + 1 - x - z = $x - z + 1$	
Then		-7 00 if x-700 w/ Z=0 =7	
		~ if z > ~ w/ x=0 =>	
Arollor	way :	Lagrange multipliers => 3XER such th	at
		$(z_1, v_1, o) = \nabla S = \lambda \nabla g = \lambda (v_1, v_1, v_2)$	
÷	$2 = \lambda$ $1 = \lambda$	=> contradiction so there are no	critical pts.
	υ = λ		

Problem 3
Let
$$F(x,y,z) = (e^{x^2}, sin(xy), x^5y^3z^2)$$
. Compute the divergence
and curl of F.

Solution Divergence:
$$\nabla \cdot F$$
 where $\nabla = (\frac{9}{2} \times \frac{9}{2} \times \frac{9}{2})$
Curl: $\nabla \times F = \begin{pmatrix} c & j & k \\ \frac{9}{2} \times \frac{9}{2} & \frac{9}{2} \end{pmatrix} \begin{pmatrix} suy & F = (F_{11} + F_{2}) \\ F_{11} + F_{2} + F_{3} \end{pmatrix}$

Divergenie
$$\nabla \cdot F = (\partial_{\partial x_1} \partial_{\partial y_1} \partial_{\partial z_2}) \cdot (e^{x^2}, \sin xy_1, x^5y_3z^2)$$

 $= \partial_{\partial x}(e^{x^2}) + \partial_{\partial y}(\sin xy_1) + \partial_{\partial z}(x^5y_3z^2)$
 $= 2e^{x^2} + x \cos(xy_1) + 2x^5y_3z^2.$
Curl $\nabla x F = \begin{bmatrix} i & j & k \\ -\lambda & -\lambda & -\lambda \end{bmatrix}$

$$V \times f = \begin{cases} y_{0x} & y_{0y} & y_{0z} \\ z^{2} & z^{2} & z^{2} \\ z^{2} &$$

$$= i(\sqrt[9]{3}y(x^{5}y^{3}z^{2}) - \sqrt[9]{3}z(\sin xy)) - j(\sqrt[9]{3}y(x^{5}y^{3}z^{2}) - \sqrt[9]{2}(e^{x^{2}}))$$

+
$$K(\frac{9}{0}x(\sin xy) - \frac{9}{0}y(e^{x^2}))$$

 \Box

Problem ¹⁴
Surgeone F:R³
$$\rightarrow$$
 R³ is a (2) vector field. Show that
div (evrl F) = 0.

Prot div (evrl F) = $\nabla \cdot \text{curl F}$ (Sury F = (F₁, F₂, F₃))
= $\nabla \cdot (\nabla x F)$
= ($\forall bx, \forall by, \forall bz$) · ($\forall bx, F_3 - \frac{1}{2}bz F_1 - \frac{1}{2}bx, F_3 - \frac{1}{2}bz F_2 - \frac{1}{2}by, F_1$)
= $\frac{1}{2}(\frac{1}{2}bx, \frac{1}{2}by, \frac{1}{2}bz)$ · ($\frac{1}{2}bx, F_3 - \frac{1}{2}bz F_1 - \frac{1}{2}bx, F_3 - \frac{1}{2}by, F_2 - \frac{1}{2}by, F_1$)
= $\frac{1}{2}(\frac{1}{2}bx, \frac{1}{2}by, \frac{1}{2}bz)$ · ($\frac{1}{2}bx, F_3 - \frac{1}{2}bz F_1 - \frac{1}{2}bx, F_3 - \frac{1}{2}bz F_2 - \frac{1}{2}by, F_1$)
= $\frac{1}{2}(\frac{1}{2}bx, \frac{1}{2}by, \frac{1}{2}bz)$ · ($\frac{1}{2}bx, F_3 - \frac{1}{2}bz F_1 - \frac{1}{2}bx, F_3 - \frac{1}{2}by, F_1 - \frac{1}{2}by, F_2 - \frac{1}{2}by, F_1$)
= $\frac{1}{2}(\frac{1}{2}bx, \frac{1}{2}by, \frac{1}{2}bz, F_1 - \frac{1}{2}by, F_3 + \frac{1}{2}bz, F_2 - \frac{1}{2}by, F_1$)
= $\frac{1}{2}(\frac{1}{2}by, \frac{1}{2}bz, F_2 + \frac{1}{2}by, F_1 - \frac{1}{2}by, F_3 + \frac{1}{2}bz, F_2 - \frac{1}{2}by, F_1 = 0$.
By assumption $F = [F_1, F_2, F_3]$ is C^2 so F_1, F_2, F_3 out C^2 .
So the mixed Portials are equal by Clairand's Thu, e. J. $\frac{1}{2}bx, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by, F_1 = \frac{1}{2}by, F_2 = \frac{1}{2}by$

$$\frac{|Problem \leq}{1 \text{ (R}^{3} \rightarrow \text{R}} \text{ be a } C^{2} \text{ fundium. Then show that } \text{ cuvil } (U5) \cdot \vec{0}.$$

$$\frac{|Chapter 11 \cdot \vec{1}|}{1 \text{ (II} + \frac{1}{2} \text{ (I$$

Problem 6
Octorwise the maximum value of
$$f(x_{1,2}) = x + y_{2} = on the u the disk t
D = $f(x_{1,2}) \in \mathbb{R}^{3} : x^{3} + y^{3} + 2^{2} \leq 1$
Solution
(i) Find all critical points for which $x^{2} + y^{2} \leq 1$:
Solut: $O = f_{x} = \frac{1}{2}$ => There wile AD critical points
 $U - f_{2} = z$ where $x^{2} + y^{2} + 2^{2}$
(2) Fiel all critical points for which $x^{2} + y^{2} = 1$:
Solut: $O = f_{z} = y$
(2) Fiel all critical points for which $x^{2} + y^{2} = 1$:
Solut: $U - f_{2} = z$
 $U - f_{2} = z$
(1, $\frac{2}{1}y$) = $\lambda(2x, 2y, 2z)$
 $= \sum (1, \frac{2}{1}y) = \lambda(2x, 2y, 2z)$
 $= \sum (1, \frac{2}{1}y) = \frac{1}{2} = \frac{1}{2}$
Solut: $(1 + \frac{1}{2}) = \frac{1}{2} = \frac{1}{2}$
 $= \sum (1, \frac{2}{1}y) = \frac{1}{2} = \frac{1}{2}$
 $= \sum (1, \frac{1}{2}) = \frac{1}{2} = \frac{1}{2}$
 $= \sum (1, \frac{1}{2}) = \frac{1}{2} = \frac{1}{2}$
 $= \sum (2), \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $= \sum (2), \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $= \sum (2), \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$$

