Problem 1
Determine the maximum/minimun value of $f(x, y)=x^{2}+x y+y^{2}$ on the unit disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.

Solution since f is continuous and D is closed and bounded, f has maximin in D.
(1) Find critical points that satisfy $x^{2}+y^{2}<1$

So set

$$
\begin{aligned}
& 0=f_{x}=2 x+y \quad \Rightarrow-4 y+y=0 \\
& 0=f_{y}=2 y+x \quad \Rightarrow y=0
\end{aligned}
$$

only critical point in this case is $(0,0)$.
(2) Find critical points for which $x^{2}+y^{2}=1$

By Lagrange: $\exists \lambda \in R$ such that $\nabla f=\lambda \nabla g$ where $g=x^{2}+y^{2}$

$$
\begin{aligned}
& (2 x+y, 2 y+x)=\nabla f=\lambda \nabla y=(2 x, 2 y) \\
\Rightarrow \quad & 2 x+y=2 \lambda x \\
& 2 y+x=2 \lambda y
\end{aligned}
$$

Case 1 If $x=0$, then $y=0$. Ass, if $y=0$, then $x=0$.
Cause Assume $x, y \neq 0$ so we can divide. then

$$
\begin{aligned}
& 2+\frac{y}{x}=\frac{2 x+y}{x}=2 \lambda=\frac{2 y+x}{y}=2+\frac{x}{y} \\
& \Rightarrow \frac{y}{x}=\frac{x}{y} \Rightarrow y^{2}=x^{2}
\end{aligned}
$$

By constraint $x^{2}+y^{2}=1$ we see that $x= \pm \frac{\sqrt{2}}{2}, y= \pm \frac{\sqrt{2}}{2}$
Evaluate $f(x, y)$ at all critical pts to
secthat $\max (f)=\frac{3}{2}$ and $\min (t)=0$ (4 critical points)

Problem 2
Find the absolute maximum/minimun of $f(x, y, z)=2 x+y$ subject to the constraint $x+y+z=1$.

Solution Note that $x+y+z=1$ is closed but unbounded so it is not guaranteed that max/min exists. Solve for y : $y=1-x-z$ so that

$$
\begin{aligned}
f(x, y, z) & =2 x+1-x-z \\
& =x-z+1
\end{aligned}
$$

Then $f \rightarrow \infty$ if $x \rightarrow \infty \quad w / z=0 \Rightarrow$ thas no max

$$
f \rightarrow-\infty \text { if } z \rightarrow \infty \quad w / x=0 \Rightarrow f \text { has nomin }
$$

Arilter way: Lagrange multipliers $\Rightarrow \exists \lambda \in \mathbb{R}$ such that

$$
(2,1,0)=\nabla f=\lambda \nabla g=\lambda(1,1,1)
$$

$\Rightarrow \quad \begin{aligned} 2 & =\lambda \\ 1 & =\lambda\end{aligned} \Rightarrow$ contradiction so there are no criticulpts. $0=\lambda$

Problem 3
Let $F(x, y, z)=\left(e^{x z}, \sin (x y), x^{5} y^{3} z^{2}\right)$. Compare the divergence and curl of F.

Solution Divergence: $\nabla \cdot F$ where $\nabla=\left(\frac{\partial x}{2}, \partial / \partial y, \partial / \partial z\right)$
Curl: $\quad \nabla \times F=\left|\begin{array}{ccc}i & j & k \\ \% / \partial x & \partial / \partial y & \partial z z \\ F_{1} & F_{2} & F_{3}\end{array}\right| \quad\left(\right.$ say $\left.F=\left(F_{1}, F_{L}, F_{3}\right)\right)$
Divergence $\nabla \cdot F=(\% / \partial x, \% y, \% z) \cdot\left(e^{x z}, \sin x y, x^{5} y^{3} z^{2}\right)$

$$
\begin{aligned}
& =\partial / \partial x\left(e^{x z}\right)+\eta \partial y(\sin x y)+\partial / \partial z\left(x^{5} y^{3} z^{2}\right) \\
& =z e^{x z}+x \cos (x y)+2 x^{5} y^{3} z
\end{aligned}
$$

Curl

$$
\begin{aligned}
\nabla \times F= & \left|\begin{array}{ccc}
i & j & k \\
\partial \% & \% \partial y & \partial / \partial z \\
e^{x z} & \sin x y & x^{5} y^{3} z^{2}
\end{array}\right| \\
= & i\left(\% \partial y\left(x^{5} y^{3} z^{2}\right)-\partial / \partial z(\sin x y)\right)-j\left(\% \partial\left(x^{5} y^{3} z^{2}\right)-\% z\left(e^{x z}\right)\right) \\
& \quad+k\left(\%(\sin x y)-\partial / \partial y\left(e^{x z}\right)\right) \\
= & \left(3 x^{5} y^{2} z^{2}, x e^{x z}-5 x^{4} y^{3} z^{2}, y \cos (x y)\right)
\end{aligned}
$$

Suppose $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a $\overline{C^{2}}$ vector field. Show that $\operatorname{div}($ curl $F)=0$.

Proof

$$
\left.\begin{aligned}
\operatorname{div}(\text { cur } \mid F) & =\nabla \cdot \text { curl } \quad\left(\text { say } F=\left(F_{1}, F_{2}, F_{3}\right)\right) \\
& =\nabla \cdot(\nabla \times F) \\
& =(\partial / \partial x, \partial y y / \partial z) \cdot\left|\begin{array}{ccc}
i & j & k \\
0 / \partial x & \partial / \partial y & \partial / \partial z \\
F_{1} & F_{2}
\end{array}\right| F_{3}
\end{aligned} \right\rvert\,
$$

$$
=\left(\% / \partial x_{1} \partial / \partial y, \partial \partial z\right) \cdot\left(\partial / \partial F_{3}-\partial / \partial z F_{2}, \partial / \partial z F_{1}-\partial / \partial x F_{3}, \partial / \partial x F_{2}-\partial / \partial y F_{1}\right)
$$

$$
=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y} F_{3}-\partial / \partial z F_{2}\right)+\partial / \partial y\left(\partial z F_{1}-\partial / \partial x F_{3}\right)+\partial / \partial z\left(\partial / \partial x F_{2}-\partial / \partial y F_{1}\right)
$$

$$
\left.=\frac{\partial}{\partial x}\right)_{y} / F_{3}-\frac{\partial}{\partial x \partial \partial} F_{2}+\frac{\partial}{\partial y_{y} / z} / F_{1}-\frac{\partial}{\partial 3} / F_{x} F_{3}+\frac{\partial}{\partial z \partial_{x}} / F_{2}-\frac{\partial}{\partial z \partial y} F_{1}=0 .
$$

By assumption $F=\left(F_{1}, F_{2}, F_{3}\right)$ is C^{2} so F_{1}, F_{2}, F_{3} are C^{2}.
So the mixed Partials are equal by Clairaut's Tho, e, $\cdot \frac{\partial}{\partial z^{\partial} y} F_{1}=\frac{\partial}{\partial y_{j z}} F_{1}$

Problem 5
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a c^{2} fundion. Then show that $\operatorname{curl}(\nabla f)=\overrightarrow{0}$. memorize Is the veter field $F(x, y, z)=(2 x-5 y)$ i $+(4 x+y)$; a gradient field? (this the

Proof

$$
\begin{array}{rlr}
\operatorname{Curl}(\nabla f) & =\nabla \times(\nabla f) & (\nabla=(\partial / \partial x, \partial / \partial y, \partial / \partial z)) \\
& =\left|\begin{array}{lll}
i & j & k \\
\partial / \partial x & \partial / \partial y & 0 / \partial z \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right| \quad\left(\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)\right) \\
& =i\left(\frac{\partial f}{\partial y \partial z}-\frac{\partial f}{\partial y \partial z}\right)-j\left(\frac{\partial f}{\partial x \partial z}-\frac{\partial f}{\partial z \partial x}\right)+k\left(\frac{\partial f}{\partial x \partial y}-\frac{\partial f}{\partial y \partial x}\right) \\
& =(0,0,0) \quad \text { by Cluivaut's Thm again since } \\
& & f \text { is } c^{2} .
\end{array}
$$

A vector field $F: \rightarrow$ culled a gradient field if there is a C^{2} function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $F=\nabla f$.
Suppose $F(x, y, z)=(2 x-5 y) i+(4 x+y) j$ is a gradient field, Then there is a c^{2} function f such that $F=\nabla f$. By the The we proved we have

$$
\begin{aligned}
\overrightarrow{0} \stackrel{\downarrow}{=} \operatorname{curl}(\nabla f)= & \operatorname{curl}(F) \\
= & \left|\begin{array}{ccc}
i & j & k \\
\% x & \% & \partial / \partial z \\
2 x-5 y & 4 x+y & 0
\end{array}\right| \\
= & i(\% y(0)-\partial / \partial z(4 x+y))-j(\% \partial x(0)-\partial / \partial z(2 x-5 y)) \\
& \quad+k(\% x(4 x+y)-\% y(2 x-5 y))) \\
= & (0,0,4+5)
\end{aligned}
$$

So F is nut a gradient vector field. (Compare w/ Problem 3 from Friday week 4 posted on my website)

Determine the maximum/minimun value of $f(x, y)=x+y z$ on the 4 ithid'sk.

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

Solution
(1) Find all critical points fir which $x^{2}+y^{2}<1$:

Solve:

$$
\begin{aligned}
& 0=f_{x}=1 \quad \Rightarrow \quad \text { There use no critical points } \\
& 0=f_{y}=z \\
& 0=f_{z}=y
\end{aligned} \quad \text { where } x^{2}+y^{2}<1
$$

(2) Find all critics points for which $x^{2}+y^{2}=1$:

Solve

$$
\begin{array}{lll}
& \nabla f=\lambda \nabla y, & g=x^{2}+y^{2}+z^{2} \\
\Rightarrow & (1, z, y)=\lambda(2 x, 2 y, 2 z) \\
\Rightarrow & \text { (1) } 2 \lambda x=1 & x \neq 0 \text { by (1) }
\end{array}
$$

(2) $2 \lambda y=z$
(3) $2 x z=y$
(il) $x^{2}+y^{2}+z^{2}=1$
Solve (1): $2 \lambda=\frac{1}{x} \Rightarrow$ Substitute int (2) and (3)

$$
\begin{aligned}
& \Rightarrow(2) \frac{y}{x}=z \\
& \Rightarrow(2) y=x z \\
& \Rightarrow(3) \frac{t}{x}=y \\
& \Rightarrow(5) y=x^{2} y
\end{aligned}
$$

$\operatorname{cose} 1 y=0, \Rightarrow z=0 \Rightarrow$ (4) $x^{2}=1 \Rightarrow x= \pm 1$

$$
(\pm 1,0,0) \text { are critical pts }
$$

Cause $y \neq 0$, By (5), $x^{2}=\frac{y}{y}=1 \Rightarrow x= \pm 1$.
So by (1) $\lambda= \pm \frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow(2) \quad z= \pm y \\
& \Rightarrow(4) \quad 1+y^{2}+y^{2}=1 \\
& \Rightarrow \quad 2 y^{2}=0 \Rightarrow y_{\text {not possible }}^{y= \pm 0}
\end{aligned}
$$

No critical points in case 2.
So, $f(1,0,0)=1$ maxume min

No critical points in case 2.
So,

$$
\begin{aligned}
& f(1,0,0)=1 \\
& f(-1,0,0)=-1
\end{aligned} \quad \text { I } \quad \text { max and min } \quad \text { on } D
$$

