Problem 1
Let $u=u(x, y)$ and let (r, θ) be polar coordinates. Show that

$$
\|\nabla u\|^{2}=u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2}
$$

Thy (chain rule) let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be differentiable functions such that $f \circ y$ is defined. Then $f \circ g$ is differentiable and D fog $\left(x_{0}\right)$ is a pen matrix given by

$$
\underbrace{D(f \circ g)\left(x_{0}\right)}_{p \times n}=\underbrace{D f\left(g\left(x_{0}\right)\right)}_{p \times m} \cdot \underbrace{D g\left(x_{1}\right)}_{m \times n}
$$

Solution consider tL fundion $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ de fined by $h(r, \theta)=(r \cos \theta, r \sin \theta)$.
Apply chain rule to u oh: tncof x, y
thc of $r, \theta \quad l$

$$
\begin{aligned}
& {\left[u, u_{\theta}\right]=D(\text { ooh })=D u D h} \\
& =\left[u_{x} u,\right]\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right] \\
& =\left[u_{x} \frac{\partial x}{\partial r}+u_{y} \frac{\partial y}{\partial r} \quad u_{x} \frac{\partial x}{\partial \theta}+u_{y} \frac{\partial y}{\partial \theta}\right]
\end{aligned}
$$

So equating entries yields $u_{r}=u_{x} \frac{\partial x}{\partial r}+u_{y} \frac{\partial y}{\partial r} \quad u_{\theta}=u_{x} \frac{\partial x}{\partial \theta}+u_{y} \frac{\partial y}{\partial \theta}$

$$
\|\nabla u\|^{2}=u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2} .
$$

$$
=u_{x} \cos \theta+u_{y} \sin \theta=-r u_{x} \sin \theta+r u_{y} \cos \theta
$$

$$
\begin{aligned}
& u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2}=\left(u_{x} \cos \theta+u_{y} \sin \theta\right)^{2}+\frac{1}{r^{2}}\left(-\frac{r u_{x} \sin \theta}{}+r u_{y} \cos \theta\right)^{2} \\
& =u_{x}^{2} \cos ^{2} \theta+2 u_{x} u_{y} \sin \theta \cos \theta+u_{y}^{2} \sin ^{2} \theta \\
& +\frac{1}{r^{2}}\left(r^{2} u_{x}^{2} \sin ^{2} \theta-2 r^{2} u_{x} u_{y} \sin \theta \cos \theta+r r^{2} u_{y}^{2} \cos ^{2} \theta\right) \\
& =u_{x}^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+u_{y} 2\left(\sin ^{2} \theta \cos ^{2} \theta\right) \\
& =u_{x}^{2}+u_{y} 2=\| \nabla u^{2}
\end{aligned}
$$

Problem 2
Let $f(x, y)=e^{x+y}$ and make the change of variables $x=r^{5}, y=r s$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial r}$.

Solution By the chain rule:

$$
\begin{aligned}
& \frac{\partial f}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =e^{x+y} \cdot 0+e^{x+y} r \\
& =e^{x+y} r=r e^{r^{5}+r s}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =e^{x+y} 5 r^{4}+e^{x+y} s \\
& =e^{x+y}\left(5+5 r^{4}\right) \\
& =e^{5+r}\left(s+5 r^{4}\right)
\end{aligned}
$$

Problem 3
Find the rate of change of $f(x, y, z)=x y z$ in the direction normal to the surface defined by the equation $y x^{2}+y z^{2}+x y^{2}=3$ at $(1,1)$.

Solution Recall that if $g(x, y, z)=k$ are the level curves of a function g, then ∇g is normal to the level curves.
So define $g(x, y, z)=y x^{2}+y z^{2}+x y^{2}$. Then the surface is a level curve of g, so $\nabla y(1,1,1)$ is normal to the surface at $(1,1,1)$. We compute

$$
\text { so } \quad \begin{aligned}
& \nabla g(x, y, z)=(9 x, 9 y, 9 z) \\
&=\left(2 x y+y^{2}, x^{2}+z^{2}+2 x y, 2 y z\right) \\
& \nabla_{y}(1,1,1)=(3,4,2) \quad \Rightarrow \quad\|\nabla(1, x)\|=\sqrt{9+16+4} \\
&=\sqrt{29}
\end{aligned}
$$

$$
\text { Normalize } \Rightarrow \frac{(3,4,2)}{\sqrt{29}}
$$

Now we find the directional derivative of f at $(1,1,1)$ in this direction:

$$
\begin{aligned}
\nabla f(x) \cdot \frac{(3,4,2)}{\sqrt{24}} & =(y z, x z, x y) \frac{(3,4,2)}{\sqrt{29}} \\
& =(1,1,1) \cdot \frac{(3,4,2)}{\sqrt{29}} \\
& =\frac{1}{\sqrt{24}}(3+4+2)=\frac{9}{\sqrt{24}}
\end{aligned}
$$

Problem 4
Find the points on the hyperboloid $x^{2}+4 y^{2}-z^{2}=4$ where the tangent plane is parallel to the plane $2 x+2 y+z=5$

Solution Recall: two planes are parallel if and only if their normal vectors are parallel. If n_{1} and n_{2} are the normal vectors, then there exist $c \in \mathbb{R}$ such that $n_{1}=C n_{2}$.

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the hyperboloid. Define $f(x, y, z)=x^{2}+4 y^{2}-z^{2}$. Then $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the hyperboloid.

$$
\nabla f(x, y, z)=(2 x, 8 y,-2 z)
$$

The normal vector to the plane $2 x+2 y+z=5$ is $(2,2,1)$. Suppose there is a number $c \in \mathbb{R}$ such that

$$
\left(2 x_{0}, 8 y_{0},-2 z_{0}\right)=c(2,2,1) .
$$

we have the equations: $\left\{\begin{array}{l}2 x_{0}=L c \\ 8 y_{0}=2 c \\ -2 z_{0}=c\end{array} \Rightarrow\left(x_{0}, y_{0}, z_{0}\right)=\left(c, \frac{1}{4} c,-\frac{1}{2} c\right)\right.$
we also know $x_{0}^{2}+4 y_{0}{ }^{2}-z_{0}{ }^{2}=4$

$$
\begin{aligned}
& \Rightarrow c^{2}+4\left(\frac{1}{4} c\right)^{2}-\left(-\frac{1}{2} c\right)^{2}=4 \\
& \Rightarrow c^{2}+\frac{1}{4} c^{2}-\frac{1}{4} c^{2}=4 \Rightarrow c^{2}=4 \\
& \text { so } c= \pm 2
\end{aligned}
$$

Hence, $\left(x_{0}, y_{0}, z_{0}\right)=\left(2, \frac{1}{2},-1\right)$ or $\left(-2,-\frac{1}{2}, 1\right)$

Problem 5
If $z=f(\underline{x-y})$, show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$.

Solution
Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ via $h(x, y)=x-y$ So that $z(x, y)=(f \circ h)(x, y)$ Apply chain rule to z :

$$
\begin{aligned}
{\left[\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right]=D z } & =D f D h \\
& =\left[f^{\prime}\right]\left[\frac{\partial h}{\partial x} \frac{\partial h}{\partial y}\right] \quad(f: \mathbb{R} \rightarrow \mathbb{R}) \\
& =f^{\prime}[1-1] \\
& =\left[f^{\prime}-f^{\prime}\right]
\end{aligned}
$$

Now, $\frac{\partial z}{\partial x}+\frac{\partial \tau}{\partial y}=f^{\prime}+\left(-f^{\prime}\right)=0$

