Problem 1
Compute the following limits or prove that they d_{0} not exist:
(a) lim

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+2}
$$

(c) $\lim _{(x, y) \rightarrow(0,0)}\left(3 x^{2}+3 y^{2}\right) \log \left(x^{2}+y^{2}\right)$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}$
(d) \lim

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y}{x^{2}+y^{2}}
$$

(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+2}$
$x y$ is continuous at $(0,0)$, and $x^{2} r y^{2}+2$ is cont. at $(0,0)$ and non-zero so the function $f(x, y)=\frac{x y}{x^{2}+y^{2}+2}$ is continuous at $(0,0)$. So

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=f(0,0)=0
$$

(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}$ The function $f(x, y)=\frac{(x-y)^{2}}{x^{2}+y^{2}}$ is not continuous at 10,0). Let's try to show that the limit does not exist. sxiategy: find two puts in $x y$-ploce that approach $(0,0)$ but give different values in the limit. Consider the path $y=x$ and $x>0$:

$$
\lim _{(x, x) \rightarrow(0,0)} \frac{(x-x)^{2}}{x^{2}+x^{2}}=\lim \frac{0}{2 x^{2}}=0 .
$$

But along the path where $y=0, x>0$ we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{(x-0)^{2}}{x^{2}+0^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}} & =\lim _{x \rightarrow 0} 1 \\
& =1 .
\end{aligned}
$$

(c) $\lim _{(x, y) \rightarrow(0,0)}\left(3 x^{2}+3 y^{2}\right) \log \left(x^{2}+y^{2}\right)$

The function ${ }^{\text {s }}$ not continuous at $(0,0)$. Let's convert to poler coordinates:

$$
r=r(x, y)=\sqrt{x^{2}+y^{2}} \Rightarrow r^{2}=x^{2}+y^{2} \quad \text { Note that }
$$

$r=r(x, y)=\sqrt{x^{2}+y^{2}} \Rightarrow r^{2}=x^{2}+y^{2} \quad$ Note that $\lim _{(x, y) \rightarrow(0,0)} r(x, y)=0$. So we have

$$
\begin{aligned}
\lim _{r \rightarrow 0} 3 r^{2} \log r^{2} & =\lim _{r \rightarrow 0} \frac{\log r^{2}}{1 / 3 r^{2}} \\
& \stackrel{H}{H} \\
& =\lim _{r \rightarrow 0} \frac{\frac{1}{r^{2}} \cdot 2 r}{-\frac{2}{3} r^{-3}} \\
& =\lim _{r \rightarrow 0} \frac{\frac{2}{r}}{-\frac{2}{3 r^{3}}}=\lim _{r \rightarrow 0}-3 r^{2} \\
& =0
\end{aligned}
$$

(d) $\lim _{(x, y) \rightarrow(0,0)} \frac{y}{x^{2}+y^{2}}$

The function is not continuous at $(0,0)$. Let's convert to poler:

$$
r=\sqrt{x^{2}+y^{2}} \quad y=r \sin \theta
$$

We have

$$
\lim _{r \rightarrow 0} \frac{r \sin \theta}{r^{2}}=\lim _{r \rightarrow 0} \frac{\sin \theta}{r}
$$

Fix $\theta=0$, then $\sin \theta=0$ so we get

$$
\lim _{r \rightarrow 0} \frac{0}{r}=0
$$

Fix $\theta=\frac{\pi}{2}$, then $\sin \theta=1$ so we get

$$
\lim _{r \rightarrow 0} \frac{1}{r}= \begin{cases}+\infty & \text { when } r \rightarrow 0^{+} \\ -\infty & \text { when } r \rightarrow 0^{-}\end{cases}
$$

Problem 2
Compare the derivative $D f(x)$ for each function:

$$
\text { (a) } f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} f(x, y)=\left(x+e^{z}+y, y x^{2}\right)
$$

(b) $\left.f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad f(x, y)=\overline{\left(x e^{y}\right.}+\cos y, x, x+e^{y}\right)$
(c) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad f(\rho, \theta, \phi)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$

Def If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}\left(w /\right.$ component functions $\left.f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{1} 1 \leq i \leq m\right)$ is differentiable, then the derivative $D f$ is the $m \times n$ matrix whose $i j$ entry is $\frac{\partial f_{i}}{\partial x_{j}}$:

$$
D f\left(x_{1}, \cdots, x_{n}\right)=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \quad f(x, y)=\left(x+e^{z}+y, y x^{2}\right)$

Solution: $f_{1}(x, y, z)=x+e^{z}+y$

$$
f_{2}(x, y, z)=y x^{2}
$$

Note that of is the 2×3 matrix:

$$
D f(x, y)=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & e^{z} \\
2 x y & x^{2} & 0
\end{array}\right]
$$

(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} f(x, y)=\left(x e^{y}+\cos y, x, x+e^{y}\right)$
$D f$ is the $3 x^{2}$ matrix:

$$
D f=\left[\begin{array}{cc}
e^{y} & x e^{y}-\sin y \\
1 & 0 \\
1 & e^{y}
\end{array}\right]
$$

(c) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad f(\rho, \theta, \phi)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$ If is the 3×3 matrix:

Df is the 3×3 matrix:

$$
D f=\left[\begin{array}{ccc}
\sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\sin \phi \sin \theta & \rho \sin \phi \cos \theta & \rho \cos \phi \sin \theta \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right]
$$

Let $f(x, y)=x e^{y^{2}}-y e^{x^{2}}$. (a) Find an eq. of the plane tangent to the graph of f at (1,2). (b) which point on the surface $z+y^{2}-x^{2}=0$ has a tangent plane parallel to the one in (a)?

Def If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\left(x_{0}, y_{0}\right)$, then the plane tangent to the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is given by

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Note that the normal vector is

$$
n=\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1\right)=\nabla(f-z)\left(x_{0}, y_{0}\right)
$$

(a) We have $f_{x}(x, y)=e^{y^{2}}-2 x y e^{x^{2}}$

$$
f_{x}(1,2)=e^{4}-4 e
$$

and

$$
\begin{aligned}
& f_{y}(x, y)=2 x y e^{y^{2}}-e^{x^{2}} \\
& f_{y}(1,2)=4 e^{4}-e
\end{aligned}
$$

and

$$
f(1,2)=c^{4}-2 c
$$

So the tangent plane is given by

$$
z-\left(e^{4}-2 e\right)=\left(e^{4}-4 e\right)(x-1)+\left(4 e^{4}-c\right)(y-2)
$$

(b) Which point on the surface $z+y^{2}-x^{2}=0$ has a tangent plane parallel to the one in (a)?
Solution Note two planes are parallel if their normal vectors are parallel. Also, notice that the surface defined by $z+y^{2}-x^{2}=0$ is the gruph of the function
by $z+y^{2}-x^{2}=0$ is the graph of the function

$$
g(x, y)=z=x^{2}-y^{2}
$$

By the above, the normal vector at a point $(a, b, g(a, b))$ is $(9 x, 9 y,-1)=(2 a,-2 b,-1)$
We need to find a and b.
The vector $(2 a,-2 b,-1)$ is parallel to $\left(e^{4}-4 e, 4 e^{4}-e,-1\right)$ if there is number a such that

$$
(2 a,-2 b,-1)=c\left(e^{4}-4 e, 4 e^{4}-e,-1\right)
$$

So $-1=-1 \cdot c \Rightarrow c=1$ so we have

$$
2 a=e^{4}-4 e \text { and }-2 b=4 e^{4}-c
$$

So $a=\frac{e^{4}-4 e}{2}$ and $b=\frac{e-4 e^{4}}{2}$.

Problem 4
Chapter 13.2
compute the limits: $(a) \lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{y}$ (b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)-1}{x^{2} y^{2}}$
\square

