Problem 1
Sketch the following surfaces:
(a) $z=r^{2}$
(b) $p=4 \csc \psi \sec \theta$
(c) $r=4 \sin \theta$

Cylindrical coordinates $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta \\ z=z\end{array}\right.$
Spherical Coordinates

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Solution (a) $z=r^{2}=x^{2}+y^{2} \quad$ (since $r=\sqrt{x^{2}+y^{2}}$)
So the surface is defined by $z=x^{2}+y^{2}$ which

(b)

$$
\begin{aligned}
p=4 \csc \psi \sec \theta \Rightarrow 4 & =\frac{\rho}{\csc \phi \sec \theta} \\
& =\rho \sin \phi \cos \theta \\
& =x
\end{aligned}
$$

So the surface is defined by $x=4$ which is a plane

(c) $r=4 \sin \theta \Rightarrow r^{2}=16 \sin ^{2} \theta$

$$
\text { (c) } \begin{aligned}
r=4 \sin \theta \Rightarrow r^{2} & =16 \sin ^{2} \theta \\
\Rightarrow x^{2}+y^{2} & =4 \cdot(4 \sin \theta) \cdot \sin \theta \\
& =4 r \sin \theta \\
& =4 y
\end{aligned}
$$

$\Rightarrow x^{2}+(y-2)^{2}=4 \Rightarrow$ equation for \sim sphere of radius 2 centered at $(0,2)$.

Problem 2
(a) For any $n \times n$ matrix A, show that $\operatorname{det}(C A)=c^{n} \operatorname{det}(A)$
(b) Compute $\operatorname{det}(M)$ where $M=\left[\begin{array}{ccc}3 & 3 & 0 \\ 0 & 6 & - \\ 3 & -\end{array}\right]$. Is M invertible?
(a) Proof we will use the fact $\operatorname{det}(B \cdot C)=\operatorname{det}(B) \cdot \operatorname{det}(C)$ firry $n \times n$ matrices B and C.
Let $c \in \mathbb{R}$ and $A=\left[\begin{array}{ccc}a_{n} & \cdots & a_{i n} \\ \vdots & & \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]$ be any $n \times n$ matrix. We can write

$$
c A=\underbrace{\left[\begin{array}{cccc}
c & 0 & \cdots & 0 \\
0 & c & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 & c
\end{array}\right]}_{x} \underbrace{\left[\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
\vdots & \cdots & \vdots \\
u_{n} & \cdots & a_{n n}
\end{array}\right]}_{A}
$$

By determinant formula

$$
\begin{aligned}
\operatorname{det}(c A) & =\operatorname{det}(X A) \\
& =\operatorname{det}(X) \cdot \operatorname{det}(A)=c^{n} \operatorname{det} A .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& M=\left[\begin{array}{lll}
3 & 3 & 0 \\
0 & 6 & 0 \\
3 & 0 & -9
\end{array}\right]=3\left[\begin{array}{ccc}
1 & 0 \\
0 & 2 & 2 \\
1 & 0 & -3
\end{array}\right] \\
& \operatorname{det}(M)=\operatorname{det}\left(\left[\begin{array}{llll}
3 & 3 & 0 \\
0 & 6 & 6 \\
3 & 0 & -9
\end{array}\right]\right) \\
& =3^{3} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 \\
0 & 2 \\
10 & 2 & 3
\end{array}\right]\right)=27\left(1\left|\begin{array}{ccc}
2 & 2 \\
0 & -3
\end{array}\right|-1\left|\begin{array}{cc}
0 & 2 \\
1 & -3
\end{array}\right|\right) \\
& =27(-6+2)=27 \cdot-4 \\
& =-108 \text {. }
\end{aligned}
$$

Is M invertible? The M is invertible if and only if $\operatorname{det}(M) \neq 0$.

Problem 3
Suppose that $r(t)$ is a space curve with the property that $\|r(t)\|=K$ for all $t \in \mathbb{R}$. Show that $r(t)$ and $r^{\prime}(t)$ are or thogonal.

Note that $\left\|_{r}(t)\right\|=k \Leftrightarrow$ all the points on the curve r lie on a sphere of radius k centered at the origin

Proof We need to show that $r(t) \cdot r^{\prime}(t)=0$.
We have

$$
\begin{aligned}
0 & =\frac{d}{d t} k^{2} \\
& =\frac{d}{d t}\|r(t)\|^{2} \\
& =\frac{d}{d t}(r(t) \cdot r(t)) \quad\binom{\text { use product rule for }}{(u \cdot v)^{\prime}=u^{\prime} \cdot v+v^{\prime} \cdot u} \\
& =r^{\prime}(t) \cdot r(t)+r(t) \cdot r^{\prime}(t) \quad \\
& =2 r(t) \cdot r^{\prime}(t) .
\end{aligned}
$$

Divide by 2 to get $r(t) \cdot v^{\prime}(t)=0$ which proves that $r(t) \perp r^{\prime}$

Problem 4
Consider the path $r(t)=(\cos t, \sin t, t)$.
(a) Find an equation of the line tangent to r when $t=\pi / 2$.
(b) Find a plane orthogonal to the tangent line when $t=\pi / 2$.
cc) Find a plane that contains the tangent line when $t=\pi / 2$.

$$
r(t) \text { is a helix that }
$$ lies on a cylinder of radius 1, centered at the origin

(a) A point in the line is given by

$$
\begin{aligned}
a & =r(\pi / 2) \\
& =(\cos \pi / 2, \sin \pi / 2, \pi / 2) \\
& =(0,1, \pi / 2)
\end{aligned}
$$

A rector pointing in the direction of the line is

$$
\begin{aligned}
v=r^{\prime}(\pi / 2) & =(-\sin \pi / 2, \cos (\pi / 2), 1) \\
& =(-1,0,1)
\end{aligned}
$$

So a parameterization of the tangent line is

$$
\begin{aligned}
l(t) & =(0,1, \pi / 2)+t(-1,0,1) \\
& =(-t, 1, t+\pi / 2)
\end{aligned}
$$

(b) Find a plane ortho onal to the tangent line when $t=\pi / 2$.

A point in the p are is $a=r(\pi / 2)=(0,1, \pi / 2)$ and a normal vector to the plane is $v=r^{\prime}(T / 2)=(-1,0,1)$. So an equation of the plane is

$$
\begin{array}{ll}
& (-1,0,1) \cdot((x, y, z)-(0,1, \pi / 2))=0 \\
\Rightarrow \quad-x+z=\pi / 2
\end{array}
$$

(c) Find a plane that contains the tangent line when $t=\pi / 2$. Recall that $v=r^{\prime}(\pi / 2)=(-1,0,1)$ is parallel to the tangent line.
(c) Find a plane that contains the tangent line when $t=\pi / 2$. Recall that $v=r^{\prime}(\pi / 2)=(-1,0,1)$ is parallel to the tangent line. we need is a vector orthogonal to v.
Define a vector $T(\pi / 2)=\frac{V(\pi / 2)}{\|v(\pi / 2)\|}=\frac{(-1,0,1)}{\sqrt{2}}=\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$
Notice that T is parallel to v and $\|T(t)\|=1$. By Problem (3), we know that $T(t)$ and $T^{\prime}(t)$ are orthogonal.
Compute $T^{\prime}(t)=\left(\frac{r^{\prime}(t)}{\left\|r^{\prime}(t)\right\|}\right)^{\prime}=\left(\frac{(-\sin t, \cos t, 1)}{\sqrt{2}}\right)^{\prime}$

$$
=\left(-\frac{1}{\sqrt{2}} \cos t,-\frac{1}{\sqrt{2}} \sin t, 0\right)
$$

So a normal vector is $\sqrt{2} T(\pi / 2)=\left(0,-\frac{1}{\sqrt{2}}, 0\right) \cdot \sqrt{2}$

$$
=(0,-1,0)
$$

So an equation of the plane is

$$
(0,-1,0)((x, y, z)-(0,1,+1 / 2))=0
$$

