Problem 1 Find an equation of the line passing through the points $(-1,-1,-1)$ and $(1,-1,2)$.

- Every two distinct points determine a line.


So $\mid r(t)=\vec{a}+t \vec{v}, \vec{v}=\vec{b}-\vec{a}$

- $\vec{a}$ is a point on the line
- $\vec{v}$ is a vector parallel to the dine

Solution: $\vec{a}=(-1,-1,-1)$ is a point in the line. A vector parallel to the line is

$$
\begin{aligned}
\vec{b}-\vec{a} & =(1,-1,2)-(-1,-1,-1) \\
& =(2,0,3)
\end{aligned}
$$

So, $r(t)=(-1,-1,-1)+t(2,0,3)$

Problem 2 Find all values of $x$ such that $(x, 1, x)$ and $(x,-6,1)$ are or thoginal.

Recall: The dot product $u \cdot v$ is defined as

$$
u \cdot v=|u||v| \cos \theta
$$

- If $u \perp v$, then $\theta=90^{\circ}, 270^{\circ}$, so $\cos \theta=0$. So $u \cdot v=0$.
- If $u \cdot v=0$, then $|u||v| \cos \theta=0$ so $\cos \theta=0$.
so $\theta=90^{\circ}$ or $\theta=270^{\circ}$ since $0 \leq \theta<360^{\circ}$
The $u \cdot v=0$ if and only if $u \perp v$.
Sol'n Solve $0=(x, 1, x) \cdot(x,-6,1)=x^{2}-6+x$
So $x^{2}+x-6=(x+3)(x-2)=0$

$$
\Rightarrow x=-3 \text { or } x=2
$$

Problem 3 Find the orthogonal projection of $u=(-1,1,1)$ onto $V=(2,1,-3)$.

Def The orthogonal projection of $u$ onto $v$ is the vector

$$
\begin{aligned}
& \operatorname{proj}_{v} u=\underbrace{\left.\frac{u \cdot v}{u \cdot u}\right)}_{a \text { scalar }} u \\
& \int_{\operatorname{proj}_{v} u} w
\end{aligned}
$$

Picture

$$
\overline{R^{2} \text { or } \mathbb{R}^{3}}
$$

- Projvu $=C V$ for some $c \in \mathbb{R}$
- There is a vector $w$ such that $u=w+C V$ and $w \perp V \Leftrightarrow w \cdot v=0$.
To compute $c$, consider U.v

$$
\begin{aligned}
u \cdot v=v \cdot(w+c v) & =v \cdot w+v \cdot(c v) \\
& =0+c(v \cdot v)
\end{aligned}
$$

so $c=\frac{u \cdot v}{u \cdot u}$.
Solution: proj,$u=\frac{(-1,1,1) \cdot(2,1,-3)}{(-1,1,1) \cdot(-1,1,1)}(-1,1,1)$

$$
=\frac{-2+1+-3}{1+1+1}(-1,1,1)=-\frac{4}{3}(-1,1,1)=\left(\frac{4}{3}, \frac{-4}{3}, \frac{-4}{3}\right)
$$

Problem 4 Find the line through $(3,1,-2)$ that intersects and is perpindiculus to the line $r(t)=(t-1, t-2, t-1)$.


- Apoint on $d$ is $(3,1,-2)$
- We need a vector parallel to $\ell$, ie. perpiriticalir to $r$.

Consider $v(t)=r(t)-(3,1,-2)=(t-4, t-3, t+1)$
Avectur parallel to $r$ is $(1,1,1)$. So we need to solve for $t$ :

$$
\begin{aligned}
0 & =(t-4, t-3, t+1) \cdot(1,1,1) \\
& =t-4+t-3+t+1 \\
& =3 t-6
\end{aligned}
$$

So $t=2$. So an equation of the live is

$$
l(s)=(3,1,-2)+5 v(2)=(3,1,-2)+5(-2,-1,3)
$$

Problem 5 Determine if $(1,1,1),(3,2,3)$ and $(-3,-1,-3)$ are collinear.

Consider the picture:


Does $b$ lie on $\ell$ ?
Solution Puramaterize the lime containing ( $1,1,1$ ) and $(3,2,3): \quad l(t)=(1,1,1)+t(2,1,2)$

$$
=(2 t+1, t+1,2 t+1)
$$

Does $(-3,-1,-3)$ lie on $l(t)$ ? Solve for $t$ :

$$
(-3,-1,-3)=(2 t+1, t+1,2 t+1)
$$

We have $-3=2 t+1$

$$
\begin{array}{ll}
\Rightarrow & t=-2 \\
\Rightarrow & t=-2
\end{array}
$$

the system of equal ions hasa solution. So the points ave collinear.!

