Problem 1
Show that $f(x, t)=\sin (x-c t)$ sulisfies the one-dimensional wave equation

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial^{2} t}
$$

Solution

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \sin (x-c t)\right) \\
& =\frac{\partial}{\partial x} \cos (x-c t) \\
& =-\sin (x-c t) \\
& =-\frac{c^{2}}{c^{2}} \sin (x-c t) \\
& =-\frac{c}{c^{2}}(c \sin (x-c t)) \\
& =-\frac{c}{c^{2}}\left(\frac{\partial}{\partial t} \cos (x-c t)\right) \\
& =\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \sin (x-c t)=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}
\end{aligned}
$$

Problem 2
Let $w=f(x, y)$ be a real valued function of 2 variables and let $x=u+v$ and $y=u-v$. Show that $\frac{\partial^{2} w}{\partial u \partial v}=\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}$.

Solution
Lemma: Let $g(x, y)$ be any function of two variables and make the change of variables $x=u t v$ and $y=u-v$. By chain rule:
(1) $\frac{\partial g}{\partial u}=\frac{\partial g}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial g}{\partial y} \cdot \frac{\partial y}{\partial u}=\frac{\partial g}{\partial x}+\frac{\partial g}{\partial y}$
(2) $\frac{\partial g}{\partial v}=\frac{\partial g}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial y}{\partial y} \cdot \frac{\partial y}{\partial v}=\frac{\partial g}{\partial x}-\frac{\partial g}{\partial y}$.

$$
\begin{aligned}
& \frac{\partial^{2} w}{\partial u \partial v}=\frac{\partial}{\partial u}\left(\frac{\partial w}{\partial v}\right)=\frac{\partial}{\partial u}\left(\frac{\partial w}{\partial x}-\frac{\partial w}{\partial y}\right) \quad(\text { by eq. (2) }) \\
&=\frac{\partial}{\partial u}\left(\frac{\partial w}{\partial x}\right)-\frac{\partial}{\partial u}\left(\frac{\partial w}{\partial y}\right) \\
&\left(\begin{array}{l}
\text { by eq (1) apdied } \\
\text { to } \\
\left.\frac{\partial w}{\partial x} \text { and } \frac{\partial w}{\partial y}\right)
\end{array}=\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right)-\left(\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial y}\right)\right)\right. \\
&=\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{\partial x}}-\frac{\partial^{2} w}{\partial x \partial y}-\frac{\partial^{2} w}{\partial y^{2}} \\
&\binom{\text { byclairaut's Thu }}{f_{x y}=f_{y x}}=\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2} x}-\frac{\partial^{2} w}{\partial y \partial x}-\frac{\partial^{2} w}{\partial y^{2}} \\
&=\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}
\end{aligned}
$$

Problem 3
Does there exist a c^{2} function $f(x, y)$ such that:
(a) $f_{x}=2 x-5 y$ and $f_{y}=4 x+y$
(b) $f_{x}=5 x-2 y$ and $f_{y}=-2 x$

Solution
Cluirant's The If $f(x, y)$ is C^{2} (twice continuously differentiable), then $\quad f_{x y}=f_{y x}$.
(a) There is no such function. Suppose there was a C^{2} foe $f(x, y)$ such that $f_{x}=2 x-5 y$ and $f_{y}=4 x+y$. By Claimant's The, we know that $f_{x y}=f_{y x}$. But

$$
f_{x y}=-5 \quad \text { and } \quad f_{y x}=4 \text { so } f_{x y} \neq f_{y x} .
$$

So no such function exists,
(b) Trythe same method as (a): $f_{x y}=-2$ and $f_{y x}=-2$. The mixed partials $f_{x y}$ and $f y x$, so this tells us nothing.
Let's try to find a function $f(x, y)$ that works:
$f_{x}=5 x-2 y$ and $f_{y}=-2 x$
Given $f_{x}=5 x-2 y \Rightarrow f=\int f_{x} d x=\frac{5}{2} x^{2}-2 x y+h(y)$
where $h(y)$ is any function of y.
Then we have

$$
\begin{aligned}
-2 x=f_{y} & =\frac{\partial}{\partial y}\left(\frac{5}{2} x^{2}-2 x y+h(y)\right) \\
& =-2 x+h^{\prime}(y) \\
\Rightarrow h^{\prime}(y)=0 & \Rightarrow h(y)=\int h^{\prime}(y) d y=\int 0 d y=0
\end{aligned}
$$

So $f(x, y)=\frac{5}{2} x^{2}-2 x y$ is c^{2} function sutisfying the given propertios.

Problem 4
Find the first and second-order Taylor approximation for $f(x, y)=6 e^{x+y}$ at $(0,0)$.

Theorem 3 Second-Order Taylor Formula Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ have
continuous partial derivatives of third order. ${ }^{2}$ Then we may write

$$
f\left(\mathbf{x}_{0}+\mathbf{h}\right)=f\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{n} h_{i} \frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{0}\right)+\frac{1}{2} \sum_{i, j=1}^{n} h_{i} h_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\mathbf{x}_{0}\right)+R_{2}\left(\mathbf{x}_{0}, \mathbf{h}\right),
$$

where $R_{2}\left(\mathbf{x}_{0}, \mathbf{h}\right) /\|\mathbf{h}\|^{2} \rightarrow 0$ as $\mathbf{h} \rightarrow \mathbf{0}$ and the second sum is over all i 's and j 's between 1 and n (so there are n^{2} terms).
in a neighborhood of x_{0}
The theorem says that f can be approximated' by the polynomial

$$
T\left(h_{1}, \ldots, h_{n}\right)=f\left(x_{0}\right)+\sum_{i=1}^{n} h_{i} \frac{\partial f}{\partial x_{i}}\left(x_{0}\right)+\frac{1}{2} \sum_{i, j=1}^{n} h_{i} h_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{0}\right)
$$

In our cage, we have $f: \mathbb{R}^{2} \rightarrow \mathbb{R}($ so $n=2)$. Set $x=x_{1}, y=x_{2}$ The formula' becomes $\left(\omega / x_{0}=(0,0)\right)$

$$
\begin{array}{r}
T\left(h_{1}, h_{2}\right)=f(0,0)+h_{1} \frac{\partial f}{\partial x}(0,0)+h_{2} \frac{\partial f}{\partial y}(0,0)+\frac{1}{2}\left(h_{1}^{2} \frac{\partial^{2} f}{\partial x^{2}}+h_{1} h_{2} \frac{\partial^{2} f}{\partial x^{\partial y}}+\right. \\
\\
\left.h_{2} h_{1} \frac{\partial^{2} f}{\partial y \partial x}+h_{2}^{2} \frac{\partial^{2} f}{\partial y^{2}}\right)
\end{array}
$$

Compute all partials of $f(x, y)=6 e^{x+y}$ at $(0,0)$
Note that $6 e^{x+y}=f=f_{y}=f_{x}=f_{x y}=f_{y x}=f_{x x}=f_{y y}$
so $T\left(h_{1}, h_{2}\right)=6+6 h_{1}+6 h_{2}+\frac{1}{2}\left(6 h_{1}^{2}+6 h_{1} h_{2}+6 h_{2} h_{1}+6 h_{2}^{2}\right)$
istle secorlorder taylor approx. The first order approx. is

$$
S\left(h_{1}, h_{2}\right)=6+6 h_{1}+6 h_{2}
$$

Problem 5
For each function, find all critical points and determine if they are local extema or sudd le points:
(n) $f(x, y)=x^{2}+2 x y+y^{2}$ (b) $g(x, y)=x \sin y$

Solution
(u) To find the critical points, solve the system of eq:

$$
\begin{aligned}
& f_{x}(x, y)=0 \\
& f_{y}(x, y)=0
\end{aligned}
$$

In our case

$$
\begin{aligned}
& 2 x+2 y=f_{x}=0 \\
& 2 x+2 y=f_{y}=0
\end{aligned}
$$

$\Rightarrow x=-y$ so the set of critical points is

$$
L=\{(x,-x): x \in \mathbb{R}\} \quad \text { (the line } y=x)
$$

Note that $f(x, y)=x^{2}+2 x y+y^{2}$

$$
=(x+y)^{2}
$$

If $(x, y) \in L$, then $x=-y$ so

$$
f(x, y)=(x-x)^{2}=0
$$

Also $f(x, y)=(x+y)^{2} \geq 0$ so every point in L is a global minimum.
(b) $g(x, y)=x \sin y$

Solve $\sin y=9 x=0 \quad \Rightarrow \quad y=\sin ^{-1}(0)=k \pi$ for $k \in \mathbb{Z}$

$$
\begin{aligned}
& x \cos y=g_{y}=0 \Rightarrow x=0 \text { since } \cos (k \pi) \neq 0,\{ \\
& \text { set of critical points is }
\end{aligned}
$$

So the set of critical points is

$$
c=\left\{\left(0, k_{\pi}\right): k \in \mathbb{Z}\right\} \quad(\mathbb{Z}=\{\ldots-2,-1,0,1,2, \ldots\})
$$ hold:

(ii) We have $g_{x x}=\frac{\partial}{\partial x} \sin y$

$$
=0
$$

(iii) $D=\left(\frac{\partial^{2} f}{\partial x^{2}}\right)\left(\frac{\partial^{2} f}{\partial y^{2}}\right)-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}>0$ at $\left(x_{0}, y_{0}\right)$
(D is called the discriminant of the Hessian.) If in (ii) we have <0 instead of If $D=0$ (egg. if $\frac{\partial^{2} f}{}$ is unchanged, then we have a (strict) local maximum. If $D<0$ (egg., if $\frac{f}{\partial x^{2}}\left(x_{0,}, y_{0}\right)=0$ or $\frac{\partial f}{\partial y^{2}}\left(x_{0}, y_{0}\right)=0$, but $\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) \neq$
0), then $\left(x_{0}, y_{0}\right)$ is of saddle type (neither a maximum nor a minimum).

$$
\begin{array}{r}
\therefore \cdots, \cdots, \\
\quad=0-\cos ^{2} y
\end{array}
$$

Evaluate at a critical point $\Rightarrow y=k \pi$ $\Rightarrow \cos y \neq 0$ so $0-\cos ^{2} y<0$ \Rightarrow All critical points we saddle points.

Problem 6
Chapter 14.3
Determine the global extreme value of $f(x, y)=5 x^{3}-6 y$ on $0 \leq x, y \leq 2$.
\square

